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Abstract—This paper proposes strategies in level crossing (LC)
sampling and reconstruction that provide high fidelity signal
reconstruction for speech signals; these strategies circumvent the
problem of exponentially increasing number of samples as the
bit-depth is increased and hence are highly efficient. Specifically, the
results indicate that the distribution of the intervals between samples
is one of the key factors in the quality of signal reconstruction;
including samples with short intervals does not improve the accuracy
of the signal reconstruction, whilst samples with large intervals lead
to numerical instability. The proposed sampling method, termed
reduced conventional level crossing (RCLC) sampling, exploits
redundancy between samples to improve the efficiency of the
sampling without compromising performance. A reconstruction
technique is also proposed that enhances the numerical stability
through linear interpolation of samples separated by large intervals.
Interpolation is demonstrated to improve the accuracy of the signal
reconstruction in addition to the numerical stability. We further
demonstrate that the RCLC and interpolation methods can give useful
levels of signal recovery even if the average sampling rate is less than
the Nyquist rate.

Keywords—Level crossing sampling, numerical stability, speech
processing, trigonometric polynomial.

I. INTRODUCTION

REAL-WORLD signals such as speech, ECG, EEG, neural

activity, pressure, temperature and vibration sensors may

vary rapidly for brief moments and then remain constant for

some time [1]. These signals are non-stationary and temporally

sparse. Synchronous signal processing architectures do not

take into account the temporal sparsity of these signals and,

hence, classical uniform sampling in time can result in a large

number of samples that convey little or no information.

The inefficiency inherent in uniform sampling has led to

an upsurge in interest in the design of asynchronous [2]

analogue to digital converters (ADCs) that utilise event based

sampling. In particular there is a considerable interest in

level crossing (LC) ADCs [3], [4] due to their applications

in embedded sensing systems. LC ADCs have been shown

to have significant benefits over conventional ADCs, not

least they offer the potential of a significant reduction in

operating power when signals are temporally sparse [5]. The

rapid proliferation of battery powered wearable technologies

is further fuelling interest in these emergent technologies.

Of particular relevance to the work presented here is the

use of LC ADCs to process audio signals. Hearing aids (HAs)

were one of the original wearable devices and battery life is a

critical design factor. High fidelity audio processing requires a
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relatively high effective number of bits (ENOBs). HAs digitize

audio and speech signals with 20-24 bit precision to capture

the large dynamic range and yield acceptable signal-to-noise

ratio (SNR) at lower signal levels [6].

To date few studies have investigated the use of LC ADCs

in the context of high-fidelity signal processing. Although the

design of LC ADCs is well advanced the majority of studies

report SNR or signal-to-noise-and-distortion-ratio (SNDR) of

less than 60 dB [7]. Exceptions are reported by Kozmin

[8] who achieved SNDRs in excess of 80 dB. However, the

signals employed were pure-tone ultrasound signals that lacked

the fine structure of speech and music. Wang [9] employed

triangular dither to achieve similar performance; however the

use of dither increases the sampling rate and hence negates

the power saving achieved by LC ADCs.

Design principles have been established that can be applied

to the development of high-resolution LC ADCs. The ENOBs

is governed by the accuracy of the sampling process. Formula

relating time and amplitude uncertainty to the SNR (and hence

ENOBs [10]) give clear design targets. Whilst these formulae

provide target criteria for the front-end analogue-to-digital

conversion, no such design criteria are available for conversion

back to the analogue domain. In practice digital-to-analogue

conversion results in a signal reconstruction error that also

needs to be considered. This is particularly the case when

sampling is non-uniform in time because reconstruction

methods are less well developed.

Reconstructing signal from non-uniform samples is an

important issue in the area of DSP [11], [12]. Based on

the generalised Nyquist criterion, a band-limited signal with

bandwidth BW can be reconstructed from its non-uniform

samples, if the average sampling rate is larger than 2BW
[13]–[15]. There are different approaches of reconstruction

from non-uniform sampling [13], [14], [16], including

iterative approximation techniques [17], [18], frequency

domain techniques [19], polynomial or spline interpolation

[9], [20]–[23] and sinc-based reconstruction method [13].

Although these reconstruction methods have been applied

to LC ADCs the fidelity of the reconstruction is relatively

modest [24]. Furthermore, many of the reconstruction methods

are numerically unstable due to ill-conditioning and hence

unreliable [25].

