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Abstract—Visual Simultaneous Localization and Mapping
(VSLAM) is a technology that gathers information about the
surrounding environment to ascertain its own position and create
a map. It is widely used in computer vision, robotics, and various
other fields. Many visual SLAM systems, such as OBSLAM3,
utilize a constant velocity motion model. The utilization of this
model facilitates the determination of the initial pose of the current
frame, thereby enhancing the efficiency and precision of feature
matching. However, it is often difficult to satisfy the constant
velocity motion model in actual situations. This can result in a
significant deviation between the obtained initial pose and the true
value, leading to errors in nonlinear optimization results. Therefore,
this paper proposes a motion model based on acceleration that can
be applied to most SLAM systems. To provide a more accurate
description of the camera pose acceleration, we separate the pose
transformation matrix into its rotation matrix and translation vector
components. The rotation matrix is now represented by a rotation
vector. We assume that, over a short period, the changes in rotating
angular velocity and translation vector remain constant. Based on
this assumption, the initial pose of the current frame is estimated.
In addition, the error of the constant velocity model is analyzed
theoretically. Finally, we apply our proposed approach to the
ORBSLAM3 system and evaluate two sets of sequences from the
TUM datasets. The results show that our proposed method has a
more accurate initial pose estimation, resulting in an improvement
of 6.61% and 6.46% in the accuracy of the ORBSLAM3 system on
the two test sequences, respectively.

Keywords—Error estimation, constant acceleration motion model,
pose estimation, visual SLAM.

I. INTRODUCTION

IN the fields of computer vision, robotics, and autonomous

driving, Simultaneous Localization and Mapping (SLAM)

plays a crucial role. The underlying principle is that the

utilization of a robot as a representation allows for the

integration of a sensor within the robot, enabling it to gather

environmental data. This, in turn, empowers the robot to

perform tasks such as positioning and mapping. VSLAM

is a technique that utilizes a camera as a sensor, which is

a commonly employed sensor capable of capturing a vast

amount of image data. At present, there are many mature

types of research on VSLAM, and its basic framework

mainly includes front end, back end, mapping, and loop

detection [1]. The front end is also known as the visual

odometer, whose main function is to obtain preliminary

self-pose information and environmental map information by

analyzing and calculating the input image data. The back end

receives camera poses from visual odometer measurements at

different times and optimizes them to get globally consistent
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trajectories and maps. Mapping involves the creation of an

environment map. The purpose of loop detection is to mitigate

the impact of accumulated errors. VSLAM can be classified

into two primary methods: the feature point method and the

direct method, which differ in their employed approaches.

Among the various technologies, VSLAM based on the

feature point method involves the extraction of key points

from images and establishing matching relationships between

points from different frames. This enables the calculation

of the camera’s motion position. This particular approach

has undergone thorough investigation, with ORBSLAM3

[2] being recognized as one of the most efficient features

of point-based visual SLAM systems currently available.

The main components of this system consist of three

interconnected threads, namely image tracking, local mapping,

and closed-loop detection. The image tracking part is the main

thread of the system. Due to the intricate nature of extracting

and matching feature points, ORBSLAM3 utilizes a constant

velocity motion model [3], a widely adopted approach in

numerous visual SLAM systems, to enhance the efficiency

of tracking and matching between successive frames. The

constant velocity motion model makes an estimation of the

initial pose value of the current frame by assuming that the

pose undergoes the same change between adjacent frames.

This assumption can be met when the frame rate of the

image sequence is high or when the motion speed is slow.

The complexity of the camera’s actual motion state can be

significant. For instance, the camera has the potential to

undergo rapid acceleration or deceleration within a brief time

frame. In this particular scenario, meeting the assumptions of

the constant speed motion model proves challenging, thereby

frequently resulting in the failure to accurately track the object.

Therefore, we propose a model of motion with constant

acceleration to address this issue. When the camera undergoes

rapid acceleration or deceleration, it can be assumed that the

acceleration of the camera movement remains constant over

a short period of time. In such cases, the initial pose can

be determined by analyzing the acceleration. The primary

contributions of this paper are outlined as follows.

• We provide a theoretical analysis of the pose estimation

error for the constant velocity motion model.

• We propose a constant acceleration motion model that

can be effectively employed in most SLAM systems.

We make the assumption that the acceleration between

adjacent frames remains constant within a brief time

period. The pose transformation matrix is decoupled, and

the initial values of the rotation matrix and translation

vector are estimated separately. The computational

complexity can be reduced by converting the estimation

of the rotation data matrix to that of the rotation vector.
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• We employ the constant acceleration motion model

to analyze the performance of ORBSLAM3 on TUM

datasets. The obtained outcome exhibited superior

performance compared to the constant speed model of

ORBSLAM3.

