Search results for: severe loading condition.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2296

Search results for: severe loading condition.

2296 Determination of Severe Loading Condition at Critical System Cascading Collapse Considering the Effect of Protection System Hidden Failure

Authors: N. A. Salim, M. M. Othman, I. Musirin, M. S. Serwan

Abstract:

Hidden failure in a protection system has been recognized as one of the main reasons which may cause to a power system instability leading to a system cascading collapse. This paper presents a computationally systematic approach used to obtain the estimated average probability of a system cascading collapse by considering the effect of probability hidden failure in a protection system. The estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to the higher risk of critical system cascading collapse. This information is essential to the system utility since it will assist the operator to determine the highest point of increased system loading condition prior to the event of critical system cascading collapse.

Keywords: Critical system cascading collapse, protection system hidden failure, severe loading condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
2295 Features of Rail Strength Analysis in Conditions of Increased Force Loading

Authors: G. Guramishvili, M. Moistsrapishvili, L. Andghuladze

Abstract:

In the article are considered the problems arising at increasing of transferring from rolling stock axles on rail loading from 210 KN up to 270 KN and is offered for rail strength analysis definition of rail force loading complex integral characteristic with taking into account all affecting force factors that is characterizing specific operation condition of rail structure and defines the working capability of structure.

As result of analysis due mentioned method is obtained that in the conditions of 270 KN loading the rail meets the working assessment criteria of rail and rail structures: Strength, rail track stability, rail links stability and its transverse stability, traffic safety condition that is rather important for post-Soviet countries railways.

Keywords: Axial loading, rail force loading, rail structure, rail strength analysis, rail track stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
2294 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: Cyclic loading, DPIV, settlement, soil-structure interactions, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
2293 Study on Sharp V-Notch Problem under Dynamic Loading Condition Using Symplectic Analytical Singular Element

Authors: Xiaofei Hu, Zhiyu Cai, Weian Yao

Abstract:

V-notch problem under dynamic loading condition is considered in this paper. In the time domain, the precise time domain expanding algorithm is employed, in which a self-adaptive technique is carried out to improve computing accuracy. By expanding variables in each time interval, the recursive finite element formulas are derived. In the space domain, a Symplectic Analytical Singular Element (SASE) for V-notch problem is constructed addressing the stress singularity of the notch tip. Combining with the conventional finite elements, the proposed SASE can be used to solve the dynamic stress intensity factors (DSIFs) in a simple way. Numerical results show that the proposed SASE for V-notch problem subjected to dynamic loading condition is effective and efficient.

Keywords: V-notch, dynamic stress intensity factor, finite element method, precise time domain expanding algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
2292 Numerical Study of Cyclic Behavior of Shallow Foundations on Sand Reinforced with Geogrid and Grid-Anchor

Authors: Alireza Hajiani Boushehrian, Nader Hataf, Arsalan Ghahramani

Abstract:

When the foundations of structures under cyclic loading with amplitudes less than their permissible load, the concern exists often for the amount of uniform and non-uniform settlement of such structures. Storage tank foundations with numerous filling and discharging and railways ballast course under repeating transportation loads are examples of such conditions. This paper deals with the effects of using the new generation of reinforcements, Grid-Anchor, for the purpose of reducing the permanent settlement of these foundations under the influence of different proportions of the ultimate load. Other items such as the type and the number of reinforcements as well as the number of loading cycles are studied numerically. Numerical models were made using the Plaxis3D Tunnel finite element code. The results show that by using gridanchor and increasing the number of their layers in the same proportion as that of the cyclic load being applied, the amount of permanent settlement decreases up to 42% relative to unreinforced condition depends on the number of reinforcement layers and percent of applied load and the number of loading cycles to reach a constant value of dimensionless settlement decreases up to 20% relative to unreinforced condition.

Keywords: Shallow foundation, Reinforced soil, Cyclic loading, Grid-Anchor, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
2291 Dynamic Voltage Stability Estimation using Particle Filter

Authors: Osea Zebua, Norikazu Ikoma, Hiroshi Maeda

Abstract:

Estimation of voltage stability based on optimal filtering method is presented. PV curve is used as a tool for voltage stability analysis. Dynamic voltage stability estimation is done by using particle filter method. Optimum value (nose point) of PV curve can be estimated by estimating parameter of PV curve equation optimal value represents critical voltage and condition at specified point of measurement. Voltage stability is then estimated by analyzing loading margin condition c stimating equation. This maximum loading ecified dynamically.