Here we investigate reconstruction based on trigonometric

polynomials and an adaptive weights least square approach

[11]. Adaptive weights improve ill-conditioning and hence

numerical stability and exact reconstruction has been proven

for band-limited signals [11]; therefore this approach is a

strong candidate for use in high fidelity systems.
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We also propose a sampling method that potentially reduces

power consumption by reducing the sampling rate compared

to conventional LC ADCs. The sampling method exploits our

finding that significant redundancy can occur between LC

generated samples. This sampling method could be modified

for use in an asynchronous ADC, targeted for use in energy

constrained applications.

This paper is organised as follows. After an introduction

on the LC sampling approach in Section II, the reconstruction

methodology is presented in Section III. Section IV outlines

the accuracy of LC ADCs. In Section V we provide the

proposed sampling and reconstruction methodologies. The

simulation and results for speech signals are discussed in

Sections VI and VII. Lastly, Section VIII concludes the paper.

II. LEVEL CROSSING SAMPLING

LC events, which are deemed to occur when the signal

crosses a predefined threshold value provide non equi-spaced

samples in time [26]. This sampling technique is called

conventional LC (CLC). It is also known as sent-on-delta

or implicit sampling [27]. The principle of CLC sampling

is presented in Fig. 1. Reference amplitude thresholds are

regularly distributed along the amplitude range of the signal. A

sample is triggered when the input signal crosses one of these

thresholds. Samples are non-uniformly distributed in time and

are dependent on the statistics of the signal.

In the CLC sampling, the times t1, t2, · · · are considered

instants at which the levels qa, qb, · · · are crossed (Fig. 1)

[15]. For a signal f(t) this yields the sample pairs {tj , fj},

f(tj) = fj . The samples can then be processed by an

asynchronous DSP or interpolated to obtain uniform-in-time

samples. Sampling times tj depends only on the form of f(t)
and the threshold locations. This results in variable sampling

rate; dense sampling occurs when the signal varies rapidly and

less dense when the signal is slowly varying. The relationship

between the bit-depth, B, and the number of thresholds, N ,

is usually defined as N = 2B .

A review of methods in literature for LC sampling scheme

is provided in [24], [28]–[30]. The potential benefits of

asynchronous LC schemes are many folds. Power dissipation

typically scales linearly with input activity [31] and hence

will be reduced for signals that are temporally sparse [5].

Fig. 1 Level crossing sampling, adapted from [15]

Consequently, LC ADCs are expected to consume lower power

compared to their synchronous counterparts. LC technique

saves not only dynamic power in both ADC and DSP but

also bandwidth resources; because of the lower net sampling

rate. Alias free sampling is another benefit of LC sampling

[3].

III. RECONSTRUCTION FROM IRREGULAR SAMPLES

We consider the problem of reconstructing a band-limited

function f(t) from its set of irregular samples {f(tj), j ∈ Z} .

An efficient, accurate and numerically stable reconstruction of

f(t) can, theoretically, be achieved by interpolating the data

f(tj) using trigonometric polynomials of degree M [11], [25].

We used adaptive-weight conjugate-gradient Toeplitz

reconstruction method (ACT algorithm) [25]. However,

because we are implementing off-line analysis the inversion of

the Toeplitz matrix is undertaken using standard least squares

methods [11].

Kozmin [8] employed ACT reconstruction method in LC

ADC. Our aim is to maximise the reconstruction accuracy

based on this method. We apply ACT algorithm to the

oversampling problem; we oversample the signal by increasing

the bit-depth to get better resolution/accuracy while negating

the negative impact of the exponentially increasing the number

of sample points.

For any integer M > 0, the class of trigonometric

polynomials is as follows,

PM = {p : p(t) =

M∑
k=−M

aM (k)
e

2πikt
2M+1√
2M + 1

, aM (k) ∈ C (1)

A unique trigonometric polynomial pM ∈ PM of suitable

degree and period fits the samples f(tj) in an interval

[−M,M ]. As the length 2M increases, pM converges to the

original function f . For the purpose of a local approximation

of f , pM is considered to have period 2M+1 and order M . An

upper bound for the degree of pM is known as a consequence

of band-limitedness [25]. In order to avoid the boundary

effects, the samples are taken in JM ⊆ [−M − 1,M + 1]
in which two adjacent samples are additionally taken.

A. Theorem

Suppose {tj , f(tj)}, j ∈ Z and −M − 1
2 ≤ t1 < · · · tj <

M + 1
2 , is given and the sampling set satisfies the maximal

gap condition (MGC) [25],

sup(tj+1 − tj) = δ <
1

2fmax
=

T0

2M
, j ∈ Z (2)

where δ is the largest interval in the whole sequence, T0 is

the record length, fmax is the maximum frequency in the

trigonometric polynomial. Ideally, pM (tj) = f(tj). However,

for finite M this is not equal, and the error should be

minimized. The unique trigonometric polynomial, pM ∈ PM ,

solves least squares problem (LSP).