II. RELATED WORK

Visual SLAM has a rich historical background and has

evolved into a sophisticated and well-established system.

Davison et al. introduced MonoSLAM [4], the first monocular

VSLAM approach. They adopted monocular camera as the

sole source of data for their system and proposed a 3D

map that relied on probabilistic features. The state variable

consisted of the camera’s attitude and the three-dimensional

coordinates of the map points. Assuming that the state vector

followed a multi-dimensional Gaussian distribution, the map

data were updated with the Extended Kalman Filter (EKF) [5]

as the camera’s attitude changed. There algorithm lacks the

capability to perform large-scale map construction and there

is no loop detection, back-end optimization, and other modules

in the system.

Klein et al. introduced PTAM (Parallel Tracking and

Mapping) [6], which represents the pioneering VSLAM

system. Notably, PTAM is distinguished by its ability to

autonomously execute the tracking and mapping processes

concurrently, utilizing two parallel threads. Besides, they

incorporated the concept of key frame into the algorithm and

employed it to depict the camera pose in the map. FAST

corner points [7] were employed to establish data association

between two consecutive key frames based on the analysis of

reprojection errors. The author incorporated the BA (Bundle

Adjustment) optimization method [8] in updating the local

map and global map. Subsequent research largely adhered to

this framework.

Klein et al. introduced ORB-SLAM [9], a monocular

real-time SLAM system that utilizes ORB feature matching.

This system represents a significant advancement in the

field of sparse VSLAM. The system is very perfect and

can be applied to a variety of scenarios. The proposed

method exhibits a high level of robustness when dealing with

moving clutter. Additionally, it has the functions of tracking,

mapping, relocation and loop detection. It uses three threads

symbolically, which are the feature point tracking thread, the

local reprojection error optimization thread, and the global

optimization thread based on the pose map. The process of

selecting rebuild points and key frames was found to be

robust, enabling the generation of incremental maps. This

advancement played a significant role in establishing feature

point-based SLAM as the prevailing approach during that

period.

ORB-SLAM2 [10], which is a derivative of ORB-SLAM,

has been developed to support real-time camera tracking

using monocular, stereo, and RGB-D cameras on the CPU.

ORB-SLAM2 incorporates a comprehensive approach by

integrating monocular, stereoscopic, and RGB-D methods. It

also achieves global optimization and closed-loop detection

technology. However, in the event that the system fails to

identify frames with high similarity, it can lead to tracking

failures and subsequent loss of state.

The Dense Tracking and Mapping (DTAM) system [11]

described herein represents the pioneering implementation

of the direct method and is capable of building dense

maps for every frame of images. The algorithm yields

a precise and comprehensive reconstruction, however, the

level of density reconstruction significantly impacts the

computational expenses associated with data storage and

processing. Therefore, in order to achieve real-time operation,

the algorithm needs to be on the GPU to realize real-time

calculation. Then, Kinect Fusion system [12] based on RGB-D

camera is proposed. The truncated signed distance function

(TSDF) algorithm is used to represent pixel grid, and iterative

closest point (ICP) is adopted. The algorithm is the first to

operate in real time based on RGB-D sensors. The algorithm

consists of four primary steps, namely measurement, pose

estimation, reconstruction update, and surface prediction. The

system exhibits a defect of cumulative drift error due to the

absence of loop detection. The Semi-Direct Visual Odometry

(SVO) [13] algorithm proposed by Forster et al. combines the

advantages of feature-based and direct methods. The algorithm

is partitioned into two threads: motion estimation and graph

building. The approach employed in this study involves the

utilization of direct techniques for tracking and triangulating

pixels with a significant image gradient. However, it also

relies on joint optimization that is based on feature methods.

The semi-direct VO and robust probability depth estimation

algorithm can effectively track the corners and edges of pixels.

The algorithm can be easily extended to encompass multiple

camera tracking, incorporating motion priors. Furthermore, it

can be effectively utilized with cameras that possess a wide

field of view, such as fisheye and inverse refraction cameras.

The advantages of SVO over other VSLAMs are speed

and low computational requirements. But without back-end

optimization and loopback detection, it is not a complete

SLAM system. In 2018, Loo et al. proposed to use neural

network to predict the SVO version of monocular image depth

[14], which could predict the prediction results of network

depth according to the depth of single image, and improve

SVO mapping by initializing the mean and variance of depth

at feature points.