Keywords: normalized PV curve, optimal filtering method particle filter, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
2290 Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

Authors: Jing-ran Lin, Qi-cong Peng, Huai-zong Shao

Abstract:

The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.

Keywords: Robust adaptive beamforming (RABF), near-field, steering vector mismatches, diagonal loading, worst-case performanceoptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
2289 Application of Mapping and Superimposing Rule for Solution of Parabolic PDE in Porous Medium under Cyclic Loading

Authors: Mohammad M. Toufigh, Ahad Ouria

Abstract:

This paper presents an analytical method to solve governing consolidation parabolic partial differential equation (PDE) for inelastic porous Medium (soil) with consideration of variation of equation coefficient under cyclic loading. Since under cyclic loads, soil skeleton parameters change, this would introduce variable coefficient of parabolic PDE. Classical theory would not rationalize consolidation phenomenon in such condition. In this research, a method based on time space mapping to a virtual time space along with superimposing rule is employed to solve consolidation of inelastic soils in cyclic condition. Changes of consolidation coefficient applied in solution by modification of loading and unloading duration by introducing virtual time. Mapping function is calculated based on consolidation partial differential equation results. Based on superimposing rule a set of continuous static loads in specified times used instead of cyclic load. A set of laboratory consolidation tests under cyclic load along with numerical calculations were performed in order to verify the presented method. Numerical solution and laboratory tests results showed accuracy of presented method.

Keywords: Mapping, Consolidation, Inelastic porous medium, Cyclic loading, Superimposing rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
2288 Restriction of Iodine Release under Severe Accident Conditions at NPP MIR.1200

Authors: V. Bezlepkin, A. Frolov, L. Lebedev, E. Kharchenko

Abstract:

Iodine radionuclides in accident releases under severe accident conditions at NPP with VVER are the most radiationimportant with a view to population dose generation at the beginning of the accident. To decrease radiation consequences of severe accidents the technical solutions for severe accidents management have been proposed in MIR.1200 project, with consideration of the measures for suppression of volatile iodine forms generation in the containment. Behavior dynamics of different iodine forms in the containment under severe accident conditions has been analyzed for the purpose of these technical solutions justification.

Keywords: Iodine radionuclides, VVER, severe accident.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
2287 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading

Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam

Abstract:

A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.

Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
2286 Realignment of f-actin Cytoskeleton in Osteocytes after Mechanical Loading

Authors: R. S. A. Nesbitt, J. Macione, E. Babollah, B. Adu-baffour, S. P. Kotha

Abstract:

F-actin fibrils are the cytoskeleton of osteocytes. They react in a dynamic manner to mechanical loading, and strength and reposition their efforts to reinforce the cells structure. We hypothesize that f-actin is temporarly disrupted after loading and repolymerizes in a new orientation to oppose the applied load. In vitro studies are conducted to determine f-actin disruption after varying mechanical stimulus parameters that are known to affect bone formation. Results indicate that the f-actin cytoskeleton is disrupted in vitro as a function of applied mechanical stimulus parameters and that the f-actin bundles reassemble after loading induced disruption within 3 minutes after cessation of loading. The disruption of the factin cytoskeleton depends on the magnitude of stretch, the numbers of loading cycles, frequency, the insertion of rest between loading cycles and extracellular calcium. In vivo studies also demonstrate disruption of the f-actin cytoskeleton in cells embedded in the bone matrix immediately after mechanical loading. These studies suggest that adaptation of the f-actin fiber bundles of the cytoskeleton in response to applied loads occurs by disruption and subsequent repolymerization.

Keywords: Mechanical loading of osteocytes, f-actin cytoskeleton, disruption, re-polymerization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
2285 High Cycle Fatigue Analysis of a Lower Hopper Knuckle Connection of a Large Bulk Carrier under Dynamic Loading

Authors: Vaso K. Kapnopoulou, Piero Caridis

Abstract:

The fatigue of ship structural details is of major concern in the maritime industry as it can generate fracture issues that may compromise structural integrity. In the present study, a fatigue analysis of the lower hopper knuckle connection of a bulk carrier was conducted using the Finite Element Method by means of ABAQUS/CAE software. The fatigue life was calculated using Miner’s Rule and the long-term distribution of stress range by the use of the two-parameter Weibull distribution. The cumulative damage ratio was estimated using the fatigue damage resulting from the stress range occurring at each load condition. For this purpose, a cargo hold model was first generated, which extends over the length of two holds (the mid-hold and half of each of the adjacent holds) and transversely over the full breadth of the hull girder. Following that, a submodel of the area of interest was extracted in order to calculate the hot spot stress of the connection and to estimate the fatigue life of the structural detail. Two hot spot locations were identified; one at the top layer of the inner bottom plate and one at the top layer of the hopper plate. The IACS Common Structural Rules (CSR) require that specific dynamic load cases for each loading condition are assessed. Following this, the dynamic load case that causes the highest stress range at each loading condition should be used in the fatigue analysis for the calculation of the cumulative fatigue damage ratio. Each load case has a different effect on ship hull response. Of main concern, when assessing the fatigue strength of the lower hopper knuckle connection, was the determination of the maximum, i.e. the critical value of the stress range, which acts in a direction normal to the weld toe line. This acts in the transverse direction, that is, perpendicularly to the ship's centerline axis. The load cases were explored both theoretically and numerically in order to establish the one that causes the highest damage to the location examined. The most severe one was identified to be the load case induced by beam sea condition where the encountered wave comes from the starboard. At the level of the cargo hold model, the model was assumed to be simply supported at its ends. A coarse mesh was generated in order to represent the overall stiffness of the structure. The elements employed were quadrilateral shell elements, each having four integration points. A linear elastic analysis was performed because linear elastic material behavior can be presumed, since only localized yielding is allowed by most design codes. At the submodel level, the displacements of the analysis of the cargo hold model to the outer region nodes of the submodel acted as boundary conditions and applied loading for the submodel. In order to calculate the hot spot stress at the hot spot locations, a very fine mesh zone was generated and used. The fatigue life of the detail was found to be 16.4 years which is lower than the design fatigue life of the structure (25 years), making this location vulnerable to fatigue fracture issues. Moreover, the loading conditions that induce the most damage to the location were found to be the various ballasting conditions.

Keywords: Lower hopper knuckle, high cycle fatigue, finite element method, dynamic load cases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
2284 Modeling the Road Pavement Dynamic Response Due to Heavy Vehicles Loadings and Kinematic Excitations General Asymmetries

Authors: Josua K. Junias, Fillemon N. Nangolo, Petrina T. Johaness

Abstract:

The deterioration of pavement can lead to the formation of potholes, which cause the wheels of a vehicle to experience unusual and uneven movement. In addition, improper loading practices of heavy vehicles can result in dynamic loading of the pavement due to the vehicle's response to the irregular movement caused by the potholes. The combined effects of asymmetrical vehicle loading and uneven road surfaces has an effect on pavement dynamic loading. This study aimed to model the pavement's dynamic response to heavy vehicles under different loading configurations and wheel movements. A sample of 225 cases with symmetrical and asymmetrical loading and kinematic movements was used, and 27 validated 3D pavement-vehicle interactive models were developed using SIMWISE 4D. The study found that the type of kinematic movement experienced by the heavy vehicle affects the pavement's dynamic loading, with eccentrically loaded, asymmetrically kinematic heavy vehicles having a statistically significant impact. The study also suggests that the mass of the vehicle's suspension system plays a role in the pavement's dynamic loading.

Keywords: Eccentricities, pavement dynamic loading, vertical displacement dynamic response, heavy vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53
2283 Shear Buckling of a Large Pultruded Composite I-Section under Asymmetric Loading

Authors: Jin Y. Park, Jeong Wan Lee

Abstract:

An experimental and analytical research on shear buckling of a comparably large polymer composite I-section is presented. It is known that shear buckling load of a large span composite beam is difficult to determine experimentally. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. The tested specimen was a pultruded composite beam made of vinylester resin, E-glass, carbon fibers and micro-fillers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the Isection. An asymmetric four-point bending loading scheme was utilized for the shear test. The loading scheme resulted in a high shear and almost zero moment condition at the center of the web panel. The shear buckling load was successfully determined after analyzing the obtained test data from strain rosettes and displacement sensors. An analytical approach was also performed to verify the experimental results and to support the discussed experimental program.