∑
j∈JM

|pM (tj)− f(tj)|2 tj+1 − tj−1

2
= minimum (3)
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where the minimum is taken over all p ∈ PM , then for all

derivatives l ≥ 0,

lim
M→∞

∫ M+1/2

−M−1/2

| f (l)(t)− p
(l)
M (t) |2 dt = 0 (4)

and also limM→∞ pM (t) = f(t).
LSP is an accurate reconstruction method for irregular

sampling problem which can be solved by the inversion of

a Toeplitz matrix [11], [32]. CM is considered the (2M +
1)× (2M + 1) positive Toeplitz matrix.

(CM )kl =
∑
j∈JM

wj

2M + 1
e

−2πi(k−l)tj
2M+1 , |k|, |l| ≤ M (5)

where wj =
tj+1−tj−1

2 > 0, j ∈ Z, is a set of weights and

only changes the amplitude of the components. They help to

keep the condition number of a Toeplitz matrix low [25].

B. Reconstruction Algorithm

Suppose the sequence of LC samples {(tj , f(tj)), j ∈ JM}
is given as an input, wj > 0, j ∈ Z and condition JM ≥
2M + 1 is satisfied. bM ∈ C

2M+1 is computed as follows

[11],

bM (k) =
∑
j∈JM

f(tj)
wj√

2M + 1
e

−2πiktj
2M+1 , |k| ≤ M (6)

We can construct the trigonometric polynomial using (1).

aM is the matrix of the Fourier coefficient and can be

calculated by the inversion of CM .

aM = C−1
M bM ∈ C

2M+1 (7)

Then for all p ∈ PM , p �= pM ,

∑
j∈JM

|pM (tj)− f(tj)|2wj <
∑
j∈JM

|p(tj)− f(tj)|2wj (8)

We expect this trigonometric polynomial to give

good reconstruction results. Feichtinger [25] proved that

oversampling improves the condition number of the

reconstruction problem. Oversampling is not a problem in

this algorithm. Because the number of frequency components

M dictates the size of the Toeplitz matrix, not the number of

data points.

ACT algorithm uses a weighted LS method and this

weighting improves the condition number of the Toeplitz

matrix; therefore it gives rise to improve the numerical

stability and therefore should give rise to better quality of

reconstruction.

MGC is the limiting factor of the application of this method;

if the gap size between samples is too large, there is no

guarantee that the trigonometric polynomial converges to the

signal we are trying to reconstruct [11]. This theory therefore

only applies to LC ADCs if the bit-depth is high enough.

This is a fundamental limitation on the reconstruction of the

irregular samples.

IV. ACCURACY

It is well established that the accuracy of a LC ADC is

governed by a number of factors that in practice are hardware

dependent; specifically, errors occur in the LC sample pairs

{tj , fj}. The sample level fj equals the value (voltage) of

the threshold that was crossed when the jth sample was

generated. In practice, the threshold levels are only known

to finite precision. Errors also occur in the specification of

the sampling instants. Continuous time LC ADCs introduce

unwanted jitter in the instants tj due to the finite response

time of the electronic comparators and internal noise. For

discrete-time ADCs time tj is mapped onto the nearest clock

interval and hence quantization noise is introduced.

For the purpose of this study sampling errors are negated

by specifying the samples to machine precision. Under these

conditions the dominant source of error arises from the signal

reconstruction [33]. This approach, therefore, enables the

efficacy of the novel reconstruction and sampling methods to

be evaluated directly without contamination from other sources

of error.

It is common practice to quantify different sources of

errors independently, enabling the dominant sources to be

identified. For example, the fundamental performance of

standard uniform sampled ADCs is often cited in terms of

the SNR as,

SNRdB = 6.02B + 1.76 (9)

This quantifies the noise arising from quantising the sample

levels with bit-depth B when the signal is a full-scale

sinusoidal signal. In practice other forms of noise and

distortion further reduce the SNR and hence (9) is viewed

as an upper limit on performance. More generally (9) is used

to quantify the ENOBs from a known measure of the SNR

[10],

ENOB =
SNRdB − 1.76

6.02
(10)

V. SAMPLING AND RECONSTRUCTION METHODOLOGIES

In principle oversampling can be realised in LC ADCs

through increasing the bit-depth B. Every additional bit

doubles the number of thresholds and hence approximately

doubles the number of samples; hence the number of samples

is expected to depend exponentially on bit-depth.

