Search results for: Delivery performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6121

Search results for: Delivery performance

1831 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: Sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
1830 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
1829 Optical Road Monitoring of the Future Smart Roads – Preliminary Results

Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz

Abstract:

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

Keywords: Smart roads, traffic monitoring, traffic scenedetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
1828 Simulation Study on Vehicle Drag Reduction by Surface Dimples

Authors: S. F. Wong, S. S. Dol

Abstract:

Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.

Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
1827 A Weighted Approach to Unconstrained Iris Recognition

Authors: Yao-Hong Tsai

Abstract:

This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.

Keywords: Authentication, iris recognition, Adaboost, local binary pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1826 Effect of Turbulence Models on Simulated Iced Aircraft Airfoil

Authors: Muhammad Afzal, Cao Yihua, Zhao Ming

Abstract:

The present work describes a computational study of aerodynamic characteristics of GLC305 airfoil clean and with 16.7 min ice shape (rime 212) and 22.5 min ice shape (glaze 944).The performance of turbulence models SA, Kε, Kω Std, and Kω SST model are observed against experimental flow fields at different Mach numbers 0.12, 0.21, 0.28 in a range of Reynolds numbers 3x106, 6x106, and 10.5x106 on clean and iced aircraft airfoil GLC305. Numerical predictions include lift, drag and pitching moment coefficients at different Mach numbers and at different angle of attacks were done. Accuracy of solutions with respect to the effects of turbulence models, variation of Mach number, initial conditions, grid resolution and grid spacing near the wall made the study much sensitive. Navier Stokes equation based computational technique is used. Results are very close to the experimental results. It has seen that SA and SST models are more efficient than Kε and Kω standard in under study problem.

Keywords: Aerodynamics, Airfoil GLC305, Iced Airfoil, Turbulence Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1825 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1824 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Han Xiao, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
1823 SWARM: A Meta-Scheduler to Minimize Job Queuing Times on Computational Grids

Authors: Jean-Alain Grunchec, Jules Hernández-Sánchez, Sara Knott

Abstract:

Some meta-schedulers query the information system of individual supercomputers in order to submit jobs to the least busy supercomputer on a computational Grid. However, this information can become outdated by the time a job starts due to changes in scheduling priorities. The MSR scheme is based on Multiple Simultaneous Requests and can take advantage of opportunities resulting from these priorities changes. This paper presents the SWARM meta-scheduler, which can speed up the execution of large sets of tasks by minimizing the job queuing time through the submission of multiple requests. Performance tests have shown that this new meta-scheduler is faster than an implementation of the MSR scheme and the gLite meta-scheduler. SWARM has been used through the GridQTL project beta-testing portal during the past year. Statistics are provided for this usage and demonstrate its capacity to achieve reliably a substantial reduction of the execution time in production conditions.

Keywords: Grid computing, multiple simultaneous requests, fault tolerance, GridQTL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1822 Re-Optimization MVPP Using Common Subexpression for Materialized View Selection

Authors: Boontita Suchyukorn, Raweewan Auepanwiriyakul

Abstract:

A Data Warehouses is a repository of information integrated from source data. Information stored in data warehouse is the form of materialized in order to provide the better performance for answering the queries. Deciding which appropriated views to be materialized is one of important problem. In order to achieve this requirement, the constructing search space close to optimal is a necessary task. It will provide effective result for selecting view to be materialized. In this paper we have proposed an approach to reoptimize Multiple View Processing Plan (MVPP) by using global common subexpressions. The merged queries which have query processing cost not close to optimal would be rewritten. The experiment shows that our approach can help to improve the total query processing cost of MVPP and sum of query processing cost and materialized view maintenance cost is reduced as well after views are selected to be materialized.

Keywords: Data Warehouse, materialized views, query rewriting, common subexpressions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1821 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation

Authors: J.Dinesh Peter

Abstract:

This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.

Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1820 Methods for Case Maintenance in Case-Based Reasoning

Authors: A. Lawanna, J. Daengdej

Abstract:

Case-Based Reasoning (CBR) is one of machine learning algorithms for problem solving and learning that caught a lot of attention over the last few years. In general, CBR is composed of four main phases: retrieve the most similar case or cases, reuse the case to solve the problem, revise or adapt the proposed solution, and retain the learned cases before returning them to the case base for learning purpose. Unfortunately, in many cases, this retain process causes the uncontrolled case base growth. The problem affects competence and performance of CBR systems. This paper proposes competence-based maintenance method based on deletion policy strategy for CBR. There are three main steps in this method. Step 1, formulate problems. Step 2, determine coverage and reachability set based on coverage value. Step 3, reduce case base size. The results obtained show that this proposed method performs better than the existing methods currently discussed in literature.

