Search results for: bidirectional power flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4914

Search results for: bidirectional power flow

4494 The Robot Hand System that can Control Grasping Power by SEMG

Authors: Tsubasa Seto, Kentaro Nagata, Kazushige Magatani

Abstract:

SEMG (Surface Electromyogram) is one of the bio-signals and is generated from the muscle. And there are many research results that use forearm EMG to detect hand motions. In this paper, we will talk about our developed the robot hand system that can control grasping power by SEMG. In our system, we suppose that muscle power is proportional to the amplitude of SEMG. The power is estimated and the grip power of a robot hand is able to be controlled using estimated muscle power in our system. In addition, to perform a more precise control can be considered to build a closed loop feedback system as an object to a subject to pressure from the edge of hand. Our objectives of this study are the development of a method that makes perfect detection of the hand grip force possible using SEMG patterns, and applying this method to the man-machine interface.

Keywords: SEMG, multi electrode, robot hand, power control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
4493 Attenuation in Transferred RF Power to a Biomedical Implant due to the Absorption of Biological Tissue

Authors: Batel Noureddine, Mehenni Mohamed, Kouadik Smain

Abstract:

In a transcutanious inductive coupling of a biomedical implant, a new formula is given for the study of the Radio Frequency power attenuation by the biological tissue. The loss of the signal power is related to its interaction with the biological tissue and the composition of this one. A confrontation with the practical measurements done with a synthetic muscle into a Faraday cage, allowed a checking of the obtained theoretical results. The supply/data transfer systems used in the case of biomedical implants, can be well dimensioned by taking in account this type of power attenuation.

Keywords: Biological tissue, coupled coils, implanted device, power attenuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
4492 Supervisory Board in the Governance of Cooperatives: Disclosing Power Elements in the Selection of Directors

Authors: Kari Huhtala, Iiro Jussila

Abstract:

The supervisory board is assumed to use power in the governance of a firm, but the actual use of power has been scantly investigated. The research question of the paper is “How does the supervisory board use power in the selection of the board of directors”. The data stem from 11 large Finnish agricultural cooperatives. The research approach was qualitative including semi-structured interviews of the board of directors and supervisory board chairpersons. The results were analyzed and interpreted against theories of social power. As a result, the use of power is approached from two perspectives: (1) formal position-based authority and (2) informal power. Central elements of power were the mandate of the supervisory board, the role of the supervisory board, the supervisory board chair, the nomination committee, collaboration between the supervisory board and the board of directors, the role of regions and the role of the board of directors. The study contributes to the academic discussion on corporate governance in cooperatives and on the supervisory board in the context of the two-tier model. Additional research of the model in other countries and of other types of cooperatives would further academic understanding of supervisory boards.

Keywords: Board, cooperative, supervisory board, selection, director, power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
4491 Numerical Simulations of Shear Driven Square and Triangular Cavity by Using Lattice Boltzmann Scheme

Authors: A. M. Fudhail, N. A. C. Sidik, M. Z. M. Rody, H. M. Zahir, M.T. Musthafah

Abstract:

In this paper, fluid flow patterns of steady incompressible flow inside shear driven cavity are studied. The numerical simulations are conducted by using lattice Boltzmann method (LBM) for different Reynolds numbers. In order to simulate the flow, derivation of macroscopic hydrodynamics equations from the continuous Boltzmann equation need to be performed. Then, the numerical results of shear-driven flow inside square and triangular cavity are compared with results found in literature review. Present study found that flow patterns are affected by the geometry of the cavity and the Reynolds numbers used.

