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Abstract—Finding the optimal 3D path of an aerial vehicle under
flight mechanics constraints is a major challenge, especially when
the algorithm has to produce real time results in flight. Kinematics
models and Pythagorian Hodograph curves have been widely used
in mobile robotics to solve this problematic. The level of difficulty
is mainly driven by the number of constraints to be saturated at the
same time while minimizing the total length of the path. In this paper,
we suggest a pragmatic algorithm capable of saturating at the same
time most of dimensioning helicopter 3D trajectories’ constraints
like: curvature, curvature derivative, torsion, torsion derivative, climb
angle, climb angle derivative, positions. The trajectories generation
algorithm is able to generate versatile complex 3D motion primitives
feasible by a helicopter with parameterization of the curvature and the
climb angle. An upper ”motion primitives’ concatenation” algorithm
is presented based. In this article we introduce a new way of designing
three-dimensional trajectories based on what we call the ”Dubins
gliding symmetry conjecture”. This extremely performing algorithm
will be soon integrated to a real-time decisional system dealing with
inflight safety issues.

Keywords—Aerial robots, Motion primitives, Robotics.

I. INTRODUCTION

S IMULATION relying on dynamics helicopters model
raises the problem of computation time. This is

particularly right when the problem requires a simultaneous
generation of massive set of trajectories (>5000 trajectories
over 30 seconds of flight) with a computation loop of 50
milliseconds. In this situation, the use of inflight embedded
computation resources becomes critical. This well-known
mobile robotics problem has been addressed by a wide variety
of research works in the frame of trajectories kinematics
model. If the problem of 2D optimal path for a non
holonomic robot by the use of motion primitives, with
bounded derivative of the curvature, is already addressed
by performing algorithms [7], the scientific and technical
domain of helicopters 3D flight path generation optimization
by kinematics motion primitives is currently rapidly moving
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[11], [12], [8]. To solve the problem of path of minimal
length for aerial vehicle with prescribed initial and final space
positions and speed vectors, solutions relying on algorithms
for Pythagorian Hodograph curves have been performed [9],
[10]. Those solutions are performing to provide valid solutions
but they face difficulty to simultaneously control and guaranty
saturation of intrinsic trajectory dimensioning constraints like:
maximal curvature kmax, maximal torsion τmax, maximal
climb angle θmax, and their derivatives constraints (dkds )max,
(dτds )max, (dθds )max. Those limits are generally determined by
flights tests records and helicopter heavy dynamics models of
simulation. In the frame of environment and time bounded
helicopters missions, saturating at the same time the flight
trajectory above constraints becomes an important challenge.
To solve it, 3D flight path generation methods relying on
motion primitives have already been performed and provided
efficient results [4], [6]. The case of Yasmina Bestaoui
works [2] is interesting as it addresses the problematic of
transitions between two flight situations by introducing the
use of transition curves with linear curvature and torsion, or
quadratic torsion. This is of real interest because helicopters
manoeuvers to capture an oriented space position under time
constraint often require the combination of a climb angle
increase and a turn. The established motion is then a helix
arc. Before reaching the established motion, flight records and
helicopters heavy dynamics simulation models results show
that the required transition can be relevantly modeled by the
kind of curve with linear curvature and torsion. We address
in this contribution a kinematics motion primitives algorithm.
This algorithm relies on clothoids, straight segments, spiral
arcs and 3D transitions. The main feature of the 3D transitions
generated by our algorithm is that their generation relies on an
original integration method that can guaranty different forms
of 3D transitions with very light parameterization. Moreover,
our algorithms authorize very simple laws on curvature κ
and climb angle θ parameterized by the curvilinear abscissa
s. Therefore, it generates 3D Euler spiral, 3D spiral with
quadratic torsion and curves traced on cylinder surfaces. 3D
transitions and other described primitives are then aggregated
by the means of an algorithm inspired by Dubins curves
[5] extended to 3D. We present in the present article a use
case with prescribed initial and final: positions, speed vectors,
curvature and torsion. We demonstrate the efficiency of the
algorithm by comparing lengths of generated path to a 3D
Dubins like path with an extremely good ratio (close to 1).
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II. FROM THE DYNAMIC MODEL OF THE AIRCRAFT TO A
MATHEMATICAL CHARACTERIZATION OF THE FLIGHT

