
 
 
 

 

 
Abstract—Electrocardiogram (ECG) signal analysis and 

processing are crucial in the diagnosis of cardiovascular diseases 
which are considered as one of the leading causes of mortality 
worldwide. However, the traditional rule-based analysis of large 
volumes of ECG data is time-consuming, labor-intensive, and prone to 
human errors. With the advancement of the programming paradigm, 
algorithms such as machine learning have been increasingly used to 
perform an analysis on the ECG signals. In this paper, various deep 
learning algorithms were adapted to classify five classes of heart beat 
types. The dataset used in this work is the synthetic MIT-Beth Israel 
Hospital (MIT-BIH) Arrhythmia dataset produced from generative 
adversarial networks (GANs). Various deep learning models such as 
ResNet-50 convolutional neural network (CNN), 1-D CNN, and long 
short-term memory (LSTM) were evaluated and compared. ResNet-50 
was found to outperform other models in terms of recall and F1 score 
using a five-fold average score of 98.88% and 98.87%, respectively. 
1-D CNN, on the other hand, was found to have the highest average 
precision of 98.93%. 
 

Keywords—Heartbeat classification, convolutional neural 
network, electrocardiogram signals, ECG signals, generative 
adversarial networks, long short-term memory, LSTM, ResNet-50. 

I. INTRODUCTION AND RELATED WORK 

A. Introduction 

LECTROCARDIOGRAM signal analysis and processing 
are crucial in the diagnosis of cardiovascular diseases 

which are considered as one of the leading causes of mortality 
worldwide. Arrhythmia refers to the change in the rhythm of 
electrical impulses of the human heart [1]. This disturbance 
results in irregular heartbeats that may either be too fast, too 
slow, or too erratic compared to normal beat. A normal human 
adult heart rate ranges between 60-100 beats per minute and it 
is recorded using an ECG [2]. Worldwide, statistics show that 
403 million suffered from this condition in 2017 alone and 17.6 
million more people would likely have it by 2060 [3]. The main 
types of arrhythmia can either be classified as supraventricular, 
ventricular, or bradycardia depending on where the irregularity 
occurs. To determine the type of abnormal heart rhythm, an 
ECG analyzes the action impulse waveform of each tissue in 
the heart and then perform heartbeat segmentation [4]. ECG is 
a noninvasive diagnostic method that tracks the heart’s 
physiological activity over time.  

Many cardiovascular conditions can be detected using ECG 
data and they include congestive heart failure (CHF), premature 
contractions of the atria or ventricles, atrial fibrillation (AF), 
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and myocardial infarction (MI) [5]. However, with the fast 
advancement of ECG equipment that consequently leads to an 
immense number of analyzed ECG data, examining a huge 
volume of these data consumes too much medical resources. In 
addition, they can be prone to human errors during analysis due 
to fatigue or continued usage over long periods of time. 
Therefore, the need for accurate, automatic and low-cost 
monitoring and diagnosis of heartbeats is highly desirable. 

During the past few decades, numerous diagnostic systems 
based on machine learning (ML) techniques have been 
developed and proposed in the automatic analysis and diagnosis 
of cardiovascular diseases [6], [7]. With the development of this 
algorithmic paradigm, the application of ML offers the 
opportunity to significantly increase the accuracy and 
scalability of automated ECG analysis, which would aid 
cardiologists in making rapid and accurate diagnoses of ECG 
recordings while reducing the cost and time required for clinical 
interpretation. 

B. Related Work 

Numerous researches have focused on the use of ML 
algorithms for identifying aspects of an ECG signals as an 
attempt to overcome their issues. With the use of these 
techniques, data are automatically classified into a specific type 
of heartbeat. Neural networks (NN) are one of the methods that 
have been extensively explored. NN is a form of computational 
algorithm that consists of node layers capable of recognizing 
patterns and relationships in given data [8]. Due to this 
capability, the scientific community is still looking to utilize 
NN in various medical applications for automatic analysis. 