Keywords: Lattice Boltzmann method, shear driven cavity, square cavity, triangular cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
4490 Double Pass Solar Air Heater with Transvers Fins and without Absorber Plate

Authors: A. J. Mahmood, L. B. Y. Aldabbagh

Abstract:

The counter flow solar air heaters, with four transverse fins and wire mesh layers are constructed and investigated experimentally for thermal efficiency at a geographic location of Cyprus in the city of Famagusta. The absorber plate is replaced by sixteen steel wire mesh layers, 0.18 x 0.18cm in cross section opening and a 0.02cm in diameter. The wire mesh layers arranged in three groups, first and second include 6 layers, while the third include 4 layers. All layers fixed in the duct parallel to the glazing and each group separated from the others by wood frame thickness of 0.5cm to reduce the pressure drop. The transverse fins arranged in a way to force the air to flow through the bed like eight letter path with flow depth 3cm. The proposed design has increased the heat transfer rate, but on other hand causes a high pressure drop. The obtained results show that, for air mass flow rate range between 0.011-0.036kg/s, the thermal efficiency increases with increasing the air mass flow. The maximum efficiency obtained is 65.6% for the mass flow rate of 0.036kg/s. Moreover, the temperature difference between the outlet flow and the ambient temperature, ΔT, reduces as the air mass flow rate increase. The maximum difference between the outlet and ambient temperature obtained was 43°C for double pass for minimum mass flow rate of 0.011kg/s. Comparison with a conventional solar air heater collector shows a significantly development in the thermal efficiency.

Keywords: Counter flow, solar air heater (SAH), Wire mesh, Fins, Thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134
4489 Contribution to Experiments of a Free Surface Supercritical Flow over an Uneven Bottom

Authors: M. Bougamouza, M. Bouhadef, T. Zitoun

Abstract:

The aim of this study is to examine, through experimentation in the laboratory, the supercritical flow in the presence of an obstacle in a rectangular channel. The supercritical regime in the whole hydraulic channel is achieved by adding a convergent. We will observe the influence of the obstacle shape and dimension on the characteristics of the supercritical flow, mainly the free-surface elevation and the velocity profile. The velocity measurements have been conducted with the one dimension laser anemometry technique.

Keywords: Experiments, free-surface flow, hydraulic channel, uneven bottom, laser anemometry, supercritical regime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
4488 Replacement of Power Transformers basis on Diagnostic Results and Load Forecasting

Authors: G. Gavrilovs, O. Borscevskis

Abstract:

This paper describes interconnection between technical and economical making decision. The reason of this dealing could be different: poor technical condition, change of substation (electrical network) regime, power transformer owner budget deficit and increasing of tariff on electricity. Establishing of recommended practice as well as to give general advice and guidance in economical sector, testing, diagnostic power transformers to establish its conditions, identify problems and provide potential remedies.

Keywords: Diagnostic results, load forecasting, power supplysystem, replacement of power transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
4487 Numerical Simulation of the Flow Field around a 30° Inclined Flat Plate

Authors: M. Raciti Castelli, P. Cioppa, E. Benini

Abstract:

This paper presents a CFD analysis of the flow around a 30° inclined flat plate of infinite span. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a flat plate invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested and flow field characteristics in the neighborhood of the flat plate have been numerically investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a twodimensional inclined plate.

Keywords: CFD, lift, drag, flat plate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263
4486 Interplay of Power Management at Core and Server Level

Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller

Abstract:

While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.

Keywords: Power efficiency, static power consumption, dynamic power consumption, CMOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
4485 UAV Position Estimation Using Remote Radio Head With Adaptive Power Control

Authors: Hyeon-Cheol Lee

Abstract:

The adaptive power control of Code Division Multiple Access (CDMA) communications using Remote Radio Head (RRH) between multiple Unmanned Aerial Vehicles (UAVs) with a link-budget based Signal-to-Interference Ratio (SIR) estimate is applied to four inner loop power control algorithms. It is concluded that Base Station (BS) can calculate not only UAV distance using linearity between speed and Consecutive Transmit-Power-Control Ratio (CTR) of Adaptive Step-size Closed Loop Power Control (ASCLPC), Consecutive TPC Ratio Step-size Closed Loop Power Control (CS-CLPC), Fixed Step-size Power Control (FSPC), but also UAV position with Received Signal Strength Indicator (RSSI) ratio of RRHs.