Keywords: Strain sensor, displacement sensor, shear buckling, polymer composite I-section, asymmetric loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
2282 Effect of Mode Loading on FCRG Plate with Double Through Crack at Hole

Authors: M. Benachour, N. Benachour, M. Benguediab, A. Hadjoui

Abstract:

The knowledge of the nature of loading is very important in order to hold account on the total behavior such as vibration, shock, fatigue, etc. Fatigue present 90% of failure when loadings fatigues are very complex. In this paper a study of double through crack at hole for plate subjected to fatigue loading is presented. Various modes loading are studied where the applied load is the same one. The fatigue life is given where the effect of stress ratio is highlighted. This work is conducted on aluminum alloy 2024 T351 used for much aerospace and aeronautics applications. The fatigue crack growth behavior with constant amplitude is studied using the AFGROW code when Forman model is applied. The fatigue crack growth rate and fatigue life for different loading modes are compared with variation of others geometrical parameter such as thickness and dimensions of notch hole.

Keywords: Fatigue crack, mode loading, aluminum alloy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
2281 Kinematic Behavior of Geogrid Reinforcements during Earthquakes

Authors: Ahmed Hosny Abdel-Rahman, Mohamed Abdel-Moneim

Abstract:

Reinforced earth structures are generally subjected to cyclic loading generated from earthquakes. This paper presents a summary of the results and analyses of a testing program carried out in a large-scale multi-function geosynthetic testing apparatus that accommodates soil samples up to 1.0 m3. This apparatus performs different shear and pullout tests under both static and cyclic loading. The testing program was carried out to investigate the controlling factors affecting soil/geogrid interaction under cyclic loading. The extensibility of the geogrids, the applied normal stresses, the characteristics of the cyclic loading (frequency, and amplitude), and initial static load within the geogrid sheet were considered in the testing program. Based on the findings of the testing program, the effect of these parameters on the pullout resistance of geogrids, as well as the displacement mobility under cyclic loading were evaluated. Conclusions and recommendations for the design of reinforced earth walls under cyclic loading are presented.

Keywords: Geogrid, Soil, Interface, Cyclic Loading, Pullout, and Large scale Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
2280 Loading Factor Performance of a Centrifugal Compressor Impeller: Specific Features and Way of Modeling

Authors: K. Soldatova, Y. Galerkin

Abstract:

A loading factor performance is necessary for the modeling of centrifugal compressor gas dynamic performance curve. Measured loading factors are linear function of a flow coefficient at an impeller exit. The performance does not depend on the compressibility criterion. To simulate loading factor performances, the authors present two parameters: a loading factor at zero flow rate and an angle between an ordinate and performance line. The calculated loading factor performances of non-viscous are linear too and close to experimental performances. Loading factor performances of several dozens of impellers with different blade exit angles, blade thickness and number, ratio of blade exit/inlet height, and two different type of blade mean line configuration. There are some trends of influence, which are evident – comparatively small blade thickness influence, and influence of geometry parameters is more for impellers with bigger blade exit angles, etc. Approximating equations for both parameters are suggested. The next phase of work will be simulating of experimental performances with the suggested approximation equations as a base.

Keywords: Centrifugal compressor stage, centrifugal compressor, loading factor, gas dynamic performance curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
2279 Manufacturing Process of a Novel Biomass Composite Inspired from Cellular Structure of Wood

Authors: Li Yongfeng, Liu Yixing, Li Jian, Li Jun

Abstract:

A novel biomass composite inspired from wood porous structure was manufactured by impregnating vinyl monomer into wood cellular structure under vacuum conditions, and initiating the monomer for in situ polymerization through a thermal treatment. The vacuum condition was studied, and the mechanical properties of the composite were also tested. SEM observation shows that polymer generated in the wood porous structure, and strongly interacted with wood matrix; and the polymer content increased with vacuum value increasing. FTIR indicates that polymer grafted onto wood matrix, resulting chemical complex between them. The rate of monomer loading increased with increasing vacuum value and time, accordance with rate of polymer loading. The compression strength and modulus of elasticity linearly increased with the increasing rate of polymer loading. Results indicate that the novel biomass composite possesses good mechanical properties capable of applying in the fields of construction, traffic and so forth.

Keywords: Biomass composite, manufacture, vinyl monomer, wood cellular structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1336
2278 The Effects of Plate-Support Condition on Buckling Strength of Rectangular Perforated Plates under Linearly Varying In-Plane Normal Load

Authors: M. Tajdari, A. R. Nezamabadi, M. Naeemi, P. Pirali

Abstract:

Mechanical buckling analysis of rectangular plates with central circular cutout is performed in this paper. The finiteelement method is used to study the effects of plate-support conditions, aspect ratio, and hole size on the mechanical buckling strength of the perforated plates subjected to linearly varying loading. Results show that increasing the hole size does not necessarily reduce the mechanical buckling strength of the perforated plates. It is also concluded that the clamped boundary condition increases the mechanical buckling strength of the perforated plates more than the simply-supported boundary condition and the free boundary conditions enhance the mechanical buckling strength of the perforated plates more effectively than the fixed boundary conditions. Furthermore, for the bending cases, the critical buckling load of perforated plates with free edges is less than perforated plates with fixed edges.