Popular NN models including CNN, recurrent neural 
network (RNN), and gated recurrent unit (GRU) have been 
explored in analyzing ECG data. In fact, there has been a 
growing interest of research in the potential of CNN in ECG 
classification [9]-[13] as it has strong self-learning ability and 
provides exceptional automatic feature extraction [14]. A 1D-
CNN, for instance, composed of three of each convolutional, 
max pooling and dense layers, was employed to classify the 
signals using the MIT-BIH arrhythmia database [15]. Based on 
five-fold cross validation, the model was able to achieve 
97.36% and 99.83% of accuracy and F1 score, respectively. The 
same architecture and dataset were also studied where five 
layers were added to the input and output layer of the model 
consisting of two convolution and down sampling layers, and 
one fully connected layer [16]. The model was able to achieve 
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a promising accuracy of 97.5%. 
Zhang et al. [17] utilized RNN in learning the time 

correlation of ECG signal points where the morphology 
information such as T wave of the preceding and present beat 
were fed into the network. The model was able to achieve 
98.7% and 99.4% in detecting supraventricular and ventricular 
ectopic beat, respectively. LSTM, a special type of RNN that 
mitigates the vanishing gradient problem [18], has been 
recently implemented in some studies [19]-[24] in the task of 
ECG classification. For instance, Singh et al. [20] implemented 
LSTM in distinguishing regular and irregular heartbeats and 
compared its performance with RNN and GRU and the results 
showed that LSTM outperformed the other models with 88.1% 
accuracy. Chauhan et al. [25] also achieved good accuracy 
using deep LSTM in classifying four types of arrhythmia 
without pre-processing the ECG signals. Likewise, Sujadevi et 
al. [26] compared the performance of RNN, LSTM, and GRU 
in detecting AF without using pre-processing, filtering, and 
denoising techniques. The results reported that RNN, LSTM, 
and GRU performed with 95.0%, 100%, and 100% accuracy, 
respectively. Liang et al. [27] combined a bidirectional model 
with 1D CNN to further improve the classification accuracy. 

Along with the development of deep learning networks, more 
recent research has also focused on the use of state-of-the-art 
techniques such as Residual Neural Network (ResNet) [28]-
[31], Visual Geometry Group Network (VGGNet) [32], and 
Densely Connected Convolutional Network (DenseNet) [33]. 
For instance, Jing et al. [34] proposed an improved ResNet-18 
model where it used two different layers of ResNet, the classical 
ResNet-18 layer and the improved ResNet-18 layer where 
additional convolutional layers were applied. The proposed 
model was able to demonstrate superior performance over End-
to-end Deep Neural Network (DNN) and 1D-CNN with its 
highest classification accuracy rate of 96.50%. Venton et al. 
[35] transformed the ECG signals into images and performed 
transfer learning using ResNet-50, AlexNet, and VGG-16 
where ResNet-50 performed consistently well across the 
selected datasets with 0.65–0.71 F1 scores. 

Ensembling of ML is another method used to improve ECG 
classification. Essa and Xie [36] created an ensemble model of 
CNN-LSTM and RRHOS-LSTM through the bagging method. 
The proposed meta classifier achieved an overall accuracy of 
95.81% on the MIT-BIH arrhythmia dataset. CNN-LSTM 
combined three sets of convolutional and max-pooling layers 
with two LSTM layers, while RRHOS-LSTM integrated HOS 
and RR intervals features with LSTM. Weighted loss function 
was applied to resolve the high imbalance of data. Another 
paper used support vector machine (SVM), ANN, RNN, 
decision trees, and K nearest neighbor (KNN) for ensembling 
using voting method [37]. The model was tested on the PTB 
Diagnostic ECG and the MIT-BIT Arrhythmia dataset, finding 
improvements in performance with an 97.78% and 97.664% in 
accuracy respectively. The winning team for the PhysioNet 
Challenge 2021 created a three-model ensemble of residual 
CNNs composed of modified ResNet blocks with multi-head 

attention mechanism [38]. When tested on several datasets, the 
model achieved an overall score of0.58 for all lead 
configurations. 

Data augmentation techniques have also been explored to 
improve the classification performance by increasing the size 
of training samples. Simple approaches include manipulating 
the time, frequency, or time-frequency domain. Combining 
patterns to create new data has also been performed in the past; 
this is more efficient in comparison to random transformations 
because it does not presume that data generated are 
quintessential of the data [39]. More advanced techniques made 
use of decomposition and statistical generative models, with 
learning-based methods embedding space and deep generative 
models. Such techniques are capable of imitating attributes of 
real data to create near-realistic products [40]. Recently, a deep 
generative model called generative adversarial network (GAN) 
has been employed to address the data imbalance issue in ECG 
dataset. This model works by producing new synthetic data 
instances where it involves the use of generator and 
discriminator [41]. One study that made use of GAN was 
conducted by Rath et al. [42] where they trained an LSTM 
model with a dataset augmented by GAN to address the 
imbalance of ECG samples by generating fake data. The 
proposed method achieved a striking accuracy and F1 score of 
99.4% and 99.3% respectively. Shaker et al. [43] utilized GAN 
to address the imbalance issue on the ECG dataset and it was 
reported that classification performance can be boosted more 
efficiently by augmenting the dataset using GAN than using the 
same model that was just trained on the original dataset. 