The potential advantage of oversampling is not only an

increase in the ENOB but also enhanced numerical stability.

A significant advantage of employing an adaptive-weights

Toeplitz formalism is that the numerical conditioning is

theoretical well established [25]. The condition number of the

Toeplitz matrix has been rigorously obtained,

cond CM ≤
(
1 + 2δM

1− 2δM

)2

(11)

It is notable that the conditioning of the problem is governed

entirely by the maximal gap δ and the order of the polynomial

M . Reducing δ (e.g. by increasing B) clearly improves the

condition number and may be expected therefore to enhance

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:5, 2022 

150International Scholarly and Scientific Research & Innovation 16(5) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
5,

 2
02

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
54

7.
pd

f



the accuracy of the reconstruction. In CLC sampling large

gaps between samples can occur naturally and the MGC may

be violated. Such a situation is expected to lead to numerical

instability. However, an obvious disadvantage of increasing

bit-depth is that fast moving portions of the signal will be

over represented and the number of samples will increase

exponentially with B. Potentially this will negate the benefit

of the reduced power consumption of an LC ADC.

Our proposed sampling algorithm aims to achieve the

benefits of oversampling by increasing bit-depth but to avoid

the exponential increase in the number of samples. Two

approaches are investigated and combined, one that exploits

redundancy in the parts of the signal that are over represented

and another that interpolated samples to reduce δ.

First, we introduce what we term the reduced CLC (RCLC)

algorithm.

The first step is to perform CLC sampling as explained

in Section 2. This gives a set of sample pairs {t′j , f ′
j}. For

high bit-depth the set {t′j , f ′
j} is large and reconstruction is

computationally expensive. We therefore remove samples that

are ‘close together’. Sample t′j+1 is removed if Δ′
j < Tmin =

C ∗ TN = C ∗ 1
2BW , ∀Δ′

j , where Δ′
j = t′j+1 − t′j , Tmin is

the minimum temporal difference between samples, TN is the

inverse of the Nyquist frequency, BW is the bandwidth of the

original signal and C > 0 is a coefficient that enables control

over Tmin. This procedure leads to a reduced LC sample set

with new sample pairs {t′′j , f ′′
j } with a new time interval Δ′′

j =
t′′j+1 − t′′j .

Removing samples is designed to reduce redundancy

between samples but the MGC might not be satisfied for

some samples. An additional interpolations step is therefore

introduced. New samples are inserted if Δ′′
j > Tmax = T0

2M ,

where we introduce Tmax as the maximum temporal difference

between samples. First order interpolation between adjacent

samples {t′′j , f ′′
j } and {t′′j+1, f

′′
j+1} is employed to get the

final LC pairs {tj , fj} used to reconstruct the original signal.

We term this algorithm RCLC sampling with interpolation or

RCLCI.

Fig. 2 illustrates the four set of samples. It shows the

Fig. 2 An illustration of uniform, CLC, RCLC and RCLCI set of samples

variation between different sampling methods.

In the RCLCI sampling algorithm, we are increasing the

sampling rate where it is required in sparse periods and

reducing the sampling rate where it is populated with data

points. Applying this criterion provides minimum data samples

which extracts the main features of the signal and presents

more efficient distribution of non-uniform samples. Another

main benefit of RCLCI sampling method is that we can save

the RCLC instead of RCLCI data set since we can do the

interpolation as a part of digital to analogue converter; This

makes the proposed sampling method very efficient.

VI. SIMULATION

Simulations were carried out in MATLAB using a speech

signal sourced from the TIMIT database [34]. Numerical

simulation of LC sampling is non-trivial due to the discrete

representation of samples stored on a computer. It was our

intention to eliminate time quantization errors associated with

the sampling process. It was, therefore, necessary to up-sample

the original signal uniformly in time with a very high sampling

rate, ru, before extracting LC samples by thresholding.

Up-sampling gives rise to uniform samples f [n] = f(t =
nT ), n = 0, 1, 2, · · · where T is the new sampling period. In

practice the speech signals, originally acquired with a sampling

frequency of 16kHz, were up-sampled to 100MHz to achieve

a high ru and enable highly accurate approximation of the

LC samples. However, it does not affect the cost because

in practice the algorithms are designed for continuous time

signals and hence no up-sampling is required. The signal is

up-sampled to approximate continuous time signals. In the

limit ru −→ ∞ the LC samples and those derived from

the thresholding of uniform samples converge. However, to

eliminate time quantisation each LC is replaced by its closest

uniform sample. For example, if a threshold crossing occurs

between samples f [n] and f [n + 1] then the LC sample is

identified as f [n]. This yields samples that are known to

machine precision. This reduces the set of uniform sample

pairs {tn, fn} to a new set {t′j , f ′
j} that represents a highly

accurate approximation to the actual LC samples.

