In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
In vitro and in vivo Assessment of Cholinesterase Inhibitory Activity of the Bark Extracts of Pterocarpus santalinus L. for the Treatment of Alzheimer’s Disease

Authors: K. Biswas, U. H. Armin, S. M. J. Prodhan, J. A. Prithul, S. Sarker, F. Afrin


Alzheimer’s disease (AD) (a progressive neurodegenerative disorder) is mostly predominant cause of dementia in the elderly. Prolonging the function of acetylcholine by inhibiting both acetylcholinesterase and butyrylcholinesterase is most effective treatment therapy of AD. Traditionally Pterocarpus santalinus L. is widely known for its medicinal use. In this study, in vitro acetylcholinesterase inhibitory activity was investigated and methanolic extract of the plant showed significant activity. To confirm this activity (in vivo), learning and memory enhancing effects were tested in mice. For the test, memory impairment was induced by scopolamine (cholinergic muscarinic receptor antagonist). Anti-amnesic effect of the extract was investigated by the passive avoidance task in mice. The study also includes brain acetylcholinesterase activity. Results proved that scopolamine induced cognitive dysfunction was significantly decreased by administration of the extract solution, in the passive avoidance task and inhibited brain acetylcholinesterase activity. These results suggest that bark extract of Pterocarpus santalinus can be better option for further studies on AD via their acetylcholinesterase inhibitory actions.

Keywords: Pterocarpus santalinus, cholinesterase inhibitor, passive avoidance, Alzheimer’s disease.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759


[1] Nagori, B. P., & Solanki, R. (2011). Role of medicinal plants in wound healing. Research Journal of Medicinal Plant, 5(4), 392-405.
[2] Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., ... & Herrup, K. (2015). Neuroinflammation in Alzheimer's disease. The Lancet Neurology, 14(4), 388-405.
[3] Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Cedarbaum, J., ... & Luthman, J. (2015). 2014 Update of the Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer's & dementia, 11(6), e1-e120.
[4] Dubois, B., Padovani, A., Scheltens, P., Rossi, A., & Dell’Agnello, G. (2016). Timely diagnosis for Alzheimer’s disease: a literature review on benefits and challenges. Journal of Alzheimer's disease, 49(3), 617-631.
[5] Ali, T. B., Schleret, T. R., Reilly, B. M., Chen, W. Y., & Abagyan, R. (2015). Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS One, 10(12), e0144337.
[6] Arunakumara, K. K. I. U., Walpola, B. C., Subasinghe, S., & Yoon, M. H. (2011). Pterocarpus santalinus Linn. f. (Rath handun): A review of its botany, uses, phytochemistry and pharmacology. Journal of the Korean Society for Applied Biological Chemistry, 54(4), 495-500.
[7] Rao, B. K., Giri, R., Kesavulu, M. M., & Apparao, C. H. (2001). Effect of oral administration of bark extracts of Pterocarpus santalinus L. on blood glucose level in experimental animals. Journal of Ethnopharmacology, 74(1), 69-74.
[8] Bulle, S., Reddyvari, H., Nallanchakravarthula, V., & Vaddi, D. R. (2016). Therapeutic potential of Pterocarpus santalinus L.: An update. Pharmacognosy reviews, 10(19), 43.
[9] Wu, S. F., Chang, F. R., Wang, S. Y., Hwang, T. L., Lee, C. L., Chen, S. L., ... & Wu, Y. C. (2011). Anti-inflammatory and cytotoxic neoflavonoids and benzofurans from Pterocarpus santalinus. Journal of natural products, 74(5), 989-996.
[10] Kondeti, V. K., Badri, K. R., Maddirala, D. R., Thur, S. K. M., Fatima, S. S., Kasetti, R. B., & Rao, C. A. (2010). Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 48(5), 1281-1287.
[11] Wu, S. F., Hwang, T. L., Chen, S. L., Wu, C. C., Ohkoshi, E., Lee, K. H., ... & Wu, Y. C. (2011). Bioactive components from the heartwood of Pterocarpus santalinus. Bioorganic & medicinal chemistry letters, 21(18), 5630-5632.
[12] Rush, D. K. (1988). Scopolamine amnesia of passive avoidance: a deficit of information acquisition. Behavioral and Neural Biology, 50(3), 255-274.
[13] Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95.
[14] Jarvik, M. E., & Kopp, R. (1967). An improved one-trial passive avoidance learning situation. Psychological reports, 21(1), 221-224.
[15] Craig, L. A., Hong, N. S., & McDonald, R. J. (2011). Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neuroscience & Biobehavioral Reviews, 35(6), 1397-1409.
[16] Castello, M. A., & Soriano, S. (2014). On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis. Ageing research reviews, 13, 10-12.
[17] Chang, Y. T., Chang, W. N., Tsai, N. W., Huang, C. C., Kung, C. T., Su, Y. J., ... & Lu, C. H. (2014). The roles of biomarkers of oxidative stress and antioxidant in Alzheimer’s disease: a systematic review. BioMed research international, 2014.
[18] Mathew, M., & Subramanian, S. (2014). In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PloS one, 9(1), e86804.
[19] Biswas, K., Azad, A. K., Sultana, T., Khan, F., Hossain, S., Alam, S., ... & Khatun, Y. (2017). Assessment of in-vitro cholinesterase inhibitory and thrombolytic potential of bark and seed extracts of Tamarindus indica (L.) relevant to the treatment of Alzheimer’s disease and clotting disorders. Journal of intercultural ethnopharmacology, 6(1), 115.
[20] Biswas, K., Islam, A., Sharmin, T., & Biswas, P. K. (2015). In-vitro cholinesterase inhibitory activity of dry fruit extract of Phyllanthus emblica relevant to the treatment of Alzheimer’s disease. J Phytopharmacol, 4, 5-8.
[21] Chang, H. J., Kim, H. J., & Chun, H. S. (2007). Quantitative structure− activity relationship (QSAR) for neuroprotective activity of terpenoids. Life sciences, 80(9), 835-841.
[22] Grassmann, J., Hippeli, S., & Elstner, E. F. (2002). Plant’s defence and its benefits for animals and medicine: role of phenolics and terpenoids in avoiding oxygen stress. Plant Physiology and Biochemistry, 40(6-8), 471-478.
[23] Yoo, K. Y., & Park, S. Y. (2012). Terpenoids as potential anti-Alzheimer’s disease therapeutics. Molecules, 17(3), 3524-3538.