In this study, we propose various adapted methods of ECG 
based heart classification that make use of different NN models, 
specifically, 1D-CNN, LSTM, and ResNet-50. In addition, a 
synthetic dataset generated by 1-D GAN was used to train the 
previous models. 

II. MATERIALS AND METHODS 

A. Dataset 

The study used open-source ECG database from Kaggle 
repository which combined the training data of MIT-BIH 
arrhythmia database from [44] and synthetic data generated 
from 1D-GANs [45]. Testing data contained no generated 
samples. MIT-BIH arrhythmia database [46] from the 
Massachusetts Institute of Technology was used in this study. 
This database contains ECG signals with 48 recordings with 
each having a 30-minute recording time, and 360 Hz frequency. 
Recordings were obtained from 47 patients. As defined by the 
American Association for the Advancement of Medical 
Instrumentation (AAMI) [47], the annotations listed in Table I 
were grouped into five main categories, namely non-ectopic 
(N), unknown (Q), fusion (F), supraventricular ectopic (S), and 
ventricular ectopic (V). The examples of the ECG signals are 
shown in Fig. 1. 
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Fig. 1 Examples of ECG signals in each class 
 

TABLE I 
ECG BEATS CATEGORIZED AS PER AAMI 

Class Description Annotation 

N Non-ectopic Normal (NOR) 
Left bundle branch block (LBBB) 

Right bundle branch block beat (RBBB) 
Atrial escape (AE) 

Nodal (junctional) escape (NE)
Q Unknown Paced (P) 

Fusion of paced and normal (fPN) 
Unclassifiable (U) 

F Fusion Fusion of ventricular and normal (fVN) 

S Supraventricular 
ectopic 

Atrial premature (AP) 
Aberrated atrial premature (aAP)  

Nodal premature (NP)  
Supraventricular premature (SP)

V Ventricular Ectopic Premature ventricular contraction (PVC) 
Ventricular escape (VE)

B. Model Implementation 

A synthetic 1D dataset was obtained from a Kaggle 
repository [45] where 1D GAN technique was utilized in the 
training set. The technique was used to generate more data for 
few insufficient labeled classes. Briefly, the architecture mainly 
consists of a bidirectional LSTM (BiLSTM) generator and 
discriminator. The generator synthesizes data using Gaussian-
distributed sampled noise data points and learns from the 
discriminator’s feedback. The discriminator, on the other hand, 
determines whether the generated data are real by learning the 
probability distribution of the original data and providing a true-
or-false value. It should be noted that the dataset was divided 
into training and testing sets in an 80:20 ratio before GAN was 
applied on the training set. 

Initially, a total of 109449 data comprised the dataset with 
the N class dominating with 90589 data points and the S class 
and F class as the least with 2779 and 803 data points, 
respectively. After the process, the total number of datapoints 
were increased, most especially with the S and F class whose 
data points increased to 4958 and 2150, respectively. This 
method was implemented to validate the efficiency of the model 
with a slightly higher number of training sets in classes S and F 

specifically. Figs. 2 and 3 show the difference between two 
datasets before and after GAN was applied as well as the sample 
results obtained before and after the process, respectively. 

C. Overview of the Proposed Models 

This study examined the classification performance of three 
NNs, namely 1D-CNN, LSTM, and ResNet-50. All models 
were trained with a dataset of GAN based augmented ECG 
signals. For training, all proposed models used Adam optimizer 
with a learning rate of 0.0001. The models’ batch size was set 
to 64 and the number of epochs was 25. An early stopping was 
applied to stop the training when the model stops improving and 
lean towards overfitting on the validation set. For the loss 
function, a categorical cross-entropy was utilized which is 
generally appropriate for the classification of multiple classes. 
The implementation of the algorithms used were accomplished 
in ColaboratoryTM by Google using its built-in GPU (NVIDIA® 
Tesla® K80) setting. 