A model, based on mathematical motion primitives and
capable of computing accurate flight trajectories, characteristic
of the helicopter’s dynamics, is of major interest for embedded
systems in the sense that it is light to process. However, this
model needs characteristic parameters to compute the motion
primitives. In order to get these parameters and compute the
corresponding motion primitives, a specific method is needed.
The method described in this section takes into account the
aircraft’s dynamics and does not exceed the flight envelope. It
has been designed in order to fit the real flight characteristics
of a helicopter as it is based on flight recordings produced in
simulation. For the purpose of this study, a simplified flight
loop of a helicopter has been used to produce the data in a
simulation environment. The flight loop used in this section
is not representative of a particular helicopter. It has only
been used as a tool in order to design and implement the
mathematical model and eventually provide a test device.
However, if the flight loop happen to change, the resulting
model remains valid. The only difference would be in the
resulting parameters.

The flight recordings have been produced by acting
exclusively on three parameters which permitted to create
all the possible combinations of trajectories with graduate
solicitation of the aircraft. These three parameters are:

• The true air speed
• The vertical speed
• The roll angle

Hence, three types of trajectories where derived from the
simulation:

• Climb trajectory (increase of the vertical speed, true air
speed kept constant, no roll angle)

• Lateral trajectory (action on roll angle, no vertical speed,
true air speed kept constant)

• Oblique trajectory (combining both variation of vertical
speed and roll angle for a constant true air speed)

Fig. 1 From the BFL to the mathematically computed trajectories

The lateral and climb trajectories are two-dimensional, as
they are contained respectively in horizontal and vertical
planes, while the oblique trajectory is three-dimensional.

The data collected in simulation is smoothed using
the Bezier curves [3] in order to get the characteristic
parameters needed for computing the motion primitives. These

parameters are the curvature, the climb angle, and their
derivatives. Bezier curves are a convenient choice for this
study because a few control points are needed to characterize
the simulation recordings. Besides, the most important thing
was to characterize the transitions between an initial state
with zero curvature, torsion and climb angle to final states
where these parameters change simultaneously. Eventually, the
resulting curves produced with the Bezier curves smoothing
fit very well the simulation data.

III. TRAJECTORIES EXTRACTED FROM THE SIMULATION
MODEL

A. Design of Lateral Trajectories

We define the lateral trajectory as a two-dimensional
horizontal path obtained by applying a turn, or a roll angle,
to the helicopter. The experiment has been done for different
roll angles as shown in Fig. 2.

Fig. 2 Curvature profiles obtained from simulation data, with Bezier curves
smoothing - results computed for different roll angles

From the simulation recordings, parameters have been
extracted such as the maximum curvature κmax and the
maximum derivative of the curvature dκmax. Indeed, the
simulation data for such trajectories have permitted to establish
a common profile for the curvature distributions. It is noted
in Fig. 2, that the curvature changes linearly with the arc
length of the curve before reaching a maximum value and
remaining constant. Besides, we do not take the maximum
values observed in simulation for those parameters. A security
margin is kept in order to avoid exceeding the flight envelope
and therefore the actual capabilities of the helicopter. Hence
the first portion of the lateral trajectory, until S1 is reached,
is a clothoid followed by a circle arc with constant curvature
κmax and radius R = 1

κmax
; where

S1 =
κmax − κ0

dκmax

and Stot depends on the speed and flight time of the aircraft.

Fig. 4 displays a result comparing the trajectory obtained
in simulation with the computed trajectory for 30 seconds of
flight at a speed of 70 knots. The computed path is very close
to the simulation data.
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kmax

−kmax

S1 Stot

Fig. 3 Diagram of the curvature distribution for a lateral trajectory

Fig. 4 Results for a lateral trajectory during 30s of flight - simulation (red)
and computed trajectory (blue)

B. Design of Climb Trajectories

We define a climb trajectory as a two-dimensional vertical
path obtained by applying a vertical speed to the helicopter.
In the same way as for lateral trajectories, the experiment
has been done for different vertical speeds. An example is
displayed in Fig. 5.