Keywords: Case-Based Reasoning, Case Base Maintenance, Coverage, Reachability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
1819 Collaborative and Content-based Recommender System for Social Bookmarking Website

Authors: Cheng-Lung Huang, Cheng-Wei Lin

Abstract:

This study proposes a new recommender system based on the collaborative folksonomy. The purpose of the proposed system is to recommend Internet resources (such as books, articles, documents, pictures, audio and video) to users. The proposed method includes four steps: creating the user profile based on the tags, grouping the similar users into clusters using an agglomerative hierarchical clustering, finding similar resources based on the user-s past collections by using content-based filtering, and recommending similar items to the target user. This study examines the system-s performance for the dataset collected from “del.icio.us," which is a famous social bookmarking website. Experimental results show that the proposed tag-based collaborative and content-based filtering hybridized recommender system is promising and effectiveness in the folksonomy-based bookmarking website.

Keywords: Collaborative recommendation, Folksonomy, Social tagging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248
1818 Soil Properties after Plowing with Vertical and Horizontal Axis Rotavator

Authors: M. Azadbakht, B. Azadbakht, R. Janzade Galogah, A. Kiapei, H. Jafari

Abstract:

In this research, performance of rotavator with horizontal rotary axis and vertical rotary axis has been evaluated and compared. The mean weight diameter (MWD), cross-sectional area disturbed and cone index of soil investigated. Factorial experiments based on a randomized complete block with 18 treatments, three different velocities 2.2, 3.5, 6.1 km/h; three different depth of 5, 10, 15cm and with two rotary plows horizontal axis and vertical axis with three replications were used. Result showed that maximum MWD in 6.1 km/h and 15cm of depth were 55.6 and 52.5mm for horizontal axis rotavator, respectively. The minimum MWD in 2.2 km/h and 5cm of depth for vertical axis rotavator were 34.9 and 35.1mm, respectively. The values of cone index 1861.1 and 2339.5 kPa for vertical axis rotavator and horizontal axis rotavator were obtained, respectively, also the values of cross-sectional area disturbed 687 and 497.2cm2 for vertical axis rotavator and horizontal axis rotavator were obtained, respectively.

Keywords: Horizontal rotary axis, vertical rotary axis, rotavator, MWD, cone index, cross-sectional area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
1817 Sustainability Policies and Corporate Social Responsibility (CSR): Ergonomics Contribution Regarding Work in Companies

Authors: I. Bolis, S. N. Morioka, L. I. Sznelwar

Abstract:

The growing importance of sustainability in corporate policies represents a great opportunity for workers to gain more consideration, with great benefits to their well being. Sustainable work is believed to be one which improves the organization-s performance and fosters professional development as well as workers- health. In a multiple case study based on document research, information was sought about work activities and their sustainability or corporate social responsibility (CSR) policies, as disseminated by corporations. All the companies devoted attention to work activities and delivered a good amount of information about them. Nevertheless, the information presented was generic; all the actions developed were top-down and there was no information about the impact of changes aimed at sustainability on the workers- activities. It was found that the companies seemed to be at an early stage. In the future, they need to show more commitment through concrete goals: they must be aware that workers contribute directly to the corporations- sustainability. This would allow room for Ergonomics and Work Psychodynamics to be incorporated and to be useful for both companies and society, so as to promote and ensure work sustainability.

Keywords: Sustainability, ergonomics, work psychodynamics, multinational companies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
1816 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric

Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah

Abstract:

Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.

Keywords: Image registration, mutual information, image gradients, Image transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
1815 High Order Cascade Multibit ΣΔ Modulator for Wide Bandwidth Applications

Authors: S. Zouari, H. Daoud, M. Loulou, P. Loumeau, N. Masmoudi

Abstract:

A wideband 2-1-1 cascaded ΣΔ modulator with a single-bit quantizer in the two first stages and a 4-bit quantizer in the final stage is developed. To reduce sensitivity of digital-to-analog converter (DAC) nonlinearities in the feedback of the last stage, dynamic element matching (DEM) is introduced. This paper presents two modelling approaches: The first is MATLAB description and the second is VHDL-AMS modelling of the proposed architecture and exposes some high-level-simulation results allowing a behavioural study. The detail of both ideal and non-ideal behaviour modelling are presented. Then, the study of the effect of building blocks nonidealities is presented; especially the influences of nonlinearity, finite operational amplifier gain, amplifier slew rate limitation and capacitor mismatch. A VHDL-AMS description presents a good solution to predict system-s performances and can provide sensitivity curves giving the impact of nonidealities on the system performance.

