Search results for: organizational memory system
8606 Application of the Data Distribution Service for Flexible Manufacturing Automation
Authors: Marco Ryll, Svetan Ratchev
Abstract:
This paper discusses the applicability of the Data Distribution Service (DDS) for the development of automated and modular manufacturing systems which require a flexible and robust communication infrastructure. DDS is an emergent standard for datacentric publish/subscribe middleware systems that provides an infrastructure for platform-independent many-to-many communication. It particularly addresses the needs of real-time systems that require deterministic data transfer, have low memory footprints and high robustness requirements. After an overview of the standard, several aspects of DDS are related to current challenges for the development of modern manufacturing systems with distributed architectures. Finally, an example application is presented based on a modular active fixturing system to illustrate the described aspects.Keywords: Flexible Manufacturing, Publish/Subscribe, Plug & Produce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23528605 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35198604 Determination of Severe Loading Condition at Critical System Cascading Collapse Considering the Effect of Protection System Hidden Failure
Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan
Abstract:
Hidden failure in a protection system has been recognized as one of the main reasons which may cause to a power system instability leading to a system cascading collapse. This paper presents a computationally systematic approach used to obtain the estimated average probability of a system cascading collapse by considering the effect of probability hidden failure in a protection system. The estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to the higher risk of critical system cascading collapse. This information is essential to the system utility since it will assist the operator to determine the highest point of increased system loading condition prior to the event of critical system cascading collapse.Keywords: Critical system cascading collapse, protection system hidden failure, severe loading condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14938603 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems
Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano
Abstract:
The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.Keywords: EIoT, machine learning, anomaly detection, environment monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10278602 Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology
Authors: M. Geetha Priya, K. Baskaran, S. Srinivasan
Abstract:
Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.
Keywords: Low power, CMOS, pass-transistor, flash memory, logic gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24368601 The Effect of Job Motivation, Work Environment and Leadership on Organizational Citizenship Behavior, Job Satisfaction and Public Service Quality in Magetan, East Java,Indonesia
Authors: Budiyanto, Hening Widi Oetomo
Abstract:
Magetan area is going to be the object of this research which is located in East Java, Indonesia. The data were obtained from 270 civil servants working at the Magetan District government. The data were analyzed using the Structural Equation Modeling with Partial Least Square program. The research showed the following findings: (1) job motivation variable has a positive and significant effect on organizational citizenship behavior (OCB); (2) work environment has positive and significant effect on OCB; (3) leadership variable has positive and significant effect on OCB; (4) job motivation variable has no significant effect on job satisfaction; (5) work environment variable has no significant effect on job satisfaction; (6) leadership variable has no significant effect on job satisfaction; (7) OCB is positively and significantly associated with job satisfaction; (8) job satisfaction variable is positively and significantly correlated with quality of public service at the Magetan District government.Keywords: Job Satisfaction, Leadership, OrganizationalCitizenship Behavior (OCB), Quality of Public Service
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38968600 Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems
Authors: Thomas O. Olwal, Michael A. van Wyk, Barend J. van Wyk
Abstract:
In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.
Keywords: discrete polyphase matched filters, maximum likelihood estimators, soft timing phase estimation, wireless mobile systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16928599 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: Dialogue management, response generation, reinforcement learning, deep learning, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7878598 The Impact of the General Data Protection Regulation on Human Resources Management in Schools
Authors: Alexandra Aslanidou
Abstract:
The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.
Keywords: General data protection regulation, human resource management, educational system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7518597 In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease
Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin
Abstract:
Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.
Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8278596 A System Functions Set-Up through Near Field Communication of a Smartphone
Authors: Jaemyoung Lee
Abstract:
We present a method to set up system functions through a near filed communication (NFC) of a smartphone. The short communication distance of the NFC which is usually less than 4 cm could prevent any interferences from other devices and establish a secure communication channel between a system and the smartphone. The proposed set-up method for system function values is demonstrated for a blacbox system in a car. In demonstration, system functions of a blackbox which is manipulated through NFC of a smartphone are controls of image quality, sound level, shock sensing level to store images, etc. The proposed set-up method for system function values can be used for any devices with NFC.Keywords: System set-up, near field communication, smartphone, Android.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17048595 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods
Authors: C. Kalamani, K. Paramasivam
Abstract:
In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19218594 SMART: Solution Methods with Ants Running by Types
Authors: Nicolas Zufferey
Abstract:
Ant algorithms are well-known metaheuristics which have been widely used since two decades. In most of the literature, an ant is a constructive heuristic able to build a solution from scratch. However, other types of ant algorithms have recently emerged: the discussion is thus not limited by the common framework of the constructive ant algorithms. Generally, at each generation of an ant algorithm, each ant builds a solution step by step by adding an element to it. Each choice is based on the greedy force (also called the visibility, the short term profit or the heuristic information) and the trail system (central memory which collects historical information of the search process). Usually, all the ants of the population have the same characteristics and behaviors. In contrast in this paper, a new type of ant metaheuristic is proposed, namely SMART (for Solution Methods with Ants Running by Types). It relies on the use of different population of ants, where each population has its own personality.Keywords: Optimization, Metaheuristics, Ant Algorithms, Evolutionary Procedures, Population-Based Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17208593 IT Workforce Enablement – How Cloud Computing Changes the Competence Mix of the IT Workforce
Authors: Dominik Krimpmann
Abstract:
Cloud computing has provided the impetus for change in the demand, sourcing, and consumption of IT-enabled services. The technology developed from an emerging trend towards a ‘musthave’. Many organizations harnessed on the quick-wins of cloud computing within the last five years but nowadays reach a plateau when it comes to sustainable savings and performance. This study aims to investigate what is needed from an organizational perspective to make cloud computing a sustainable success. The study was carried out in Germany among senior IT professionals, both in management and delivery positions. Our research shows that IT executives must be prepared to realign their IT workforce to sustain the advantage of cloud computing for today and the near future. While new roles will undoubtedly emerge, roles alone cannot ensure the success of cloud deployments. What is needed is a change in the IT workforce’s business behaviour, or put more simply, the ways in which the IT personnel works. It gives clear guidance on which dimensions of an employees’ working behaviour need to be adapted. The practical implications are drawn from a series of semi-structured interviews, resulting in a high-level workforce enablement plan. Lastly, it elaborates on tools and gives clear guidance on which pitfalls might arise along the proposed workforce enablement process.
Keywords: Cloud Computing, Organization Design, Organizational Change, Workforce Enablement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23188592 Knowledge Impact on Measurement: A Conceptual Metric for Evaluating Performance Improvement (PI) at the Kuwait Institute for Scientific Research (KISR)
Authors: AlMatrouk H. S., Juszczak M. D.
Abstract:
Research and development R&D work involves enormous amount of work that has to do with data measurement and collection. This process evolves as new information is fed, new technologies are utilized, and eventually new knowledge is created by the stakeholders i.e., researchers, clients, and end-users. When new knowledge is created, procedures of R&D work should evolve and produce better results within improved research skills and improved methods of data measurements and collection. This measurement improvement should then be benchmarked against a metric that should be developed at the organization. In this paper, we are suggesting a conceptual metric for R&D work performance improvement (PI) at the Kuwait Institute for Scientific Research (KISR). This PI is to be measured against a set of variables in the suggested metric, which are more closely correlated to organizational output, as opposed to organizational norms. The paper also mentions and discusses knowledge creation and management as an addedvalue to R&D work and measurement improvement. The research methodology followed in this work is qualitative in nature, based on a survey that was distributed to researchers and interviews held with senior researchers at KISR. Research and analyses in this paper also include looking at and analyzing KISR-s literature.Keywords: Knowledge Creation, Performance Improvement (PI), Conceptual Metric, Knowledge Management (KM) addedvalue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12528591 ECG-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.
Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888590 Influence of Social Factors and Motives on Commitment of Sport Events Volunteers
Authors: Farideh Sharififar, Zahra Jamalian, Reza Nikbakhsh, Zahra Nobakht Ramezani
Abstract:
In sport, human resources management gives special attention to method of applying volunteers, their maintenance, and participation of volunteers with each other and management approaches for better operation of events celebrants. The recognition of volunteers- characteristics and motives is important to notice, because it makes the basis of their participation and commitment at sport environment. The motivation and commitment of 281 volunteers were assessed using the organizational commitment scale, motivation scale and personal characteristics questionnaire.The descriptive results showed that; 64% of volunteers were women with age average 21/24 years old. They were physical education student, single (71/9%), without occupation (53%) and with average of 5 years sport experience. Their most important motivation was career factor and the most important commitment factor was normative factor. The results of examining the hypothesized showed that; age, sport experience and education are effective in the amount of volunteers- commitment. And the motive factors such as career, material, purposive and protective factors also have the power to predict the amount of sports volunteers- commitment value. Therefore it is recommended to provide possible opportunities for volunteers and carrying out appropriate instructional courses by events executive managers.Keywords: Sport Volunteers, Motivation, Organizational Commitment, Sport Event
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28328589 An Expert System for Car Failure Diagnosis
Authors: Ahmad T. Al-Taani
Abstract:
Car failure detection is a complicated process and requires high level of expertise. Any attempt of developing an expert system dealing with car failure detection has to overcome various difficulties. This paper describes a proposed knowledge-based system for car failure detection. The paper explains the need for an expert system and the some issues on developing knowledge-based systems, the car failure detection process and the difficulties involved in developing the system. The system structure and its components and their functions are described. The system has about 150 rules for different types of failures and causes. It can detect over 100 types of failures. The system has been tested and gave promising results.Keywords: Expert system, car failure diagnosis, knowledgebasedsystem, CLIPS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 119178588 Knowledge Sharing Behavior and Cognitive Dissonance: The Influence of Assertive Conflict Management Strategy and Team Psychological Safety
Authors: Matthew P. Mancini, Vincent Ribiere
Abstract:
Today’s workers face more numerous and complex challenges and are required to be increasingly interdependent and faster learners. Knowledge sharing activities between people have been understood as a significant element affecting organizational innovation performance. While they do have the potential to spark cognitive conflict, disagreement is important from an organizational perspective because it can stimulate the development of new ideas and perhaps pave the way for creativity, innovation, and competitive advantage. How teams cope with the cognitive conflict dimension of knowledge sharing and the associated interpersonal risk is what captures our attention. Specifically, assertive conflict management strategies have a positive influence on knowledge sharing behaviors, and team psychological safety has a positive influence on knowledge sharing intention. This paper focuses on explaining the impact that these factors have on the shaping of an individual’s decision to engage or not in knowledge sharing activities. To accomplish this, we performed an empirical analysis on the results of our questionnaire about knowledge-sharing related conflict management and team psychological safety in pharmaceutical enterprises located in North America, Europe, and Asia. First, univariate analysis is used to characterize behavior regarding conflict management strategy into two groups. Group 1 presents assertive conflict management strategies and group 2 shows unassertive ones. Then, by using SEM methodology, we evaluated the relationships between them and the team psychological safety construct with the knowledge sharing process. The results of the SEM analysis show that assertive conflict management strategies affect the knowledge sharing process the most with a small, but significant effect from team psychological safety. The findings suggest that assertive conflict management strategies are just as important as knowledge sharing intentions for encouraging knowledge sharing behavior. This paper provides clear insights into how employees manage the sharing of their knowledge in the face of conflict and interpersonal risk and the relative importance of these factors in sustaining productive knowledge sharing activities.
Keywords: Cognitive dissonance, conflict management, knowledge sharing, organizational behavior, psychological safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15838587 Optimizing Forecasting for Indonesia's Coal and Palm Oil Exports: A Comparative Analysis of ARIMA, ANN, and LSTM Methods
Authors: Mochammad Dewo, Sumarsono Sudarto
Abstract:
The Exponential Triple Smoothing Algorithm approach nowadays, which is used to anticipate the export value of Indonesia's two major commodities, coal and palm oil, has a Mean Percentage Absolute Error (MAPE) value of 30-50%, which may be considered as a "reasonable" forecasting mistake. Forecasting errors of more than 30% shall have a domino effect on industrial output, as extra production adds to raw material, manufacturing and storage expenses. Whereas, reaching an "excellent" classification with an error value of less than 10% will provide new investors and exporters with confidence in the commercial development of related sectors. Industrial growth will bring out a positive impact on economic development. It can be applied for other commodities if the forecast error is less than 10%. The purpose of this project is to create a forecasting technique that can produce precise forecasting results with an error of less than 10%. This research analyzes forecasting methods such as ARIMA (Autoregressive Integrated Moving Average), ANN (Artificial Neural Network) and LSTM (Long-Short Term Memory). By providing a MAPE of 1%, this study reveals that ANN is the most successful strategy for forecasting coal and palm oil commodities in Indonesia.