Fig. 5 Curvature profiles obtained from simulation data, with Bezier curves
smoothing for climb trajectories at different vertical speeds

Four distinct parts have been identified in the climb
trajectories, suggesting four different motion primitives, which
are two clothoids (for the linear evolution of the curvature), a
circle arch between the clothoids and a straight line with zero
curvature at the end (Fig. 6). Here again, we do not take the
maximum values found for κmax and the dκ slopes. S1 and
Stot are found the same way than for the lateral trajectory. In
simulation, we have S3 as it corresponds to the final climb
angle of the climb trajectory, which permits to deduce S2.

Results for a climb trajectory are displayed in Fig. 7.
When the straight line is captured the final angle of climb

is reached. The computed trajectory is compliant with the
capabilities of the helicopter. It does not exceed the actual

kmax

−kmax

S1 S2 S3 Stot

Fig. 6 Diagram of the curvature distribution for a climb trajectory

Fig. 7 Results for a climb trajectory on 12 seconds - simulation (red) and
computed trajectory (blue)

climb performances but remains very close to the simulation
for a given vertical speed.

C. Design of Oblique Trajectories - Focus on the
Three-Dimensional Spiral Transition

The oblique trajectory is obtained in simulation by both
increasing the vertical speed and applying a turn, i.e. a roll
angle, to the helicopter. The simulation results were performed
with different vertical speeds and roll angles. In order to
extract the characteristic parameters of this trajectory and
capture its different states and stages with the intention of
reproducing it mathematically, only initial conditions have
been imposed with zero torsion and zero curvature. From
there on, we have an open loop trajectory generation system
allowing all possible observations.

According to the fundamental theorem of (the local theory
of) space curves [1], ”in differential geometry, every regular
curve in three-dimensional space, with non-zero curvature, has
its shape (and size) completely determined by its curvature
and torsion. A curve can be described, and thereby defined,
by a pair of scalar fields: curvature κ and torsion τ , both
of which depend on some parameter which parametrizes the
curve but which can ideally be the arc length of the curve.
From just the curvature and torsion, the vector fields for the
tangent, normal, and binormal vectors can be derived using
the Frenet-Serret formulas. The integration of the tangent field
(done numerically or analytically) yields the curve”.

Since the curves we are dealing with are regular and C∞,
knowing their torsion and curvature for all points ensures their
unicity. However, even if the Bezier curves smoothing works
perfectly fine for finding the curvature distribution along the
oblique trajectory taken from the simulation recordings, this
method reveals some oscillations with the torsion which makes
it difficult to identify formally the maximum value of the
derivative of the torsion dτmax. Despite these considerations
the method enables to find the maximum value of the torsion
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τmax because the distribution stabilizes after the oscillations.
The discrete derivation directly from the simulation recordings
has also been tested but this method does not give satisfying
results either. This is why a specific method for the design
of the oblique trajectory is required here. We note that the
Bezier curves smoothing method gives a linear evolution of
the curvature when both the vertical speed is increased and a
turn is applied to the aircraft. An example is displayed in Fig.
8.

Fig. 8 Distribution of the curvature κ for oblique trajectory with 1000 ft/min
vertical speed and 20 degrees roll angle

Actually, it has been observed in simulation at some point
that the helicopter captures a helicoidal climb. At this stage,
the curvature is maximal and the torsion of the trajectory
measured in simulation is also saturated, therefore we have
κmax, τmax and θmax. Moreover, we are able to objectivize
the derivative of the curvature dκmax. Regarding these
considerations wa are able to suggest a relevant helicoidal
trajectory given the capabilities of the helicopter with τmax

and κmax. The parametric equations of a circular helix are:⎧⎨
⎩

x(t) = a cos(t)
y(t) = εa sin(t) with ε = ±1
z(t) = bt

Parameters a and b are derived from the radius of curvature
Rc = 1

κ = c2

a and the radius of torsion Rt = 1
τ = ε c

2

b .
However, what happens before the helix has to be computed
differently. At this stage, we can compute the final torsion as
follows:

τmax = tan(θmax)κmax

, where κmax is the maximum curvature and θmax is the final
angle of climb:

θmax = arctan(
Pz

R
) = arctan(Pzκmax)

, where P is the first point of the helix spiral as shown in
Fig. 11 and R = 1

κmax
is the radius of the cylinder (C ).

Therefore, observations show that the oblique trajectory is
composed of a helicoidal path preceded by a three-dimensional
spiral transition, which has to be computed taking into account
the curvature and climb angle at (P). Moreover, the curvature
and remaining climb angle distributions, during the 3D spiral
transition, respectively increase and decrease linearly as shown
in Fig. 9.