Keywords: speed estimation, adaptive power control, link-budget, SIR, multi-bit quantizer, RRH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
4484 Stochastic Estimation of Cavity Flowfield

Authors: Yin Yin Pey, Leok Poh Chua, Wei Long Siauw

Abstract:

Linear stochastic estimation and quadratic stochastic estimation techniques were applied to estimate the entire velocity flow-field of an open cavity with a length to depth ratio of 2. The estimations were done through the use of instantaneous velocity magnitude as estimators. These measurements were obtained by Particle Image Velocimetry. The predicted flow was compared against the original flow-field in terms of the Reynolds stresses and turbulent kinetic energy. Quadratic stochastic estimation proved to be more superior than linear stochastic estimation in resolving the shear layer flow. When the velocity fluctuations were scaled up in the quadratic estimate, both the time-averaged quantities and the instantaneous cavity flow can be predicted to a rather accurate extent.

Keywords: Open cavity, Particle Image Velocimetry, Stochastic estimation, Turbulent kinetic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
4483 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3758
4482 A Review on Hydraulic and Morphological Characteristics in River Channels Due to Spurs

Authors: M. Alauddin, M. M. Hossain, M. N. Uddin, M. E. Haque

Abstract:

An optimal design of a spur is the first requirement to make it sustainable and function properly. In view of that, a thorough understanding to the hydro- and morpho-dynamics due to spurs is essential. This paper presents a literature review on the effect of spurs to obtain the most recent design criteria. Perpendicular and upstream aligned impermeable spurs have large disturbances to flow and less stability because of strong vortices and associated scour. Downstream aligned spurs minimize scour holes, but there is a chance of strong return current which could be controlled allowing flow through them. A series arrangement of spurs is important to have the desired results with a special care for the first one. Several equations have been presented in the paper for predicting the scour depth. But, they have to be used carefully. Different flow environments developed by spurs are favorable for various aquatic species. However, it is important to maintain almost a stable flow condition providing stable spurs.

Keywords: Bed topography, flow pattern, scour, spur.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
4481 Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles

Authors: Byung-Soo Shin, Nam-Seok Kim, Sang-Kyu Lee, O-Hyun Keum

Abstract:

This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.

Keywords: Orifice, k-e model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2189
4480 Computational Study on Cardiac-Coronary Interaction in Terms of Coronary Flow-Pressure Waveforms in Presence of Drugs: Comparison Between Simulated and In Vivo Data

Authors: C. De Lazzari, E. Del Prete, I. Genuini, F. Fedele

Abstract:

Cardiovascular human simulator can be a useful tool in understanding complex physiopathological process in cardiocirculatory system. It can also be a useful tool in order to investigate the effects of different drugs on hemodynamic parameters. The aim of this work is to test the potentiality of our cardiovascular numerical simulator CARDIOSIM© in reproducing flow/pressure coronary waveforms in presence of two different drugs: Amlodipine (AMLO) and Adenosine (ADO). In particular a time-varying intramyocardial compression, assumed to be proportional to the left ventricular pressure, was related to the venous coronary compliances in order to study its effects on the coronary blood flow and the flow/pressure loop. Considering that coronary circulation dynamics is strongly interrelated with the mechanics of the left ventricular contraction, relaxation, and filling, the numerical model allowed to analyze the effects induced by the left ventricular pressure on the coronary flow.

Keywords: Cardiovascular system, Coronary blood flow, Hemodynamic, Numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
4479 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass

Authors: Ramy H. Mohammed

Abstract:

In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.

Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
4478 Experimental and CFD Simulation of the Jet Pump for Air Bubbles Formation

Authors: L. Grinis, N. Lubashevsky, Y. Ostrovski

Abstract:

A jet pump is a type of pump that accelerates the flow of a secondary fluid (driven fluid) by introducing a motive fluid with high velocity into a converging-diverging nozzle. Jet pumps are also known as adductors or ejectors depending on the motivator phase. The ejector's motivator is of a gaseous nature, usually steam or air, while the educator's motivator is a liquid, usually water. Jet pumps are devices that use air bubbles and are widely used in wastewater treatment processes. In this work, we will discuss about the characteristics of the jet pump and the computational simulation of this device. To find the optimal angle and depth for the air pipe, so as to achieve the maximal air volumetric flow rate, an experimental apparatus was constructed to ascertain the best geometrical configuration for this new type of jet pump. By using 3D printing technology, a series of jet pumps was printed and tested whilst aspiring to maximize air flow rate dependent on angle and depth of the air pipe insertion. The experimental results show a major difference of up to 300% in performance between the different pumps (ratio of air flow rate to supplied power) where the optimal geometric model has an insertion angle of 600 and air pipe insertion depth ending at the center of the mixing chamber. The differences between the pumps were further explained by using CFD for better understanding the reasons that affect the airflow rate. The validity of the computational simulation and the corresponding assumptions have been proved experimentally. The present research showed high degree of congruence with the results of the laboratory tests. This study demonstrates the potential of using of the jet pump in many practical applications.

Keywords: Air bubbles, CFD simulation, jet pump, practical applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
4477 Coordinated Q–V Controller for Multi-machine Steam Power Plant: Design and Validation

Authors: Jasna Dragosavac, Žarko Janda, J.V. Milanović, Dušan Arnautović

Abstract:

This paper discusses coordinated reactive power - voltage (Q-V) control in a multi machine steam power plant. The drawbacks of manual Q-V control are briefly listed, and the design requirements for coordinated Q-V controller are specified. Theoretical background and mathematical model of the new controller are presented next followed by validation of developed Matlab/Simulink model through comparison with recorded responses in real steam power plant and description of practical realisation of the controller. Finally, the performance of commissioned controller is illustrated on several examples of coordinated Q-V control in real steam power plant and compared with manual control.

Keywords: Coordinated Voltage Control, Power Plant Control, Reactive Power Control, Sensitivity Matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
4476 Operational- Economics Based Evaluation And Selection of A Power Plant Using Graph Theoretic Approach

Authors: Naresh Yadav, I.A. Khan, Sandeep Grover

Abstract:

This paper presents a methodology for operational and economic characteristics based evaluation and selection of a power plant using Graph theoretic approach. A universal evaluation index on the basis of Operational and economics characteristics of a plant is proposed which evaluates and ranks the various types of power plants. The index thus obtained from the pool of operational characteristics of the power plant attributes Digraph. The Digraph is developed considering Operational and economics attributes of the power plants and their relative importance for their smooth operation, installation and commissioning and prioritizing their selection. The sensitivity analysis of the attributes towards the objective has also been carried out in order to study the impact of attributes over the desired outcome i.e. the universal operational-economics index of the power plant.

Keywords: Power plant evaluation, Digraph methods, Matrixmethod, operational characteristics of Power plant, Gas turbines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
4475 An Efficient VLSI Design Approach to Reduce Static Power using Variable Body Biasing

Authors: Md. Asif Jahangir Chowdhury, Md. Shahriar Rizwan, M. S. Islam

Abstract:

In CMOS integrated circuit design there is a trade-off between static power consumption and technology scaling. Recently, the power density has increased due to combination of higher clock speeds, greater functional integration, and smaller process geometries. As a result static power consumption is becoming more dominant. This is a challenge for the circuit designers. However, the designers do have a few methods which they can use to reduce this static power consumption. But all of these methods have some drawbacks. In order to achieve lower static power consumption, one has to sacrifice design area and circuit performance. In this paper, we propose a new method to reduce static power in the CMOS VLSI circuit using Variable Body Biasing technique without being penalized in area requirement and circuit performance.