In practice the signal has to be processed in frames [7].

The up-sampled signal was partitioned into 50% overlapping

frames, Wk each of duration T0. Wk is called capture frame.

We designate the central sub-frame within Wk as a separate

frame, wk ⊂ Wk, and call it the evaluation frame. wk is of

length T0

2 . The partitioning of these frames is illustrated in

Fig. 3.

Preliminary investigations revealed that the reconstructed

signal contained significant error at the ends of the frame.

Fig. 3 Partitioning of signal into capture frames Wk and evaluation frames
wk , adapted from [7]
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(a) (b)

Fig. 4 SNR Vs M using (a) CLC and (b) RCLC sampling methods on a windowed time speech frame for C = 0.3 and 8, 9, 10, 15 bit-depth

The error arose due to spectral leakage observed in the

Fourier amplitudes aM . Such effects were not considered

in the original theoretical works [11] because convergence

between the reconstructed signal and the original signal

was proven in the limit T0 −→ ∞ and hence windowing

effects were eliminated. The use of a window function was

observed to improve the results significantly. All results

presented were for the Hanning window unless otherwise

stated. The reconstructed signal was multiplied by the inverse

window function before the accuracy of the reconstruction was

assessed.

The thresholds were placed uniformly across the amplitude

range of the signal. The peak-to-peak of the windowed frame

was divided into 2B intervals and the thresholds place at the

midpoints of the intervals.

To further reduce end effects 1
4 of each capture frame is

discarded and only the reconstructed evaluation frames are

saved. This method is similar to the overlap-add method [35].

The evaluation frames are then concatenated to reconstruct the

whole signal. In all results presented we set T0 = 10ms.

Accuracy of signal reconstruction is expressed using SNR

between the original signal f(t) and the reconstruction pM (t),

SNR = 10 log

∑
n f

2[n]∑
n (f [n]− pM [n])

2 (12)

where pM [n] = pM (t = nT ).

VII. RESULTS

A. Sample Redundancy and RCLC Sampling

The primary aim of the RCLC algorithm is to improve the

energy efficiency of the sampling process by reducing the

number of samples acquired. Whilst it may seem intuitive

that samples closely spaced in time relative to the inverse

bandwidth of the signal will contain redundant information,

this problem has not been investigated in the context of LC

ADCs. We, therefore, consider this question in this section.

Figs. 4(a) and (b) show SNR Vs M using CLC and

RCLC samples. Clearly the SNR is strongly affected by

the choice of M . The general dependence on M is

the same for both CLC and RCLC sample sets. As M
increases the fitted polynomial is able to capture more

signal features (higher frequency content) and hence the SNR

initially improves; but for sufficiently large M the MGC

(2) becomes violated and numerical instability occurs. This

results in unreliable reconstruction particularly at low bit-depth

where the maximum gap δ is larger. Transition to unstable

reconstruction is observed approximately at values of M =
50, 60, 90 for bit-depths of 8, 9, 10 bits respectively.

Comparison between panels (a) and (b) clearly demonstrates

that CLC samples are highly redundant; the same SNR is

observed in both cases despite the removal of samples by the

RCLC sampling scheme. Indeed, the degree of redundancy is

remarkable. Table I shows the number of samples. For B = 15
the RCLC algorithm removes more than 99% of the samples

and yet the maximal SNR is unchanged.

This observation has some interesting implications for

sampling theory and in particular the design of LC ADCs.

In conventional ADCs, increasing the sampling rate results

in oversampling which in general leads to a higher ENOBs.

Indeed one expects the SNR to improve as 20log(OSR) where

OSR is the oversampling ratio [36]. The results presented here

demonstrate no improvement despite a significant increase in

the average sampling rate. One is therefore led to conclude

that the distribution of the time intervals of the samples

has a strong bearing on performance. We speculate that the

distribution is just as important as its mean value. Indeed,

when interpreted with (11), our results suggest the SNR is

predominantly impacted by a small number of larger intervals

TABLE I
COMPARISON OF THE NUMBER OF SAMPLES USING CLC AND RCLC

SAMPLING METHODS ON A WINDOWED TIME SPEECH FRAME FOR

C = 0.3

B = 8 B = 9 B = 10 B = 15

CLC 1306 2610 5224 167004
RCLC 323 379 421 522
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i.e. the tail of the distribution. This is consistent with the

known instabilities that are observed if the MGC is violated.