θ

κ3D Transition︸ ︷︷ ︸︷ ︸︸ ︷
Helicoidal path

Fig. 9 Diagram of curvature k and remaining climb angle θ distributions
for the three-dimensional spiral transition

We suggest a simple integration method for the 3D spiral
transition based on elementary helix spirals in the sense that
each elementary spirals would have:

• a constant elementary curvature κi

• a constant elementary climb angle θi
• a constant elementary torsion τi

as shown in Figs. 10 and 11. Moreover using a helix spiral
is the easier way to approximate a skew curve. Besides, the
elements are computed with the maximum derivative of the
curvature dκmax, hence sustaining the optimality of the length
s of the 3D spiral transition towards the helix. At the end of
every infinitesimal helix spiral, a new center of the helix is
computed as well as updated helix parameters ai and bi in
order to process the next spiral portion as shown in Fig. 10.
This process is repeated until the final curvature κmax, the
final climb angle θmax and therefore the final torsion τmax

are reached.

C1

C2

Spiral 1 Spiral 2

Fig. 10 Framework of the design of the 3D spiral transition as a series of
infinitesimal spirals (blue), top view

P

O

(C )

⎧⎨
⎩

κ0, θ0, τ0
a0, b0
x0, y0, z0

⎧⎨
⎩

κn, θn, τn
an, bn
xP , yP , zP

...

...

Fig. 11 Framework of the oblique trajectory with the three-dimensional
spiral transition (blue) connected to the helicoidal path (red) at point P
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Besides, by acting only on the distributions of the curvature
and climb angle along this spiral transition we have:{

κ(s) = αs
θ(s) = βs

(1)

where κ is the curvature and θ is the remaining climb angle.
They are both expressed as a function of s, the curvi linear
abscissa.

The torsion is defined as τ = κ tan(θ), using (1) we have:

⇔ τ = αs tan(βs)

⇒ dτ

ds
= α tan(βs) +

αβs

cos(βs)2

≈ αβs+ αβs
1

(1− (βs)2

2! )2

≈ αβs+ αβs
1

1 + 2−(βs)2

2!

≈ αβs+ αβs(1 + (βs)2)

Neglecting the higher terms,

dτ

ds
= 2αβs ⇒ τ(s) = αβs2 (2)

The torsion is parabolic along the 3D spiral transition with
κ and θ evolving linearly from initial conditions κ = 0 and
θ = 0 to κmax and θmax.

In the case when the 3D spiral transition is maintained
at maximum curvature κmax, i.e. the curve is evolving on
a cylinder with radius R = 1

κmax
, the previous discussion

becomes slightly different.{
κ = α
θ(s) = βs

(3)

τ(s) = κ
b

a

τ(s) = κ tan(βs) ≈ kβs

The torsion is linear.

Fig. 12 Change of torsion on a cylinder for the 3D spiral transition (red
curve) with curvature constant along the transition and equal to kmax

Finally, there is a third case to be considered, when the
3D spiral transition is maintained at constant climb angle and
varying curvature. Typically to make a transition from a helix
spiral at maximum curvature κmax to a straight line with zero
curvature κ = 0. {

κ = αs
θ(s) = β

(4)

τ(s) = κ
b

a

τ(s) = κs tan(β) ≈ kβs

The torsion is linear.
As a conclusion, the three-dimensional spiral transition

described in this section can take different shapes by only
acting on its initial and final inputs which are mainly the
curvature κ and the angle of climb θ.

• If θ = constant, then we obtain a three-dimensional Euler
spiral

• If (θ0, κ0) = (0, 0) and (θfinal, κfinal) = (θmax, κmax),
then we obtain the 3D spiral transition with a quadratic
torsion (2).

• If κ = constant and θ is linear as derived from (4) then we
can obtain a curve plotted on a cylinder surface, which
is very convenient for decreasing the torsion of a path
when the curvature must remain constant (Fig. 12).

