Search results for: Human Motion Recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3183

Search results for: Human Motion Recognition

2793 Pre-Analysis of Printed Circuit Boards Based On Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show, that a higher contrast is achieved in the near infrared compared to ultraviolett and visible light.

Keywords: Electronic Waste, Recycling, Multispectral Imaging, Printed Circuit Boards, Rare-Earth Elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
2792 Two Concurrent Convolution Neural Networks TC*CNN Model for Face Recognition Using Edge

Authors: T. Alghamdi, G. Alaghband

Abstract:

In this paper we develop a model that couples Two Concurrent Convolution Neural Network with different filters (TC*CNN) for face recognition and compare its performance to an existing sequential CNN (base model). We also test and compare the quality and performance of the models on three datasets with various levels of complexity (easy, moderate, and difficult) and show that for the most complex datasets, edges will produce the most accurate and efficient results. We further show that in such cases while Support Vector Machine (SVM) models are fast, they do not produce accurate results.

Keywords: Convolution neural network, edges, face recognition, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
2791 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
2790 Face Detection using Gabor Wavelets and Neural Networks

Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani

Abstract:

This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.

Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
2789 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot

Authors: Jungho Choi, Youngwan Cho

Abstract:

This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.

Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
2788 Clarifications on the Damping Mechanism Related to the Hunting Motion of the Wheel Axle of a High-Speed Railway Vehicle

Authors: Barenten Suciu

Abstract:

In order to explain the damping mechanism, related to the hunting motion of the wheel axle of a high-speed railway vehicle, a generalized dynamic model is proposed. Based on such model, analytic expressions for the damping coefficient and damped natural frequency are derived, without imposing restrictions on the ratio between the lateral and vertical creep coefficients. Influence of the travelling speed, wheel conicity, dimensionless mass of the wheel axle, ratio of the creep coefficients, ratio of the track span to the yawing diameter, etc. on the damping coefficient and damped natural frequency, is clarified.

Keywords: High-speed railway vehicle, hunting motion, wheel axle, damping, creep, vibration model, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
2787 Planning Rigid Body Motions and Optimal Control Problem on Lie Group SO(2, 1)

Authors: Nemat Abazari, Ilgin Sager

Abstract:

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.

Keywords: Optimal control, Hamiltonian vector field, Darboux vector, maximum principle, lie group, rigid body motion, Lorentz metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2786 Conformal Invariance in F (R, T) Gravity

Authors: Pyotr Tsyba, Olga Razina, Ertan Güdekli, Ratbay Myrzakulov

Abstract:

In this paper we consider the equation of motion for the F (R, T) gravity on their property of conformal invariance. It is shown that in the general case, such a theory is not conformal invariant. Studied special cases for the functions v and u in which can appear properties of the theory. Also we consider cosmological aspects F (R, T) theory of gravity, having considered particular case F (R, T) = μR+νT^2. Showed that in this case there is a nonlinear dependence of the parameter equation of state from time to time, which affects its evolution.

Keywords: Conformally invariance, F (R, T) gravity, metric FRW, equation of motion, dark energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
2785 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System

Authors: Qian Liu, Steve Furber

Abstract:

To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modelled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study’s largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognise the postures with an accuracy of around 86.4% - only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much improved cost to performance trade-off in its approach.

Keywords: Spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
2784 Realtime Lip Contour Tracking For Audio-Visual Speech Recognition Applications

Authors: Mehran Yazdi, Mehdi Seyfi, Amirhossein Rafati, Meghdad Asadi

Abstract:

Detection and tracking of the lip contour is an important issue in speechreading. While there are solutions for lip tracking once a good contour initialization in the first frame is available, the problem of finding such a good initialization is not yet solved automatically, but done manually. We have developed a new tracking solution for lip contour detection using only few landmarks (15 to 25) and applying the well known Active Shape Models (ASM). The proposed method is a new LMS-like adaptive scheme based on an Auto regressive (AR) model that has been fit on the landmark variations in successive video frames. Moreover, we propose an extra motion compensation model to address more general cases in lip tracking. Computer simulations demonstrate a fair match between the true and the estimated spatial pixels. Significant improvements related to the well known LMS approach has been obtained via a defined Frobenius norm index.