Keywords: ANN, Artificial Neural Network, ARIMA, Autoregressive Integrated Moving Average, export value, forecast, LSTM, Long Short Term Memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2248586 Tagging by Combining Rules- Based Method and Memory-Based Learning
Authors: Tlili-Guiassa Yamina
Abstract:
Many natural language expressions are ambiguous, and need to draw on other sources of information to be interpreted. Interpretation of the e word تعاون to be considered as a noun or a verb depends on the presence of contextual cues. To interpret words we need to be able to discriminate between different usages. This paper proposes a hybrid of based- rules and a machine learning method for tagging Arabic words. The particularity of Arabic word that may be composed of stem, plus affixes and clitics, a small number of rules dominate the performance (affixes include inflexional markers for tense, gender and number/ clitics include some prepositions, conjunctions and others). Tagging is closely related to the notion of word class used in syntax. This method is based firstly on rules (that considered the post-position, ending of a word, and patterns), and then the anomaly are corrected by adopting a memory-based learning method (MBL). The memory_based learning is an efficient method to integrate various sources of information, and handling exceptional data in natural language processing tasks. Secondly checking the exceptional cases of rules and more information is made available to the learner for treating those exceptional cases. To evaluate the proposed method a number of experiments has been run, and in order, to improve the importance of the various information in learning.Keywords: Arabic language, Based-rules, exceptions, Memorybased learning, Tagging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16238585 Steady State Analysis of Distribution System with Wind Generation Uncertainity
Authors: Zakir Husain, Neem Sagar, Neeraj Gupta
Abstract:
Due to the increased penetration of renewable energy resources in the distribution system, the system is no longer passive in nature. In this paper, a steady state analysis of the distribution system has been done with the inclusion of wind generation. The modeling of wind turbine generator system and wind generator has been made to obtain the average active and the reactive power injection into the system. The study has been conducted on a IEEE-33 bus system with two wind generators. The present research work is useful not only to utilities but also to customers.
Keywords: Distributed generation, distribution network, radial network, wind turbine generating system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10638584 Exploring the Application of Knowledge Management Factors in Esfahan University's Medical College
Authors: Alireza Shirvani, Shadi Ebrahimi Mehrabani
Abstract:
In this competitive age, one of the key tools of most successful organizations is knowledge management. Today some organizations measure their current knowledge and use it as an indicator for rating the organization on their reports. Noting that the universities and colleges of medical science have a great role in public health of societies, their access to newest scientific research and the establishment of organizational knowledge management systems is very important. In order to explore the Application of Knowledge Management Factors, a national study was undertaken. The main purpose of this study was to find the rate of the application of knowledge management factors and some ways to establish more application of knowledge management system in Esfahan University-s Medical College (EUMC). Esfahan is the second largest city after Tehran, the capital city of Iran, and the EUMC is the biggest medical college in Esfahan. To rate the application of knowledge management, this study uses a quantitative research methodology based on Probst, Raub and Romhardt model of knowledge management. A group of 267 faculty members and staff of the EUMC were asked via questionnaire. Finding showed that the rate of the application of knowledge management factors in EUMC have been lower than average. As a result, an interview with ten faculty members conducted to find the guidelines to establish more applications of knowledge management system in EUMC.
Keywords: Knowledge, knowledge management, knowledge management factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14688583 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform
Authors: Yong-Gyu Lee, Gilwon Yoon
Abstract:
Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.Keywords: bleeding, capsule endoscopy, image processing, real time analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18758582 An FPGA Implementation of Intelligent Visual Based Fall Detection
Authors: Peng Shen Ong, Yoong Choon Chang, Chee Pun Ooi, Ettikan K. Karuppiah, Shahirina Mohd Tahir
Abstract:
Falling has been one of the major concerns and threats to the independence of the elderly in their daily lives. With the worldwide significant growth of the aging population, it is essential to have a promising solution of fall detection which is able to operate at high accuracy in real-time and supports large scale implementation using multiple cameras. Field Programmable Gate Array (FPGA) is a highly promising tool to be used as a hardware accelerator in many emerging embedded vision based system. Thus, it is the main objective of this paper to present an FPGA-based solution of visual based fall detection to meet stringent real-time requirements with high accuracy. The hardware architecture of visual based fall detection which utilizes the pixel locality to reduce memory accesses is proposed. By exploiting the parallel and pipeline architecture of FPGA, our hardware implementation of visual based fall detection using FGPA is able to achieve a performance of 60fps for a series of video analytical functions at VGA resolutions (640x480). The results of this work show that FPGA has great potentials and impacts in enabling large scale vision system in the future healthcare industry due to its flexibility and scalability.Keywords: Fall detection, FPGA, hardware implementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24658581 ReSeT : Reverse Engineering System Requirements Tool
Authors: Rosziati Ibrahim, Tiu Kian Yong
Abstract:
Reverse Engineering is a very important process in Software Engineering. It can be performed backwards from system development life cycle (SDLC) in order to get back the source data or representations of a system through analysis of its structure, function and operation. We use reverse engineering to introduce an automatic tool to generate system requirements from its program source codes. The tool is able to accept the Cµ programming source codes, scan the source codes line by line and parse the codes to parser. Then, the engine of the tool will be able to generate system requirements for that specific program to facilitate reuse and enhancement of the program. The purpose of producing the tool is to help recovering the system requirements of any system when the system requirements document (SRD) does not exist due to undocumented support of the system.Keywords: System Requirements, Reverse Engineering, SourceCodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16748580 Strengthening the HCI Approaches in the Software Development Process
Authors: Rogayah A. Majid, Nor Laila Md. Noor, Wan Adilah Wan Adnan
Abstract:
User-Centered Design (UCD), Usability Engineering (UE) and Participatory Design (PD) are the common Human- Computer Interaction (HCI) approaches that are practiced in the software development process, focusing towards issues and matters concerning user involvement. It overlooks the organizational perspective of HCI integration within the software development organization. The Management Information Systems (MIS) perspective of HCI takes a managerial and organizational context to view the effectiveness of integrating HCI in the software development process. The Human-Centered Design (HCD) which encompasses all of the human aspects including aesthetic and ergonomic, is claimed as to provide a better approach in strengthening the HCI approaches to strengthen the software development process. In determining the effectiveness of HCD in the software development process, this paper presents the findings of a content analysis of HCI approaches by viewing those approaches as a technology which integrates user requirements, ranging from the top management to other stake holder in the software development process. The findings obtained show that HCD approach is a technology that emphasizes on human, tools and knowledge in strengthening the HCI approaches to strengthen the software development process in the quest to produce a sustainable, usable and useful software product.