IV. COMPUTING AN EFFICIENT THREE-DIMENSIONAL
TRAJECTORY BETWEEN TWO POSITIONS FOR A

HELICOPTER FLIGHT

Connecting two positions, with different orientations, in
the three-dimensional space is not an easy matter. Actually
finding an optimal path is quite challenging in the sense
that the classical three-dimensional (3D) mathematical curves
do not always fit the performances of the aircraft. In the
two-dimensional space, the optimal path between two vectors
is the C-L-C Dubins path. In 3D, this solution is not valid
any more but the idea of an optimal path based on the same
concept is not absurd providing that the straight line between
the connection points on the initial and final circles has an
additional varying vertical component. However, the continuity
of the curvature along this path (in a 3D or 2D configuration)
is not sustained and if the path had to be flown by a helicopter
with passengers on board, it would be very difficult to follow
it properly. This is why making smooth transitions based
on the helicopter’s actual performances between the motion
primitives composing the path is of major importance. This
section is addressing the design of a feasible 3D trajectory
between two possible flight headings, fitting the helicopter’s
flight model without exceeding the flight envelope. Besides
the design is based on a framework composed of a series
of 2D and 3D mathematical motion primitives developed in
the previous section. First of all, the trajectory is computed
for random directions contained in non parallel horizontal
planes. In a second step, the trajectory is adapted to form
a transition between two way points with their respective
headings between two different flight levels. Eventually, the
3D trajectory is compared to what we call a 3D Dubins-like
path for comparison.

A. Positioning of the Problem

There are two possible configurations when connecting two
vectors

−−→
AA′ and

−−→
BB′ in the three-dimensional space. Either

these two vectors are both contained in two parallel plane
surfaces, i.e. their vertical component is constant zA = zA′ ,
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zB = zB′ and zA = αzB , where α is constant, but not
necessary zA = zA′ = zB = zB′ because we want to join two
different heights in this study; or, they are randomly oriented,
i.e. zA �= zA′ and zB �= zB′ . In order to take the most general
case, we choose to mix these two configurations as shown in
Fig. 13 for the definition of the initial and final conditions of
the problem in Fig. 14. Thus zA �= zA′ and zB = zB′ .

(C1)

(C2)

−−→
AA′

−−→
BB′

Fig. 13 Three-dimensional view of the problem

The initial conditions (I.C.) are reported in A and the final
conditions (F.C.) are reported in B (Fig. 14). C1 and C2 are
the centers of cylinders (C1) and (C2). The design of the
3D trajectory is based on the idea of the two-dimensional
Dubins path. However, we are reasoning on three-dimensional
geometric objects instead. We note that the 3D trajectory,
will include a change of direction (curvature going from
k(t = 0) = kmax to k(t = tf ) = −kmax) in order to
fit the final condition requirements. Hence, two concerns are
addressed here:

• The first concern is finding a way to connect cylinder
(C1) to cylinder (C2) taking into account the curvature
constraints.

• The second concern is making the path between the
cylinders coincide vertically.

In Fig. 14,
−−−→
P1P2 is the vector between points P1 on (C1)

and P2 on (C2).
−−−→
P1P2 is tangent to both cylinders. In a

two-dimensional Dubins path planning, the line directed by
vector

−−−→
P1P2 would be one way of connecting circle arcs

between A and P1 and between P2 and B. Since we are in
3D, and in a concern of designing the shortest 3D trajectory
between A and B we have helix spirals, combining both a
climb and a turn, instead of circle arcs between points A and
P1 and between P2 and B.

However, as the 3D trajectory would obviously need a
change of direction at some point because the curvature at I.C.
is the opposite of the curvature at F.C., the three-dimensional
spiral transitions developed in section III-C will be used to
ensure the sustainability of the curvature along the 3D path.
It is assumed that the transitions have a fixed length every
time they are used so the design of the final trajectory can be
focused on finding the shortest length for the other 3D motion
primitives. The 3D spiral transition is used with the purpose
of making the link between the motion primitives, without
exceeding its own capacities (derivative of the curvature dk
and maximum climb angle θ).