Keywords: Buckling, Perforated plates, Boundary condition, Rectangular plates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3410
2277 Mechanical Model of Gypsum Board Anchors Subjected Cyclic Shear Loading

Authors: Yoshinori Kitsutaka, Fumiya Ikedo

Abstract:

In this study, the mechanical model of various anchors embedded in gypsum board subjected cyclic shear loading were investigated. Shear tests for anchors embedded in 200 mm square size gypsum board were conducted to measure the load - load displacement curves. The strength of the gypsum board was changed for three conditions and 12 kinds of anchors were selected which were ordinary used for gypsum board anchoring. The loading conditions were a monotonous loading and a cyclic loading controlled by a servo-controlled hydraulic loading system to achieve accurate measurement. The fracture energy for each of the anchors was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the strength of gypsum board and the types of anchors on the shear properties of gypsum board anchors was cleared. A numerical model to predict the load-unload curve of shear deformation of gypsum board anchors caused by such as the earthquake load was proposed and the validity on the model was proved.

Keywords: Gypsum board, anchor, shear test, cyclic loading, load-unload curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
2276 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics

Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari

Abstract:

This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.

Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1109
2275 Elastic Strain-Concentration Factor of Notched Bars under Combined Loading of Static Tension and Pure Bending

Authors: Hitham M. Tlilan

Abstract:

The effect of notch depth on the elastic new strainconcentration factor (SNCF) of rectangular bars with single edge Unotch under combined loading is studied here. The finite element method (FEM) and super position technique are used in the current study. This new SNCF under combined loading of static tension and pure bending has been defined under triaxial stress state. The employed specimens have constant gross thickness of 16.7 mm and net section thickness varied to give net-to-gross thickness ratio ho/Ho from 0.2 to 0.95. The results indicated that the elastic SNCF for combined loading increases with increasing notch depth up to ho/Ho = 0.7 and sharply decreases with increasing notch depth. It is also indicated that the elastic SNCF of combined loading is greater than that of pure bending and less than that of the static tension for 0.2 ≤ ho/Ho ≤ 0.7. However, the elastic SNCF of combined loading is the elastic SNCF for static tension and less than that of pure bending for shallow notches (i.e. 0.8 ≤ ho/Ho ≤ 0.95).

Keywords: Bar, notch, strain, tension, bending

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
2274 Static and Dynamic Three-Dimensional Finite Element Analysis of Pelvic Bone

Authors: M. S. El-Asfoury, M. A. El-Hadek

Abstract:

The complex shape of the human pelvic bone was successfully imaged and modeled using finite element FE processing. The bone was subjected to quasi-static and dynamic loading conditions simulating the effect of both weight gain and impact. Loads varying between 500 – 2500 N (~50 – 250 Kg of weight) was used to simulate 3D quasi-static weight gain. Two different 3D dynamic analyses, body free fall at two different heights (1 and 2 m) and forced side impact at two different velocities (20 and 40 Km/hr) were also studied. The computed resulted stresses were compared for the four loading cases, where Von Misses stresses increases linearly with the weight gain increase under quasi-static loading. For the dynamic models, the Von Misses stress history behaviors were studied for the affected area and effected load with respect to time. The normalization Von Misses stresses with respect to the applied load were used for comparing the free fall and the forced impact load results. It was found that under the forced impact loading condition an over lapping behavior was noticed, where as for the free fall the normalized Von Misses stresses behavior was found to nonlinearly different. This phenomenon was explained through the energy dissipation concept. This study will help designers in different specialization in defining the weakest spots for designing different supporting systems.