Keywords: variable body biasing, state saving technique, stack effect, dual V-th, static power reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
4474 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods

Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara

Abstract:

Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.

Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
4473 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen

Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang

Abstract:

In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.

Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
4472 The Effect of Bottom Shape and Baffle Length on the Flow Field in Stirred Tanks in Turbulent and Transitional Flow

Authors: Jie Dong, Binjie Hu, Andrzej W Pacek, Xiaogang Yang, Nicholas J. Miles

Abstract:

The effect of the shape of the vessel bottom and the length of baffles on the velocity distributions in a turbulent and in a transitional flow has been simulated. The turbulent flow was simulated using standard k-ε model and simulation was verified using LES whereas transitional flow was simulated using only LES. It has been found that both the shape of tank bottom and the baffles’ length has significant effect on the flow pattern and velocity distribution below the impeller. In the dished bottom tank with baffles reaching the edge of the dish, the large rotating volume of liquid was formed below the impeller. Liquid in this rotating region was not fully mixing. A dead zone was formed here. The size and the intensity of circulation within this zone calculated by k-ε model and LES were practically identical what reinforces the accuracy of the numerical simulations. Both types of simulations also show that employing full-length baffles can reduce the size of dead zone formed below the impeller. The LES was also used to simulate the velocity distribution below the impeller in transitional flow and it has been found that secondary circulation loops were formed near the tank bottom in all investigated geometries. However, in this case the length of baffles has smaller effect on the volume of rotating liquid than in the turbulent flow.

Keywords: Baffles length, dished bottom, dead zone, flow field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
4471 Power Reference Control of Wind Farms Based On the Operational Limit

Authors: Dae-Hee Son, Seung-Hwa Kang, Sang-Hee Kang, Soon-Ryul Nam

Abstract:

Wind farms usually produce power irregularly, due to  unpredictable change of wind speed. Accordingly, we should  determine the penetration limit of wind power to consider stability of  power system and build a facility to control the wind power. The  operational limit of wind power is determined as the minimum  between the technical limit and the dynamic limit of wind power. The  technical limit is calculated by the number of generators and the  dynamic limit is calculated by the constraint of frequency variation  when a wind farm is disconnected suddenly. According to the  determined operational limit of wind power, pitch angles of wind  generators are controlled. PSS/E simulation results show that the pitch  angles were correctly controlled when wind speeds are changed in  addition to loads.

Keywords: Pitch Angle, Dynamic limit, Operational limit, Technical limit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
4470 Numerical Optimization of Trapezoidal Microchannel Heat Sinks

Authors: Yue-Tzu Yang, Shu-Ching Liao

Abstract:

This study presents the numerical simulation of three-dimensional incompressible steady and laminar fluid flow and conjugate heat transfer of a trapezoidal microchannel heat sink using water as a cooling fluid in a silicon substrate. Navier-Stokes equations with conjugate energy equation are discretized by finite-volume method. We perform numerical computations for a range of 50 ≦ Re ≦ 600, 0.05W ≦ P ≦ 0.8W, 20W/cm2 q"≦ 40W/cm2. The present study demonstrates the numerical optimization of a trapezoidal microchannel heat sink design using the response surface methodology (RSM) and the genetic algorithm method (GA). The results show that the average Nusselt number increases with an increase in the Reynolds number or pumping power, and the thermal resistance decreases as the pumping power increases. The thermal resistance of a trapezoidal microchannel is minimized for a constant heat flux and constant pumping power.