I.C.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(xA, yA, zA)
xA(t), yA(t), zA(t)
zA �= zA′

ẋA(t), ẏA(t), żA(t)
k(t = 0) = kmax

τ(t = 0) = τmax

φ1 = 0
θ1 = 0

F.C.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(xB , yB , zB)
xB(t), yB(t), zB(t)
zB = zB′

ẋB(t), ẏB(t), żB(t)
k(t = tf ) = −kmax

τ(t = tf ) = τ0 = 0
φ2 �= 0
θ2 �= 0

C1

−−→
AA′

−−−→
P1P2

(C1)

C2

−−→
BB′ (C2)

Fig. 14 Two dimensional top view of the problem

B. Finding the Plane Containing the Straight Line between
S2 and S3 with the Dubins Gliding Symmetry Conjecture

The Dubins gliding symmetry conjecture is applicable for a
Dubins CLC path type when the initial and final positions have
opposite curvature values. The conjecture relies on computing
a point M , which stands for the middle of the [P1, P2]
segment, where P1 and P2 are respectively the tangent points
of line (P1P2) to circles (C1) and (C2) as shown in Fig. 15.
For the purpose of this study and in a concern of symmetry
compliance, it is assumed that the 3D spiral transition size is
constant along the 3D trajectory and computed with saturated
constraints in curvature and torsion until (C2) is reached.

The Dubins gliding symmetry conjecture is used in Fig. 14
to find a matching direction between the cylinders. The plane
containing the vector

−−−→
P1P2 is tangent to (C1) and (C2) and

could contain a straight line going from the initial cylinder
to the final one. However, instead of having a plane making
a direct link between (C1) and (C2) we need to find here
a plane containing the final direction of Transtion1 and the
initial direction of Transition2 (Fig. 17). To put in a nutshell,
we have two 3D spiral transitions, one going up from (C1) and
another going down from (C2), and they need to be aligned so
their final points could be connected by a straight line in order
to establish a link between (C1) and (C2). Since the spiral
transitions have the same lengths, this problem is reduced to
finding the size of the initial helix spiral on (C1), which is
equivalent to finding S1 (Fig. 17) when the final direction
vector of Transition1,

−→
dT1

and the final transition vector of
Transition2,

−→
dT2

are colinear (Fig. 15):

Let
−→
dT1 be defined as

−→
dT1

{
dT1,i

dT1,j

, and
−→
dT1 be defined

as
−→
dT2

{
dT2,i

dT2,j

,
−→
dT1

and
−→
dT2

colinear ⇔ dT1,j
dT2,i

=

dT2,i
dT1,j

.
Since the climb angle is already given by the climb rate
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of the spiral transition from (C1), there is no need to take
into account the vertical component of

−→
dT1 and

−→
dT2 . However,

we do not know from what point the 3D spiral is computed
on (C2). The Dubins gliding symmetry conjecture solves
this problem by taking into consideration a symmetrical
construction of the path between the cylinders by giving a
special importance to the middle point M (Fig. 15). Therefore,
the algorithm for finding a common direction to

−→
dT1

and
−→
dT2

is simple. The principle is finding a final vector
−→
dT1

colinear to−−−→
P ′M and increase S1 until this condition. A result is presented
in Fig. 16.

⇔ dT1,i
y−−−→
P ′M

− dT1,j
x−−−→
P ′M

= 0

C1

(P)

P1

P2

A (C1)

C2B A′′
(C2)

P ′

−→
dT1 −→

dT1

−→
dT2

M

Fig. 15 Finding plane (P), the link between (C1) and (C2) with
AP1 < BP2 - top view

Fig. 16 Cylinder (C1) with the helix spiral and the 3D transition spiral
connecting M

The second concern is to make both direction vectors
−→
dT1

and
−→
dT2

coincide vertically. This is ensured by the climb rate
at the end of Transition1. By point reflection through M and
keeping the same climb coefficient we have the altitude of A′′

on (C2).
The final distribution of the curvature along the 3D

trajectory designed with the Dubins gliding symmetry
conjecture is given by Fig. 17. S1 is obtained by a scan
between A and P1 on (C1). When S1 is reached (Fig. 16)
the curvature decreases to zero until S2 in order to meet the
common plane going through M (Fig. 15). By symmetry, the
path from M to A′′ on (C2) is completed until S4 and the

kmax

−kmax

S1 S2︷ ︸︸ ︷
Transition1

S3 S4

Transition2︸ ︷︷ ︸
Stot

Fig. 17 Framework of the curvature along the three-dimensional trajectory
between A and B given by the thick black polygonal chain

final condition on the curvature as specified initially (Fig. 14)
is achieved.