1-D CNN 

1-D CNN is suitable for time series data wherein one-
dimensional arrays are analyzed as feature extraction and 
classification operations are merged into one process [48]. 
Because they are simpler by architecture, there is the benefit of 
less computational cost while still maintaining high 
performance. The proposed model only contains two 
convolutional blocks, two fully connected layers and a soft-max 
layer. The convolutional block was composed of layers of 
convolutional, rectified linear unit (ReLU), and max pooling. 
Batch normalization layers were added after the ReLU layers in 
each convolutional block to normalize the input layer. The max 
pooling layer was then flattened. Dense layers were then added 
followed by a drop-out layer of 0.5 to avoid overfitting. An 
activity regularizer is specified on each dense layer where L2 
regularization of 0.0001 was applied. The softmax function was 
utilized to generate prediction probability over five output 
classes. 
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Fig. 2 Difference between two datasets before and after GAN was applied 
 

 

Fig. 3 Sample real and synthetic ECG signals 
 

 

Fig. 4 Network Architecture of 1D-CNN 
 

 

Fig. 5 Network Architecture of LSTM 
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RNN is capable of handling long time dependencies and 
solving vanishing gradient problems [49]. It is well-suited to 
process, classify, and make predictions based on time series 
data [50]. The proposed model begins with a dense layer and is 
followed by the LSTM layer with 128 neurons. An activity 
regularizer is also specified on each dense layer where L2 
regularization of 0.00001 was applied. Two dropout layers of 
0.5 were then applied after each dense layer which was then 
followed by batch normalization. For the activation function, 
the nonmonotonic, smooth function known as Swish was 
applied. 

ResNet-50 

ResNet, at its core, allows for the use of the skip connection 
concept in order to address the problem of vanishing gradients. 

This is achieved through the implementation of larger layers 
without compromising the accuracy rate. As adapted from [51], 
the architecture is mainly composed of multiple residual blocks, 
convolutional blocks and identity blocks in particular, which 
each contain a convolutional layer, a batch normalization layer, 
and ReLU activation function. Briefly, the model begins with 
1x1 convolutional layer, batch normalization, ReLU, and max 
pooling. This is followed by multiple convolutional blocks 
where each of these blocks is accompanied with 2,3,5,2 identity 
blocks. The convolutional block has skip connections that allow 
the flow of gradient from the initial layer to the final layer. 
Average pooling was done before flattening the layer. Dense 
layers were then added and finally the SoftMax function was 
used to generate the output. The total number of parameters was 
17,839,109. 

 

 

Fig. 6 Network Architecture of ResNet-50 
 

D. Performance Evaluation 

A five-fold cross validation (CV) was performed to evaluate 
the performance of the model through its average precision (P), 
recall (R) and F1 score (F1). This was done where the models 
were run five times. A confusion matrix was also used to 
describe the classification performance by categorizing their 
results to show how many beats were correctly classified or 
misclassified into five classes of heartbeats. Performance 
indices that provide for these values include true positive (TP), 
false positive (FP), true negative (TN), and false negative (FN). 

The summary of the standard measurements are as follows: 
Precision refers to the heart beats predicted correctly of one 

class over the sum of all heart beats predicted with this class:  
 

P =                                        (1) 

 
Recall refers to the correctly classified heart beats of once 

class over the sum of heart beats belonging to that class:  
 

R =                                        (2) 

 
F1 score refers to the harmonic mean of the precision and 

sensitivity of the ECG classification 

III. RESULTS AND DISCUSSION 

Experiments were done using the synthetic dataset utilized to 
train and evaluate the proposed models, namely 1D-CNN, 
LSTM, and ResNet-50. Each model was run five times resulting 
in five results of each metric. The three sets of tables show the 
precision, recall, and F1 score results of these models where the 
weighted average of each metric was presented. The standard 
deviation was also calculated for each metric across three 
models. The confusion matrix of each model was presented in 
Fig. 7. 

 
TABLE II 

COMPARISON BETWEEN 1DCNN, RESNET50, AND LSTM IN TERMS OF 

PRECISION 

Run 
LSTM 

(baseline)
1D-CNN 

(proposed) 
ResNet-50 
(proposed)

1 96.04 98.87 98.88 

2 96.78 98.95 99.01 

3 96.58 98.93 98.70 

4 96.45 98.99 98.93 

5 96.03 98.90 98.87 

Mean 96.38 98.93 98.88 

STD 0.33 0.05 0.11 

 

Precision or the positive predictive value measures the heart 
beats predicted correctly of one class over the sum of all heart 

World Academy of Science, Engineering and Technology
International Journal of Biomedical and Biological Engineering

 Vol:17, No:12, 2023 

348International Scholarly and Scientific Research & Innovation 17(12) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 B
io

m
ed

ic
al

 a
nd

 B
io

lo
gi

ca
l E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
12

, 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
42

7.
pd

f



 
 
 

 

beats predicted with this class - it provides the probability of 
accurate prediction of the network. In Table II, 1D-CNN was 
found to have the best classification performance in terms of 
precision (98.93 0.05%). It also exhibited the lowest variance; 
this indicates that the model exhibited more consistency in 
performance. 