Another interesting observation is that the SNR does not

depend directly on the bit-depth i.e. increasing bit-depth does

not necessarily lead to an increase in the SNR. In regions of

stable reconstruction, the SNR is the same for all bit-depths

and only depends on the value of M used in the reconstruction.

However, increasing bit-depth reduces the maximum gap size

δ thus enabling stable reconstruction at higher values of M .

This observation leads to a practical recommendation for the

choice of M . The maximum SNR is obtained at the largest

value of M for which stable reconstruction can be achieved.

This requires M to be selected such that the MGC is satisfied,

this is achieved if M = T0

2δ . In practice slightly larger values

of M may still lead to stable reconstruction and hence a higher

SNR but this is not guaranteed.

We also note that ACT reconstruction method is capable

of achieving SNRs close to 90 dB for B = 15. Indeed,

preliminary numerical studies indicate that there is no upper

limit to the achievable SNR if the bit-depth is chosen

accordingly. Furthermore, Table I illustrates that the RCLC

algorithm is capable of achieving high SNRs through the

addition of a remarkably small number of samples. For

example, increasing the bit-depth from B = 10 to B = 15
only adds approximately 25% more samples but enables an

increase in SNR of more than 10 dB to be achieved. A similar

improvement is observed for the original CLC samples but

requires the processing of samples that are more than two

orders of magnitude greater in number compared to RCLC.

Fig. 5 compares the number of RCLC samples to CLC

samples as a function of bit-depth. The dashed line shows the

number of samples that are required to satisfy the Nyquist

criteria under conditions of uniform sampling. The input

bandwidth of the signal is 8kHz and hence a sampling rate

of 16KHz leads to 160 samples in a 10ms time window. As

expected the number of CLC samples displays an exponential

dependence on B. The effectiveness of the RCLC algorithm

in reducing the number of samples is clear, particularly

at larger bit-depth. Indeed, the proportion of new samples

Fig. 5 Number of samples Vs bit-depth for C = 0.3 using RCLC and CLC
methods for M = 180 and uniform sampling method for M = 80 on a

windowed time speech frame

being added reduces with increasing B i.e. the dependence

is sublinear as can be observed in the inset. This suggests the

RCLC algorithm is computationally very efficient and can be

combined with high bit-depth scenarios to realise any specified

SNR.
Fig. 6 shows the SNR and number of samples as a function

of C for the RCLC data. C is a scaling factor that determines

Tmin and hence controls which CLC samples are rejected. If

C < 1 samples are rejected that have intervals smaller than the

minimum sampling period required to satisfy Nyquist criteria.

C = 1 corresponds, approximately, to a RCLC sampling

rate that just satisfies Nyquist criteria. C > 1 corresponds

to undersampling.
It can be observed from Fig. 6 that C controls the

redundancy between samples. The SNR is shown for two

different values of M , M = 50, panel (b) and M = 100, panel

(c). For both values of M the SNR plateaus for all bit-depths as

C is reduced. No further increase in SNR occurs even though

the number of samples continues to grow as C is decreased

(panel (a)). There exists a critical value of C at which the SNR

plateaus that is dependent on M and on the bit-depth, but in all

cases inclusion of additional samples by reducing C beyond its

critical value leads to no further useful information for signal

reconstruction. These results demonstrate that the maximum

SNR is dependent on C and M and choosing C < 1 does not

guarantee the maximal SNR is obtained or that the minimum

number of samples required to achieve the maximum SNR is

realised. For example, for M = 50 the maximum SNR (at

this value of M ) can be attained for values of C > 1; indeed

for B = 15 C = 1.5 yields the maximum SNR even though,

notionally, the signal is now significantly undersampled. The

number of samples for B = 15, C = 1.5 is approximately

100, which is less than the number of Nyquist samples 160.

This efficient reconstruction occurs because at this value of M
the bandwidth of the fitted polynomial is effectively less than

the bandwidth of the original signal and hence regularisation

leads to robust reconstruction. Only if C is so large that the

MGC is violated does the SNR decrease.
A higher SNR can generally be obtained if M is increased

but it is important to ensure the MGC is not violated. Fig. 6

(c) illustrates this point. For B = 15 the SNR is increased

significantly compared to those for M = 50 but values of

C < 1 are required to ensure the MGC is not violated. Indeed,

for smaller bit-depth numerical instability is still impacting

the SNR even at very small values of C because the MGC is

violated in the original CLC samples.