Once (C2) is reached with a given climb angle, it may
happen that this climb angle is too big to achieve the F.C.
at B, and exceeds the final altitude. Thus, the torsion of the
3D helix spiral on (C2) must be reduced and the remaining
series of motion primitives contained between S4 and Stot

should have their torsion and hence their length adapted to
satisfy the final requirements.

C. Finding the Final Torsion Distribution on (C2)

Now that the cylinders are connected by a feasible path, the
last concern consists into finding the final torsion distribution
on (C2). Indeed, from the beginning we are looking for the
most efficient path between the initial point A and final point
B. This conveys the idea of a maximum climb rate feasible by
the aircraft from the initial state. However, if this climb rate
is maintained, the trajectory might go too far and never reach
B. This is why finding an adapted torsion distribution on (C2)
ensures a smooth path from A′′ to B (cf Fig. 15). The path
arrives with maximum torsion at A′′ and needs to reach B
with zero torsion according to I.C. and F.C. in Fig. 14. Thus,
we need at least two 3D spiral transitions and one helix spiral
to reach the point B. The first 3D spiral transition would make
the path go from τmax to τnew(C2) (the new torsion), keeping
the curvature κmax. The last one would connect the end of the
helix spiral at τnew(C2) to point B making the torsion decrease
to zero and still with κmax everywhere. Hence the remaining
angle to reach from A′′ to B is defined as:

θremaining = Δθ1 +Δθ2 +Δθ3

where Δθ1 = θr − θmax is the angle difference for the first
spiral transition on (C2) ; Δθ2 = 0−θr is the angle difference
for the second spiral transition (final transition to arrive at
point B with zero torsion) and Δθ3 is the angle difference for
the helix spiral between Transition 2 and Transition 3.

Finding the final torsion to get a smooth path from A′′

to B results into finding θr, which stands for the optimal
climb angle given that the torsion should remain lower than the
maximum torsion on (C2). Hence τnew(C2) = kmax tan(θr)
(Algorithm 1).

D. Connecting Two Different Flight Levels with a
Three-Dimensional Trajectory

The previous discussion has addressed the design of a
three-dimensional trajectory based on a series of motion
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primitives. The purpose was to connect two vectors whose
directions were chosen randomly in order to have the most
general configuration to deal with. However, in most cases,
the helicopter would have to fly from a flight level to another,
i.e. from a horizontal plane with a given altitude to another
horizontal plane with higher or lower altitude. This means
that the helicopter would need a three-dimensional trajectory
connecting two vectors contained in parallel planes.The only
difference with the previous problem described in IV-A is that
the initial vector

−−→
AA′ (Fig. 14) is contained in a plane surface

and therefore the three-dimensional trajectory is composed of
an additional 3D spiral transition going from zero curvature
κ0 = 0 and zero torsion τ0 = 0 to point A with κmax and
τmax. Therefore, the method to compute the 3D trajectory is
identical and the Dubins gliding symmetry conjecture starts at
point A, where the curvature is κmax and the torsion is τmax.

The algorithm 1 sums up the method used to compute the
three-dimensional trajectory between A and B. Lh1 and Lh2

are respectively the lengths of the first helix spiral on the
cylinder (C1) and the second helix spiral on the cylinder (C2).
θremaining is the angle between points A′′ and B.

Algorithm 1 3D trajectory from A to B

1) COMPUTE Dubins circles and cylinders

2) FIND Tangent plane (P) with the Dubins gliding
symmetry conjecture
Compute M = middle of [P1, P2]
INITIALIZE Lh1 = 0

if
−−−→
P ′M and

−→
dT1

not colinear then
Increment Lh1

end if
return Tangent plane (P) and Trajectory Trj to M

3) Point reflection / M of Trj taking into account the climb
angle in order to get to (C2)

4) Adapt torsion on (C2) in order to reach B
COMPUTE θremaining

COMPUTE θmax

for θr = θremaining/3, ..., θmax do
COMPUTE 3D spiral transition from τmax to τr
Compute Lh2