Keywords: Lip contour, Tracking, LMS-Like

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2783 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
2782 Complex Energy Signal Model for Digital Human Fingerprint Matching

Authors: Jason Zalev, Reza Sedaghat

Abstract:

This paper describes a complex energy signal model that is isomorphic with digital human fingerprint images. By using signal models, the problem of fingerprint matching is transformed into the signal processing problem of finding a correlation between two complex signals that differ by phase-rotation and time-scaling. A technique for minutiae matching that is independent of image translation, rotation and linear-scaling, and is resistant to missing minutiae is proposed. The method was tested using random data points. The results show that for matching prints the scaling and rotation angles are closely estimated and a stronger match will have a higher correlation.

Keywords: Affine Invariant, Fingerprint Recognition, Matching, Minutiae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
2781 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
2780 A Method to Compute Efficient 3D Helicopters Flight Trajectories Based on a Motion Polymorph-Primitives Algorithm

Authors: Konstanca Nikolajevic, Nicolas Belanger, David Duvivier, Rabie Ben Atitallah, Abdelhakim Artiba

Abstract:

Finding the optimal 3D path of an aerial vehicle under flight mechanics constraints is a major challenge, especially when the algorithm has to produce real time results in flight. Kinematics models and Pythagorian Hodograph curves have been widely used in mobile robotics to solve this problematic. The level of difficulty is mainly driven by the number of constraints to be saturated at the same time while minimizing the total length of the path. In this paper, we suggest a pragmatic algorithm capable of saturating at the same time most of dimensioning helicopter 3D trajectories’ constraints like: curvature, curvature derivative, torsion, torsion derivative, climb angle, climb angle derivative, positions. The trajectories generation algorithm is able to generate versatile complex 3D motion primitives feasible by a helicopter with parameterization of the curvature and the climb angle. An upper ”motion primitives’ concatenation” algorithm is presented based. In this article we introduce a new way of designing three-dimensional trajectories based on what we call the ”Dubins gliding symmetry conjecture”. This extremely performing algorithm will be soon integrated to a real-time decisional system dealing with inflight safety issues.

Keywords: Aerial robots, Motion primitives, Robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
2779 A Study of Touching Characters in Degraded Gurmukhi Text

Authors: M. K. Jindal, G. S. Lehal, R. K. Sharma

Abstract:

Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text.

Keywords: Character Segmentation, Middle Zone, Touching Characters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2778 Frequency Response Analysis of Reinforced- Soil Retaining Walls with Polymeric Strips

Authors: Ali Komakpanah, Maryam Yazdi

Abstract:

Few studies have been conducted on polymeric strip and the behavior of soil retaining walls. This paper will present the effect of frequency on the dynamic behavior of reinforced soil retaining walls with polymeric strips. The frequency content describes how the amplitude of a ground motion is distributed among different frequencies. Since the frequency content of an earthquake motion will strongly influence the effects of that motion, the characterization of the motion cannot be completed without the consideration of its frequency content. The maximum axial force of reinforcements and horizontal displacement of the reinforced walls are focused in this research. To clarify the dynamic behavior of reinforced soil retaining walls with polymeric strips, a numerical modeling using Finite Difference Method is benefited. As the results indicate, the frequency of input base acceleration has an important effect on the behavior of these structures. Because of resonant in the system, where the frequency of the input dynamic load is equal to the natural frequency of the system, the maximum horizontal displacement and the maximum axial forces in polymeric strips is occurred. Moreover, they were to increase the structure flexibility because of the main advantages of polymeric strips; i.e. being simple method of construction, having a homogeneous behavior with soils, and possessing long durability, which are of great importance in dynamic analysis.

Keywords: dynamic analysis, frequency, polymeric strip, reinforced soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
2777 Assamese Numeral Speech Recognition using Multiple Features and Cooperative LVQ -Architectures

Authors: Manash Pratim Sarma, Kandarpa Kumar Sarma

Abstract:

A set of Artificial Neural Network (ANN) based methods for the design of an effective system of speech recognition of numerals of Assamese language captured under varied recording conditions and moods is presented here. The work is related to the formulation of several ANN models configured to use Linear Predictive Code (LPC), Principal Component Analysis (PCA) and other features to tackle mood and gender variations uttering numbers as part of an Automatic Speech Recognition (ASR) system in Assamese. The ANN models are designed using a combination of Self Organizing Map (SOM) and Multi Layer Perceptron (MLP) constituting a Learning Vector Quantization (LVQ) block trained in a cooperative environment to handle male and female speech samples of numerals of Assamese- a language spoken by a sizable population in the North-Eastern part of India. The work provides a comparative evaluation of several such combinations while subjected to handle speech samples with gender based differences captured by a microphone in four different conditions viz. noiseless, noise mixed, stressed and stress-free.