B. RCLCI Sampling
The results of the previous section show that increasing

M improves the SNR but ultimately numerical instability

limits the maximum value of M that can be used. The

instability occurs because the MGC is violated, specifically

when δ > T0

2M , effects similar to the Runge effect [37] occur

(Fig. 7). This significantly affects the signal reconstruction

quality. Fig. 7 illustrates this point, high frequency oscillations

are observed where adjacent samples violate the MGC. The

amplitude of these oscillations increases as the gap size

increases.
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(a) (b)

(c)

Fig. 6 (a) Number of RCLC samples and SNR of the RCLC samples Vs coefficient C for (b) M = 50 and (c) M = 100, on a windowed time speech
frame for 8, 9, 10, 15 bit-depth

In principle, numerical instability can be reduced by using a

high bit-depth to decrease δ but this approach cannot guarantee

success because the value of δ depends on the statistics

of the signal as well as the bit-depth. Therefore, in this

section we use linear interpolation in conjunction with the

RCLC sampling method. Interpolation adds additional samples

between adjacent samples that violate the MGC. We call this

the RCLCI algorithm. It is important to stress that interpolation

Fig. 7 Comparison of the original (dash-dotted line) and reconstructed (solid
line) speech signals using RCLCI sampling method for C = 0.3, M = 180

and 10 bit-depth when MGC is not satisfied (δ > T0
2M

)

is only introduced at the point of reconstruction and hence does

not impact on the number of RCLC samples that would need

to be stored or transmitted to achieve the SNRs reported here.

In principle, LC sampling does not introduce quantisation

error because, theoretically, the time-amplitude samples

{tj , fj} are known exactly in continuous time systems.

However, sample points added using linear interpolation will

introduce additional error because the exact value of the signal

is unknown at the location of the inserted sample. We will see

that this error introduces a form of a quantisation error.

Fig. 8 (a) shows SNR Vs M for RCLCI data points. The

impact of the interpolation can be assessed by comparing with

Fig. 4 (a). Three differences can be observed; first, higher

SNRs can be achieved with lower bit-depths; second, and

as expected, the erratic variation in SNR due to numerical

instability is no longer observed and third, interpolation causes

a saturation (plateauing) of the SNR at high values of M .

To understand the improvement in SNR consider the results

for B = 8. Fig. 4 (a) shows the SNR follows the same curve

as higher bit-depths until a value of M = 50 at which point

the curve deviates due to the onset of numerical instability.

The point of deviation is increased to M = 90 in Fig. 8 (a).

Beyond this value of M the SNR reduces and then plateaus.

Fig. 8 (b) shows the number of points used in the RCLCI

reconstruction. Generally, it is observed that at small values

of M a small number of interpolated points are required to
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(a) (b)

Fig. 8 (a) SNR and (b) number of RCLCI samples Vs M using RCLCI sampling method on a windowed time speech frame for C = 0.3 and 8, 9, 10, 15
bit-depth

ensure the MGC is satisfied. The addition of these points

enhances stability and enables reconstruction using a higher

value of M , thus interpolation leads to an improvement of the

SNR. However, adding more points by increasing M further

introduces additional error and the SNR starts to reduce. At

sufficiently large M the majority of points are interpolated

and hence the SNR becomes dominated by this single source

of error and the SNR plateaus. Similar behaviour is observed

at all bit-depths although interpolation was not observed to

enhance SNR for bit-depths of 10 and 15.

The value of M that optimises the SNR is approximately

observed to coincide when Tmax = Tmin. This condition

can be used to calculate the optimal value as M = T0

2CTN
.

However, for lower bit-depths SNRs close to the optimal SNR

can be achieved for a wide choice of M due to the slow

deterioration of the SNR with increasing M .

The behaviour for B = 15 in Fig. 8 (b) is seen

to be different from that of lower bit-depths and can be

understood as follows. As B increases the samples become

more uniformly distributed with a sampling interval that

approaches Tmin. For this reason when M < 200 we have

Tmax > Tmin and hence almost all samples satisfy the MGC

and no interpolated samples are required. However, for larger

values of M , Tmax < Tmin, nearly all the intervals are

interpolated. This is the reason we have a sudden jump in

the number of RCLCI samples from M = 227 to M =
296. For this reason interpolation has no benefit values for

M < 200 and introduces significant additional error for

M > 300. The RCLCI algorithm, therefore, appears to bring

significant benefit for low bit-depth but is less effective at

larger bit-depths.

It is of some interest to compare the RCLCI method to

standard ADC theory. We therefore now consider how the

SNR depends on the bit-depth. Fig. 9 compares the SNR

achieved by RCLCI and CLC methods for M = 180 and

compares these results to those obtained using a standard

uniform sampling method. The value of M was selected

because it results in an SNR that is close to optimal for all

bit-depths.