Compute helix spiral for Lh2

COMPUTE 3D spiral transition Tτr→τfinal
from τr to

τfinal = 0
if final point of Tτr→τfinal

= B then
Break

end if
end for
return θr

There are two problems to take into account: a
two-dimensional problem where it is important to find the
right direction to connect points A and B as a top view;
and a three-dimensional problem where the vertical directions
have to match too. Computing the Dubins circles permits to

find the shortest path to connect two oriented points in the
two-dimensional space. Therefore, it gives a frame for the
design of the 3D trajectory between A and B using the Dubins
gliding symmetry conjecture. Eventually, the 3D trajectory
is connected to the final point B by adapting the torsion
distribution on cylinder (C2). Indeed, in an attempt of having
an efficient 3D trajectory we keep the constraints of curvature,
torsion and climb angle saturated until (C2) is reached. In this
paper, it is assumed that the altitude of point B is not exceeded
when (C2) is reached. However, the climb rate should be
adapted thereafter by computing a new climb rate θr which
takes into account both, the final condition in B where θ = 0,
and the variation of θ due to the transitions and the helix
spiral used to make the link. This last problem is decomposed
in three parts:

• go from θmax to θr
• keep the climb rate θr constant on the helix spiral
• go from θr to θ = 0 in order to satisfy the final condition

and therefore reach a horizontal plane in B

E. Comparison with the ”3D Dubins Path”

In an attempt of trying to compute an efficient 3D trajectory
the results have been compared to a 3D Dubins-like path
computed for a constant climb rate from A to B. Just
as the path computed using the Dubins gliding symmetry
conjecture, it is composed of two helix spirals connected
by a straight line between the points P1 and P2 (Fig. 15).
This path is not constant in curvature and absolutely not
feasible by a helicopter. However, it is the shortest Dubins-like
3D path we could obtain for comparison with the Dubins
gliding symmetry conjecture results. Using the Dubins gliding
symmetry conjecture we have the length d. We decide to
withdraw the length of the straight line SL for comparison
which gives the following ratio

D − SL

d− SL
= 0.9955

which makes the actual 3D path very close in terms of length
to the shortest 3D path we could obtain here. A result is
displayed in Fig. 18.

Fig. 18 3D Trajectory computed in red with the Dubins gliding symmetry
conjecture compliant in curvature and torsion and the ”Dubins-like 3D

trajectory” in blue, not feasible by a helicopter

V. CONCLUSION AND FURTHER WORKS

This article addressed the complex problem of 3D minimum
length paths for a helicopter between two arbitrary oriented
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space positions. Regarding flight manoeuvres performed by
test pilots recorded during simulation sessions, we identified
a set of motion primitives necessary and sufficient to build up
3D shortest paths compliant with helicopters flight operational
constraints. Different skew curves have been identified and
modelled thanks to Airbus Helicopters flight simulation
data observations like: circular spiral arc, 3D Euler spiral,
spiral with quadratic torsion, curve plotted on cylinder with
linear climb angle and linear curvature. On top of those
motion primitives, we added classical primitives used in
aerial robotics problems: clothoids (in horizontal and vertical
plans), circular arcs, straight segments. Objectivizing on the
basis of simulation data (approximated by Beziers curves),
the limits of: curvature, derivative of the curvature, climb
angle, derivative of the climb angle and finally torsion,
we approached very closely the helicopter’s behavior in a
kinematics way. To solve the complex problem of finding
3D path of minimal length for two arbitrary oriented spec
positions under helicopters flight mechanics constraints, we
built a new kind of algorithm. This algorithm integrates the
innovative concept that we introduce as the ’Dubins gliding
symmetry conjecture’. This principle allows the optimal and
formal determination of a vertical plane that two 3D transitions
shall meet to further grab two distant spiral arcs. The exact
tangents points (positions and climb angles) in the vertical
plane are also determined using this principle. The introduced
principle allows minimization of the 3D path as it is shown
by the calculation of a 3D minimal length with discontinuity
on curvature and torsion. On top of that, the algorithm is of
real interest in the way it manages very simply the choice, the
calculation and the distribution of the motion primitives. The
low complexity of the algorithms makes very optimistic its use
for massive parallel generation of combined primitives in the
perspective of an upper system using this trajectory generation
module and requiring real time performances. To improve the
algorithm, a human dimension could be taken into account.
Indeed, if the generated trajectories are feasible according to
the helicopters flight mechanics constraints, it has still to be
proven that in certain cases the pilot would effectively chose
it. In order to validate this work, a simulation campaign with
flight tests pilots in the loop should be organized, and the
algorithm will be adapted accordingly to the pilot’s behaviors
facing complex flight situations.
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