Keywords: behavioural study, DAC nonlinearity, DEM, ΣΔ modulator, VHDL-AMS modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4825
1814 Linear Quadratic Gaussian/Loop Transfer Recover Control Flight Control on a Nonlinear Model

Authors: T. Sanches, K. Bousson

Abstract:

As part of the development of a 4D autopilot system for unmanned aerial vehicles (UAVs), i.e. a time-dependent robust trajectory generation and control algorithm, this work addresses the problem of optimal path control based on the flight sensors data output that may be unreliable due to noise on data acquisition and/or transmission under certain circumstances. Although several filtering methods, such as the Kalman-Bucy filter or the Linear Quadratic Gaussian/Loop Transfer Recover Control (LQG/LTR), are available, the utter complexity of the control system, together with the robustness and reliability required of such a system on a UAV for airworthiness certifiable autonomous flight, required the development of a proper robust filter for a nonlinear system, as a way of further mitigate errors propagation to the control system and improve its ,performance. As such, a nonlinear algorithm based upon the LQG/LTR, is validated through computational simulation testing, is proposed on this paper.

Keywords: Autonomous flight, LQG/LTR, nonlinear state estimator, robust flight control and stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1813 Adaptive Naïve Bayesian Anti-Spam Engine

Authors: Wojciech P. Gajewski

Abstract:

The problem of spam has been seriously troubling the Internet community during the last few years and currently reached an alarming scale. Observations made at CERN (European Organization for Nuclear Research located in Geneva, Switzerland) show that spam mails can constitute up to 75% of daily SMTP traffic. A naïve Bayesian classifier based on a Bag Of Words representation of an email is widely used to stop this unwanted flood as it combines good performance with simplicity of the training and classification processes. However, facing the constantly changing patterns of spam, it is necessary to assure online adaptability of the classifier. This work proposes combining such a classifier with another NBC (naïve Bayesian classifier) based on pairs of adjacent words. Only the latter will be retrained with examples of spam reported by users. Tests are performed on considerable sets of mails both from public spam archives and CERN mailboxes. They suggest that this architecture can increase spam recall without affecting the classifier precision as it happens when only the NBC based on single words is retrained.

Keywords: Text classification, naïve Bayesian classification, spam, email.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4415
1812 Influence of Hygro-Chemo-Mechanical Degradation on Performance of Concrete Gravity Dam

Authors: Kalyan Kumar Mandal, Damodar Maity

Abstract:

The degradation of concrete due to various hygrochemo- mechanical actions is inevitable for the structures particularly built to store water. Therefore, it is essential to determine the material properties of dam-like structures due to ageing to predict the behavior of such structures after a certain age. The degraded material properties are calculated by introducing isotropic degradation index. The predicted material properties are used to study the behavior of aged dam at different ages. The dam is modeled by finite elements and displacement and is considered as an unknown variable. The parametric study reveals that the displacement is quite larger for comparatively lower design life of the structure because the degradation of elastic properties depends on the design life of the dam. The stresses in dam cam be unexpectedly large at any age with in the design life. The outcomes of the present study indicate the importance of the consideration ageing effect of concrete exposed to water for the safe design of dam throughout its life time.

Keywords: Hygro-chemo-mechanical, isotropic degradation, finite element method, Koyna earthquake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
1811 Studying the Effect of Hydrocarbon Solutions on the Properties of Epoxy Polymer Concrete

Authors: Mustafa Hasan Omar

Abstract:

The destruction effect of hydrocarbon solutions on concrete besides its high permeability have led researchers to try to improve the performance of concrete exposed to these solutions, hence improving the durability and usability of oil concrete structures. Recently, polymer concrete is considered one of the most important types of concrete, and its behavior after exposure to oil products is still unknown. In the present work, an experimental study has been carried out, in which the prepared epoxy polymer concrete immersed in different types of hydrocarbon exposure solutions (gasoline, kerosene, and gas oil) for 120 days and compared with the reference concrete left in the air. The results for outdoor specimens indicate that the mechanical properties are increased after 120 days, but the specimens that were immersed in gasoline, kerosene, and gas oil for the same period show a reduction in compressive strength by -21%, -27% and -23%, whereas in splitting tensile strength by -19%, -24% and -20%, respectively. The reductions in ultrasonic pulse velocity for cubic specimens are -17%, -22% and -19% and in cylindrical specimens are -20%, -25% and -22%, respectively.

Keywords: Epoxy resin, hydrocarbon solutions, mechanical properties, polymer concrete, ultrasonic pulse velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
1810 Optimizing Network Latency with Fast Path Assignment for Incoming Flows

Authors: Qing Lyu, Hang Zhu

Abstract:

Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.

Keywords: Latency, Fast path assignment, Bottleneck link.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
1809 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha

Abstract:

Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.

Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
1808 Parallel Branch and Bound Model Using Logarithmic Sampling (PBLS) for Symmetric Traveling Salesman Problem

Authors: Sheikh Muhammad Azam, Masood-ur-Rehman, Adnan Khalid Bhatti, Nadeem Daudpota

Abstract:

Very Large and/or computationally complex optimization problems sometimes require parallel or highperformance computing for achieving a reasonable time for computation. One of the most popular and most complicate problems of this family is “Traveling Salesman Problem". In this paper we have introduced a Branch & Bound based algorithm for the solution of such complicated problems. The main focus of the algorithm is to solve the “symmetric traveling salesman problem". We reviewed some of already available algorithms and felt that there is need of new algorithm which should give optimal solution or near to the optimal solution. On the basis of the use of logarithmic sampling, it was found that the proposed algorithm produced a relatively optimal solution for the problem and results excellent performance as compared with the traditional algorithms of this series.

Keywords: Parallel execution, symmetric traveling salesman problem, branch and bound algorithm, logarithmic sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
1807 Efficient Feature Fusion for Noise Iris in Unconstrained Environment

Authors: Yao-Hong Tsai

Abstract:

This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.

Keywords: Image fusion, iris recognition, local binary pattern, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
1806 Creating Maintenance Cost Model for University Buildings

Authors: AbdulLateef A. Olanrewaju, Arazi Idrus, Mohd F. Khamidi

Abstract:

Maintenance costs incurred on building differs. The difference can be as results of the types, functions, age, building health index, size, form height, location and complexity of the building. These are contributing to the difficulty in maintenance development of deterministic maintenance cost model. This paper is concerns with reporting the preliminary findings on the creation of building maintenance cost distributions for universities in Malaysia. This study is triggered by the need to provide guides on maintenance costs distributions for decision making. For this purpose, a survey questionnaire was conducted to investigate the distribution of maintenance costs in the universities. Altogether, responses were received from twenty universities comprising both private and publicly owned. The research found that engineering services, roofing and finishes were the elements contributing the larger segment of the maintenance costs. Furthermore, the study indicates the significance of maintenance cost distribution as decision making tool towards maintenance management.

Keywords: Performance matrix, university buildings, costmodel, Malaysia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
1805 Time Comparative Simulator for Distributed Process Scheduling Algorithms

Authors: Nazleeni Samiha Haron, Anang Hudaya Muhamad Amin, Mohd Hilmi Hasan, Izzatdin Abdul Aziz, Wirdhayu Mohd Wahid

Abstract:

In any distributed systems, process scheduling plays a vital role in determining the efficiency of the system. Process scheduling algorithms are used to ensure that the components of the system would be able to maximize its utilization and able to complete all the processes assigned in a specified period of time. This paper focuses on the development of comparative simulator for distributed process scheduling algorithms. The objectives of the works that have been carried out include the development of the comparative simulator, as well as to implement a comparative study between three distributed process scheduling algorithms; senderinitiated, receiver-initiated and hybrid sender-receiver-initiated algorithms. The comparative study was done based on the Average Waiting Time (AWT) and Average Turnaround Time (ATT) of the processes involved. The simulation results show that the performance of the algorithms depends on the number of nodes in the system.

Keywords: Distributed Systems, Load Sharing, Process Scheduling, AWT and ATT

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1804 Parametric Study of Vertical Diffusion Still for Water Desalination

Authors: A. Seleem, M. Mortada, M. El Morsi, M. Younan

Abstract:

Diffusion stills have been effective in water desalination. The present work represents a model of the distillation process by using vertical single-effect diffusion stills. A semianalytical model has been developed to model the process. A software computer code using Engineering Equation Solver EES software has been developed to solve the equations of the developed model. An experimental setup has been constructed, and used for the validation of the model. The model is also validated against former literature results. The results obtained from the present experimental test rig, and the data from the literature, have been compared with the results of the code to find its best range of validity. In addition, a parametric analysis of the system has been developed using the model to determine the effect of operating conditions on the system's performance. The dominant parameters that affect the productivity of the still are the hot plate temperature that ranges from (55- 90°C) and feed flow rate in range of (0.00694-0.0211 kg/m2-s).

Keywords: Analytical Model, Solar Distillation, Sustainable Water Systems, Vertical Diffusion Still.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
1803 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
1802 Port Governance Model by International Freight Forwarders’ Point of View: A Study at Port of Santos - Brazil

Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto

Abstract:

Due to the importance of ports to trade and economic development of the regions in which they are inserted, in recent decades the number of studies devoted to this subject has increased. Part of these studies considers the ports as business agglomerations and focuses on port governance. This is an important approach since the port performance is the result of activities performed by actors belonging to the port-logistics chain, which need to be properly coordinated. This coordination takes place through a port governance model. Given this context, this study aims to analyze the governance model of the port of Santos from the perspective of port customers. To do this, a closed-ended questionnaire based on a conceptual model that considers the key dimensions associated with port governance was applied to the international freight forwarders that operate in the port. The results show the applicability of the considered model and highlight improvement opportunities to be implemented at the port of Santos.

Keywords: Port Governance, Model, Port of Santos, Customers’ Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168