Keywords: Assamese, Recognition, LPC, Spectral, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
2776 Visual Attention Analysis on Mutated Brand Name using Eye-Tracking: A Case Study

Authors: Anirban Chowdhury, Sougata Karmakar, Swathi Matta Reddy, Sanjog J., Subrata Ghosh, Debkumar Chakrabarti

Abstract:

Brand name plays a vital role for in-shop buying behavior of consumers and mutated brand name may affect the selling of leading branded products. In Indian market, there are many products with mutated brand names which are either orthographically or phonologically similar. Due to presence of such products, Indian consumers very often fall under confusion when buying some regularly used stuff. Authors of the present paper have attempted to demonstrate relationship between less attention and false recognition of mutated brand names during a product selection process. To achieve this goal, visual attention study was conducted on 15 male college students using eye-tracker against a mutated brand name and errors in recognition were noted using questionnaire. Statistical analysis of the acquired data revealed that there was more false recognition of mutated brand name when less attention was paid during selection of favorite product. Moreover, it was perceived that eye tracking is an effective tool for analyzing false recognition of brand name mutation.

Keywords: Brand Name Mutation, Consumer Behavior, Visual Attention, Orthography

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2535
2775 Fuzzy Logic System for Tractive Performance Prediction of an Intelligent Air-Cushion Track Vehicle

Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda

Abstract:

Fuzzy logic system (FLS) is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure control sensor, micro controller, and battery pH sensor are incorporated with the Fuzzy logic system to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.

Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
2774 Tractive Performance Prediction for Intelligent Air-Cushion Track Vehicle: Fuzzy Logic Approach

Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda

Abstract:

Fuzzy logic approach is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Sinkage measuring sensor, magnetic switch, pressure sensor, micro controller, control valves and battery are incorporated with the Fuzzy logic system (FLS) to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.

Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
2773 Fusion Classifier for Open-Set Face Recognition with Pose Variations

Authors: Gee-Sern Jison Hsu

Abstract:

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject-s face using the subject-s facial images only, without referencing to the faces of others. Because of the captured evolutionary process of facial features, the HMM module retains certain robustness against pose variations, yielding low false rejection rates (FRR) for recognizing faces across poses. This is, however, on the price of poor false acceptance rates (FAR) when recognizing other faces because it is built upon withinclass samples only. The SVM module in the proposed model is developed following a special design able to substantially diminish the FAR and further lower down the FRR. The proposed fusion classifier has been evaluated in performance using the CMU PIE database, and proven effective for open-set face recognition with pose variations. Experiments have also shown that it outperforms the face classifier made by HMM or SVM alone.

Keywords: Face recognition, open-set identification, hidden Markov model, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
2772 Analysis of the Benefits of Motion Simulators in 5th Generation Fighter Pilots' Training

Authors: Ali Mithad Emre

Abstract:

In military aviation, the use of flight simulators has proliferated recently in order to train fifth generation fighter pilots. With these simulators, pilots can carry out real-time flights resulting in seeing their faults and can perform emergency drills prior to real flights. Since we cannot risk losing the aircraft and the pilot himself/herself in the flight training process, flight simulators are of great importance to adapt the fighter pilots competently to real flights aboard the fifth generation aircraft. The real flights are impossible to simulate thoroughly on the ground. To some extent, the fixed-based simulators may assist the pilot to steer aircraft technically and visually but flight simulators can’t trick the pilot’s vestibular, sensory, and perceptual systems without motion platforms. This paper discusses the benefits of motion simulators for fifth generation fighter pilots’ training in preference to the fixed-based counterparts by analyzing their pros and cons.