Keywords: Microchannel heat sinks, Conjugate heat transfer, Optimization, Genetic algorithm method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
4469 Technical, Environmental, and Financial Assessment for the Optimal Sizing of a Run-of-River Small Hydropower Project: A Case Study in Colombia

Authors: David Calderón Villegas, Thomas Kalitzky

Abstract:

Run-of-river (RoR) hydropower projects represent a viable, clean, and cost-effective alternative to dam-based plants and provide decentralized power production. However, RoR schemes’ cost-effectiveness depends on the proper selection of site and design flow, which is a challenging task because it requires multivariate analysis. In this respect, this study presents the development of an investment decision support tool for assessing the optimal size of an RoR scheme considering the technical, environmental, and cost constraints. The net present value (NPV) from a project perspective is used as an objective function for supporting the investment decision. The tool has been tested by applying it to an actual RoR project recently proposed in Colombia. The obtained results show that the optimum point in financial terms does not match the flow that maximizes energy generation from exploiting the river's available flow. For the case study, the flow that maximizes energy corresponds to a value of 5.1 m3/s. In comparison, an amount of 2.1 m3/s maximizes the investors NPV. Finally, a sensitivity analysis is performed to determine the NPV as a function of the debt rate changes and the electricity prices and the CapEx. Even for the worst-case scenario, the optimal size represents a positive business case with an NPV of 2.2 USD million and an internal rate of return (IRR) 1.5 times higher than the discount rate. 

Keywords: small hydropower, renewable energy, RoR schemes, optimal sizing, financial analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525
4468 A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range

Authors: Nasser Erfani Majd, Mojtaba Lotfizad

Abstract:

In this paper, an ultra low power and low jitter 12bit CMOS digitally controlled oscillator (DCO) design is presented. Based on a ring oscillator implemented with low power Schmitt trigger based inverters. Simulation of the proposed DCO using 32nm CMOS Predictive Transistor Model (PTM) achieves controllable frequency range of 550MHz~830MHz with a wide linearity and high resolution. Monte Carlo simulation demonstrates that the time-period jitter due to random power supply fluctuation is under 31ps and the power consumption is 0.5677mW at 750MHz with 1.2V power supply and 0.53-ps resolution. The proposed DCO has a good robustness to voltage and temperature variations and better linearity comparing to the conventional design.

Keywords: digitally controlled oscillator (DCO), low power, jitter; good linearity, robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
4467 Hysteresis Control of Power Conditioning Unit for Fuel Cell Distributed Generation System

Authors: Kanhu Charan Bhuyan, Subhransu Padhee, Rajesh Kumar Patjoshi, Kamalakanta Mahapatra

Abstract:

Fuel cell is an emerging technology in the field of renewable energy sources which has the capacity to replace conventional energy generation sources. Fuel cell utilizes hydrogen energy to produce electricity. The electricity generated by the fuel cell can’t be directly used for a specific application as it needs proper power conditioning. Moreover, the output power fluctuates with different operating conditions. To get a stable output power at an economic rate, power conditioning circuit is essential for fuel cell. This paper implements a two-staged power conditioning unit for fuel cell based distributed generation using hysteresis current control technique.

Keywords: Fuel cell, power conditioning unit, hysteresis control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
4466 Re-Design of Load Shedding Schemes of the Kosovo Power System

Authors: A.Gjukaj, G.Kabashi, G.Pula, N.Avdiu, B.Prebreza

Abstract:

This paper discusses aspects of re-design of loadshedding schemes with respect to actual developments in the Kosovo power system. Load-shedding is a type of emergency control that is designed to ensure system stability by reducing power system load to match the power generation supply. This paper presents a new adaptive load-shedding scheme that provides emergency protection against excess frequency decline, in cases when the Kosovo power system might be disconnected from the regional transmission network. The proposed load-shedding scheme uses the local frequency rate information to adapt the load-shedding pattern to suit the size and location of the occurring disturbance. The proposed scheme is tested in a software simulation on a large scale PSS/E model which represents nine power system areas of Southeast Europe including the Kosovo power system.

Keywords: About Load Shedding, Power System Transient, PSS/E Dynamic Simulation, Under-frequency Protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732
4465 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car

Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee

Abstract:

Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.

Keywords: Numerical study, computational fluid dynamics, air dam, tuning parts, drag, lift force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589