Keywords: Pelvic Bone, Static and Dynamic Analysis, Three- Dimensional Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
2273 Static and Dynamic Load on Hip Contact of Hip Prosthesis and Thai Femoral Bones

Authors: K. Chalernpon, P. Aroonjarattham, K. Aroonjarattham

Abstract:

Total hip replacement had been one of the most successful operations in hip arthritis surgery. The purpose of this research had been to develop a dynamic hip contact of Thai femoral bone to analyze the stress distribution on the implant and the strain distribution on the bone model under daily activities and compared with the static load simulation. The results showed the different of maximum von Mises stress 0.14 percent under walking and 0.03 percent under climbing stair condition and the different of equivalent total strain 0.52 percent under walking and 0.05 percent under climbing stair condition. The muscular forces should be evaluated with dynamic condition to reduce the maximum von Mises stress and equivalent total strain.

Keywords: Dynamic loading, Static Load, Hip prosthesis, Thai femur, Femoral bone, Finite Element Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4063
2272 Static Voltage Stability Assessment Considering the Power System Contingencies using Continuation Power Flow Method

Authors: Mostafa Alinezhad, Mehrdad Ahmadi Kamarposhti

Abstract:

According to the increasing utilization in power system, the transmission lines and power plants often operate in stability boundary and system probably lose its stable condition by over loading or occurring disturbance. According to the reasons that are mentioned, the prediction and recognition of voltage instability in power system has particular importance and it makes the network security stronger.This paper, by considering of power system contingencies based on the effects of them on Mega Watt Margin (MWM) and maximum loading point is focused in order to analyse the static voltage stability using continuation power flow method. The study has been carried out on IEEE 14-Bus Test System using Matlab and Psat softwares and results are presented.

Keywords: Contingency, Continuation Power Flow, Static Voltage Stability, Voltage Collapse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
2271 Application of Flexi-Wall in Noise Barriers Renewal

Authors: B. Daee, H. M. El Naggar

Abstract:

This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF) and polyurea. This wall system (flexi-wall) is intended to be employed as a vertical extension to existing sound barriers in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The result of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound barrier application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound barrier applications was also developed.

Keywords: Noise barrier, Polyurethane Foam, Accelerated construction, Full-scale experiment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
2270 Eccentric Loading of CFDST Columns

Authors: Trevor N. Haas, Alexander Koen

Abstract:

Columns have traditionally been constructed of reinforced concrete or structural steel. Much attention was allocated to estimate the axial capacity of the traditional column sections to the detriment of other forms of construction. Other forms of column construction such as Concrete Filled Double Skin Tubes received little research attention, and almost no attention when subjected to eccentric loading. This paper investigates the axial capacity of columns when subjected to eccentric loading. The experimental axial capacities are compared to other established theoretical formulae on concentric loading to determine a possible relationship. The study found a good correlation between the reduction in axial capacity for different column lengths and hollow section ratios.

Keywords: CSDST, CFST, Axial Capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3135
2269 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.

Keywords: Crack-tip deformations, static loading, stress concentration, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
2268 Investigation of Stability of Functionally Graded Material when Encountering Periodic Loading

Authors: M. Amiri

Abstract:

In this work, functionally graded materials (FGMs), subjected to loading, which varies with time has been studied. The material properties of FGM are changing through the thickness of material as power law distribution. The conical shells have been chosen for this study so in the first step capability equations for FGM have been obtained. With Galerkin method, these equations have been replaced with time dependant differential equations with variable coefficient. These equations have solved for different initial conditions with variation methods. Important parameters in loading conditions are semi-vertex angle, external pressure and material properties. Results validation has been done by comparison between with those in previous studies of other researchers.

Keywords: Impulsive semi-vertex angle, loading, functionally graded materials, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
2267 Effect of Moisture Content and Loading Rate on Mechanical Strength of Brown Rice Varieties

Authors: I. Bagheri, M.B. Dehpour

Abstract:

The effect of moisture content and loading rate on mechanical strength of 12 brown rice grain varieties was determined. The results showed that the rupture force of brown rice grain decreased by increasing the moisture content and loading rate. The highest rupture force values was obtained at the moisture content of 8% (w.b.) and loading rate of 10 mm/min; while the lowest rupture force corresponded to the moisture content of 14% (w.b.) and loading rate of 15 mm/min. The 12 varieties were divided into three groups, namely local short grain varieties, local long grain varieties and improved long grain varieties. It was observed that the rupture strength of the three groups were statistically different from each other (P<0.01). It was revealed that the brown rice rupture at lower levels of moisture content was in the form of sudden failure with less deformation; while at higher levels of moisture content the grain rupture was in the form of gradually crushing with more deformation.

Keywords: Brown rice, loading rate, moisture content, ruptureforce

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441