Keywords: Centrifuge, g-loc, military, pilot, sickness, simulator, VMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684
2771 Effectiveness and Equity: New Challenges for Social Recognition in Higher Education

Authors: Correa Arias, César

Abstract:

Today, Higher Education in a global scope is subordinated to the greater institutional controls through the policies of the Quality of Education. These include processes of over evaluation of all the academic activities: students- and professors- performance, educational logistics, managerial standards for the administration of institutions of higher education, as well as the establishment of the imaginaries of excellence and prestige as the foundations on which universities of the XXI century will focus their present and future goals and interests. But at the same time higher education systems worldwide are facing the most profound crisis of sense and meaning and attending enormous mutations in their identity. Based in a qualitative research approach, this paper shows the social configurations that the scholars at the Universities in Mexico build around the discourse of the Quality of Education, and how these policies put in risk the social recognition of these individuals.

Keywords: Higher education, quality of education, social recognition, social configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
2770 Size-Reduction Strategies for Iris Codes

Authors: Jutta Hämmerle-Uhl, Georg Penn, Gerhard Pötzelsberger, Andreas Uhl

Abstract:

Iris codes contain bits with different entropy. This work investigates different strategies to reduce the size of iris code templates with the aim of reducing storage requirements and computational demand in the matching process. Besides simple subsampling schemes, also a binary multi-resolution representation as used in the JBIG hierarchical coding mode is assessed. We find that iris code template size can be reduced significantly while maintaining recognition accuracy. Besides, we propose a two-stage identification approach, using small-sized iris code templates in a pre-selection stage, and full resolution templates for final identification, which shows promising recognition behaviour.

Keywords: Iris recognition, compact iris code, fast matching, best bits, pre-selection identification, two-stage identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
2769 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449
2768 A New Graphical Password: Combination of Recall & Recognition Based Approach

Authors: Md. Asraful Haque, Babbar Imam

Abstract:

Information Security is the most describing problem in present times. To cop up with the security of the information, the passwords were introduced. The alphanumeric passwords are the most popular authentication method and still used up to now. However, text based passwords suffer from various drawbacks such as they are easy to crack through dictionary attacks, brute force attacks, keylogger, social engineering etc. Graphical Password is a good replacement for text password. Psychological studies say that human can remember pictures better than text. So this is the fact that graphical passwords are easy to remember. But at the same time due to this reason most of the graphical passwords are prone to shoulder surfing. In this paper, we have suggested a shoulder-surfing resistant graphical password authentication method. The system is a combination of recognition and pure recall based techniques. Proposed scheme can be useful for smart hand held devices (like smart phones i.e. PDAs, iPod, iPhone, etc) which are more handy and convenient to use than traditional desktop computer systems.

Keywords: Authentication, Graphical Password, Text Password, Information Security, Shoulder-surfing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4145
2767 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment

Authors: S. Jarernprasert, E. Bazan-Zurita, P. C. Rizzo

Abstract:

Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.

Keywords: Seismic, Directionality, In-Structure Response Spectra, Probabilistic Risk Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
2766 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: Color space, neural network, random forest, skin detection, statistical feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
2765 Synchronization of a Perturbed Satellite Attitude Motion

Authors: Sadaoui Djaouida

Abstract:

In the paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.

Keywords: Predictive control, Synchronization, Satellite attitude.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
2764 Acceleration-Based Motion Model for Visual SLAM

Authors: Daohong Yang, Xiang Zhang, Wanting Zhou, Lei Li

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) is a technology that gathers information about the surrounding environment to ascertain its own position and create a map. It is widely used in computer vision, robotics, and various other fields. Many visual SLAM systems, such as OBSLAM3, utilize a constant velocity motion model. The utilization of this model facilitates the determination of the initial pose of the current frame, thereby enhancing the efficiency and precision of feature matching. However, it is often difficult to satisfy the constant velocity motion model in actual situations. This can result in a significant deviation between the obtained initial pose and the true value, leading to errors in nonlinear optimization results. Therefore, this paper proposes a motion model based on acceleration that can be applied to most SLAM systems. To provide a more accurate description of the camera pose acceleration, we separate the pose transformation matrix into its rotation matrix and translation vector components. The rotation matrix is now represented by a rotation vector. We assume that, over a short period, the changes in rotating angular velocity and translation vector remain constant. Based on this assumption, the initial pose of the current frame is estimated. In addition, the error of the constant velocity model is analyzed theoretically. Finally, we apply our proposed approach to the ORBSLAM3 system and evaluate two sets of sequences from the TUM datasets. The results show that our proposed method has a more accurate initial pose estimation, resulting in an improvement of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on the two test sequences, respectively.

Keywords: Error estimation, constant acceleration motion model, pose estimation, visual SLAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251