Keywords: Human-Centered Design (HCD), Management Information Systems (MIS), Participatory Design (PD), User- Centered Design (UCD), Usability Engineering (UE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22418579 A PIM (Processor-In-Memory) for Computer Graphics : Data Partitioning and Placement Schemes
Authors: Jae Chul Cha, Sandeep K. Gupta
Abstract:
The demand for higher performance graphics continues to grow because of the incessant desire towards realism. And, rapid advances in fabrication technology have enabled us to build several processor cores on a single die. Hence, it is important to develop single chip parallel architectures for such data-intensive applications. In this paper, we propose an efficient PIM architectures tailored for computer graphics which requires a large number of memory accesses. We then address the two important tasks necessary for maximally exploiting the parallelism provided by the architecture, namely, partitioning and placement of graphic data, which affect respectively load balances and communication costs. Under the constraints of uniform partitioning, we develop approaches for optimal partitioning and placement, which significantly reduce search space. We also present heuristics for identifying near-optimal placement, since the search space for placement is impractically large despite our optimization. We then demonstrate the effectiveness of our partitioning and placement approaches via analysis of example scenes; simulation results show considerable search space reductions, and our heuristics for placement performs close to optimal – the average ratio of communication overheads between our heuristics and the optimal was 1.05. Our uniform partitioning showed average load-balance ratio of 1.47 for geometry processing and 1.44 for rasterization, which is reasonable.Keywords: Data Partitioning and Placement, Graphics, PIM, Search Space Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14938578 Comprehensive Evaluation on Land Supply System Performance: In Terms of System Transformation
Abstract:
This evaluation of land supply system performance in China shall examine the combination of government functions and national goals in order to perform a cost-benefit analysis of system results. From the author's point of view, it is most productive to evaluate land supply system performance at moments of system transformation for the following reasons. The behavior and input-output change of beneficial results at different times can be observed when the system or policy changes and system performance can be evaluated through a cost-benefit analysis during the process of system transformation. Moreover, this evaluation method can avoid the influence of land resource endowment. Different land resource endowment methods and different economy development periods result in different systems. This essay studies the contents, principles and methods of land supply system performance evaluation. Taking Beijing as an example, this essay optimizes and classifies the land supply index, makes a quantitative evaluation of land supply system performance through principal component analysis (PCA), and finally analyzes the factors that influence land supply system performance at times of system transformation.Keywords: Land supply, System performance, System transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13098577 Impact of Electronic Guest Relationship Management (e-GRM) on Brand Loyalty: The Case of Croatian Hotels
Authors: Marina Laškarin, Vlado Galičić
Abstract:
Quick adoption of e-business and emerging influence of “Electronic Word of Mouth e-WOM” communication on guests made leading hotel brands successful examples of electronic guest relationship management. Main reasons behind such success are well established procedures in collection, analysis and usage of highly valuable data available on the Internet, generated through some form of e-GRM programme. E-GRM is more than just a technology solution. It’s a system which balance respective guest demands, hotel technological capabilities and organizational culture of employees, discharging the universal approach in guest relations “same for all”. The purpose of this research derives from the necessity of determining the importance of monitoring and applying e-WOM communication as one of the methods used in managing guest relations. This paper analyses and compares different hotelier’s opinions on e-WOM communication.Keywords: Brand loyalty, e-WOM communication, GRM programmes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883