 
TABLE III 

COMPARISON BETWEEN 1DCNN, RESNET50, AND LSTM IN TERMS OF 

RECALL 

Run 
LSTM 

(baseline) 
1D-CNN 

(proposed) 
ResNet-50 
(proposed) 

1 94.58 98.74 98.89 

2 90.26 98.84 99.02 

3 95.19 98.73 98.70 

4 94.30 98.97 98.94 

5 94.48 98.84 98.87 

Mean 93.76 98.83 98.88 

STD 1.99 0.10 0.12 

 

Recall or sensitivity measures the correctly classified heart 
beats of once class over the sum of heart beats belonging to that 
class, thereby, reflecting the ability of the model to detect 
different heart beats that will aid in detecting ECG 
abnormalities. In Table III, it is shown that the ResNet-50 

performed best in classifying the heartbeats correctly with an 
average recall of 98.88, followed by 1D-CNN with a small 
margin. The LSTM obtained the lowest sensitivity value with 
90.26, indicating that there are some ECG signals that were 
misclassified. 

F1 score measures the harmonic mean of precision and recall. 
This index describes the capability of recognizing heart signals. 
Based on Table IV, ResNet-50 obtained the highest average F1-
score, thereby demonstrating good generalization performance. 
1D-CNN does not measure far from this with a 0.01 mean F1 
score difference. With an observed lower standard deviation, 
1D-CNN is also considerably better in terms of F1 score. 

 
TABLE IV 

COMPARISON BETWEEN 1DCNN, RESNET50, AND LSTM IN TERMS OF F1 

SCORE 

Run 
LSTM 

(baseline)
1D-CNN 

(proposed) 
ResNet-50 
(proposed)

1 95.04 98.78 98.88 

2 92.90 98.88 99.00 

3 95.65 98.79 98.69 

4 95.02 98.98 98.93 

5 94.98 98.86 98.87 

Mean 94.72 98.86 98.87 

STD 1.05 0.08 0.16 

 

Fig. 7 The Confusion Matrix of Three NN s. The heartbeats are classified into five types: non-ectopic beat (0), supraventricular ectopic beat 
(1), ventricular ectopic beat (2), Fusion beat (3), and unknown beat (4) 

 
Fig. 7 describes the performance of the models through a 

confusion matrix where each of the results of the models that 
are shown was selected based on the best results of F1 score. 
Based on the figure, it appears that fusion beats are often 
misclassified across three models where the LSTM model 
managed to correctly classify 85 beats out of 162 beats. Most 
of these beats were misclassified as normal beats. The LSTM 
model performed poorly in detecting supraventricular ectopic 
beats where it misclassified the beats as normal beats. This may 
be attributed to the fact that many signals in the Class S have a 
similar wave characteristic to that of Class N where the major 
difference between the two classes lies in the absence of the P-
wave and the change of RR interval [52]. Among three models, 
the ResNet-50 model performed best in classifying the beats as 
reflected in its F1 score shown in Table IV. Findings support 
the higher capacity of CNNs that led to its prevalence in recent 

ML research. 1D-CNN and ResNet-50 measured closely in the 
following metrics with 1D-CNN having slightly lower values 
but lower variance while ResNet-50 performed the best but 
exhibited higher variance. 

IV. CONCLUSION 

The study presented in this paper demonstrated an 
application of ECG based heartbeat classification using ML 
models. A synthetic dataset produced by 1D-GAN was used to 
train and evaluate the models. The results from the proposed 
models including ResNet50, 1D CNN, and LSTM highlight the 
superior performance of CNNs. The results show superior 
performance of the proposed method of CNN compared to 
baseline of LSTM in terms of F1 score. The proposed solution 
can help to automate ECG signal classification to reduce time, 
labor, and human errors. 
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The obtained results confirm the possibility to use such 
models in assisting ECG analysis. However additional studies 
using increased real ECG data and an evaluation of other ML 
techniques are highly recommended. The use of GANs for 
exploring other medical analysis tasks is also encouraged in 
tackling the common challenge of limited datasets. 
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