Note that the curve for CLC sampling cannot be obtained

for bit-depth less than 6 because the condition JM ≥ 2M +1
is not satisfied i.e. there are insufficient data points for the

LSP.

First, we note that RCLCI sampling significantly improves

the signal SNR compared to CLC for bit-depths less than

12. For bit-depths less than 12 numerical instability becomes

a problem for the CLC case and the SNR is consequently

compromised. The RCLCI and CLC methods give comparable

results at higher bit-depths when the MGC is satisfied but as

previously discussed it requires significantly more samples.

However, most notable is the linear dependence of the

SNR and B. This is reminiscent of the dependence due to

quantisation noise observed in standard ADCs and is described

by (9). For comparison (9) is shown by the dotted line in

Fig. 9 (results labelled theory). Clearly this equation is in

reasonable agreement with the RCLCI obtained SNR. We

therefore conclude that interpolation introduces a form of

quantisation noise. This is perhaps not surprising because the

signal, unknown at the point of interpolation, is likely to take

on a value between the thresholds of the two samples being

interpolated. Due to the RCLC algorithm these thresholds need

not to be adjacent but for lower bit-depths are likely to be so.

Consequently, an error of the order of the separation of the

thresholds is likely as one obtains in standard quantisation. The

exact nature of this error is complicated because it depends

on the statistics of the signal as well as the positioning of the

thresholds.

For comparison the SNR for uniform sampling and

reconstructed using the same ACT algorithm is also presented

(crosses). Uniform sampling was undertaken to satisfy Nyquist

criteria and hence M = 80 had to be used to ensure the

condition JM ≥ 2M + 1 was satisfied. The levels of the

uniform samples were also quantised using a standard uniform

quantisation.

It is observed that the RCLCI sampling technique delivers a

higher SNR in comparison with the uniform sampling method.
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For example, the RCLCI technique gives a 7dB improvement

compared to uniform for B = 10. This result is in keeping

with results previously published that also demonstrate that LC

techniques can outperform those based on standard sampling

methods [29].

Finally, we show why the RCLCI method improves

numerical stability. Fig. 10 shows the condition number of the

Toeplitz matrix as a function of bit-depth. The RCLCI method

ensures that no samples violate the MGC and hence numerical

stability is guaranteed. This is shown by the fact the condition

number for RCLCI data is approximately one, its minimum

theoretical value. In contrast, the uniform sample data lead to

an increased condition number because it is sampled using

Nyquist criteria, oversampling will in principle reduce it

further. And the CLC data have a very high condition number

at low bit-depth and is the reason for the numerical instability.

Increasing the bit-depth significantly reduces the condition

number by eliminating those samples that violate the MGC.

As previously described, for bit-depths greater than 12 CLC

sampling gives good results albeit with significantly increased

samples compared to the RCLC and RCLCI methods.

VIII. CONCLUSION

New sampling methods in conjunction with ACT

reconstruction algorithm are observed to facilitate high

fidelity signal reconstruction for speech signals. The results

indicate that there is a relationship between the distribution of

the data points and the reconstruction accuracy; SNR does not

depend on the data points that are closely separated. Therefore,

the RCLC sampling technique is proposed which is extremely

effective at reducing the number of samples, particularly

at high bit-depth where the number of samples increases

sublinearly with bit-depth. RCLC achieves reasonable SNRs

at sub Nyquist sampling rates. The results also demonstrate

that SNR does not depend directly on bit-depth, only on the

order of the polynomial M and the maximum gap between

samples; the number of violations of MGC does impact

adversely on the accuracy of the signal reconstruction. Hence,

interpolation between samples is proposed to satisfy MGC;

Fig. 9 SNR Vs bit-depth for C = 0.3 using RCLCI and CLC methods for
M = 180 and uniform sampling method for M = 80 on a windowed time

speech frame

Fig. 10 Condition number Vs bit-depth for C = 0.3 using RCLCI and CLC
methods for M = 180 and uniform sampling method for M = 80 on a

windowed time speech frame

this technique provides numerical stability and makes the

Toeplitz matrix well-conditioned. However, RCLCI enhances

the SNR at low bit-depths and becomes less effective with

increasing bit-depth. The proposed methods could have a

potential advantage for reducing data storage/transmission

requirements as well as reducing the power of down-stream

processing and computational complexity. The criteria for

reducing sample density and interpolation would be relatively

straightforward to implement in hardware and hence these

techniques could lead to practical methodologies.
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