In 2020, Campos et al. proposed ORB-SLAM3 [2], which

was based on ORBSLAM2 [10]. The previous VSLAM

schemes were all tightly coupled with the camera model. In

this paper, they decoupled the camera model from the VSLAM

system, greatly improving the system’s suitability to other

camera models. This study presents the fisheye lens model and

pinhole camera model. Another contribution of the authors is

the addition of an inertial sensor (IMUs) to a visual inertial

tightly coupled system that relies on a maximum a posteriori

probability estimate, which greatly improves the robustness

of the system in case of short-term tracking failure. The

system implementation also introduced the concept of atlas

[15] to realize short, medium and long term data association.

ORB-SLAM3 is regarded as one of the most proficient visual

SLAM systems currently accessible.

VSLAM systems represented by ORB-SLAM3 [2] adopt a
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constant velocity motion model for tracking image frames.

This model assumes that the pose change between two

adjacent frames remains constant, and calculates the initial

pose of the current frame based on this assumption. There

are also SVO [13] and LSD-SLAM [16] that directly make

the pose of the camera at the current moment equal to that

of the previous moment. However, achieving this requirement

is often challenging in real-world scenarios. To address this

issue, the present paper introduces a motion model.

III. PROPOSED METHOD

This section provides a comprehensive explanation of our

proposed method. Firstly, this paper presents the tracking

thread process of the ORBSLAM3 system. Subsequently, an

analysis of the motion model is conducted to determine the

initial value error of the pose. Finally, a detailed explanation

of our proposed motion model is provided.

A. Tracking Process

The tracking thread mainly includes the preprocessing of

input image data, map initialization, tracking module, local

map tracking, and key frame determination. The preprocessing

part of data is mainly the extraction of ORB feature points.

The map initialization module determines the world coordinate

system and the initial map points. The tracking module

encompasses various tracking techniques, such as motion

model tracking, reference key frame tracking, and relocation

tracking. The local map tracking module constructs local key

frames and optimizes the pose again by using local map points

observed in local key frames. Then we select the key frame

to enter the local drawing thread. In most cases, the tracking

module uses the constant speed motion model to track ordinary

frames. When the motion model fails, the tracking is carried

out through the reference key frame. If neither of these two

ways is successful, the map can only be relocated. Given

the real-time constraints of the visual SLAM system, it is

imperative to develop an appropriate motion model that can

enhance the efficiency of feature point matching.

If a motion model is adopted for tracking, we first need to

obtain the initial pose of the current frame according to the

motion model, and then use the initial pose to project the map

point of the previous frame into the pixel coordinate system

of the current frame. Descriptors are then matched within the

specified search radius of the projection point. So we have a

set of 3D-2D matching points. The matching relationship is

utilized to establish BA optimization for solving the pose of

the current frame.

B. Constant Acceleration Motion Model

Given that the camera’s movement in a real-world

environment often involves variable speeds, relying on a

constant speed model to estimate the initial pose of the current

frame can result in tracking failure. However, it is possible

to make an additional assumption, namely, that the rate of

change in camera motion, referred to as ”acceleration,” will

remain relatively stable over a brief period of time. In order to

wO

0I
1I

2I

3I

0wT

0wT

2wT

*
3wT

10T

21T

*
32T

Fig. 1 Constant acceleration motion model

enhance the representation of acceleration in this context, we

implemented a decoupling approach for estimating the pose

transformation matrix. Specifically, we separately estimated

the rotation matrix and displacement vector. Therefore, our

method primarily relies on two assumptions.

• During the process of estimating the rotation matrix, it is

observed that the rotation axis and angular acceleration of

camera rotation remain constant over a brief time interval.

• The translation vector remains constant over a brief

temporal interval.

As shown in Fig. 1, Ii, (i = 0, 1, 2, 3) respectively

represents the i frame image, corresponding to the time of

τi, where τ3 is the time of the current frame, that is, I3 is the

current frame, and the corresponding pose of each frame is

Tiw. It represents the transformation matrix from the world

coordinate system to the current frame coordinate system.

T ∗
3w is the pose of the current frame to be calculated. The

matrix Tij(i, j = 0, 1, 2, 3) denotes the pose transformation

matrix that maps coordinates from frame j to frame i. Rij

represents the rotation matrix from frame j to frame i, and tij
represents the translation vector from frame j to frame i. For

the transformation matrix, the following equation holds:

Tiw =

[
Riw tiw
0ᵀ 1

]
(1)

In (1), Riw represents the rotation matrix from the world

coordinate system to the coordinate system where frame i

is located, and tiw represents the translation vector from

the world coordinate system to the current frame coordinate

system.

For a rotation described by the rotation matrix R, it is

possible to represent it using the rotation vector θn, where θ
represents the rotation angle and n represents the rotation axis.

The relationship between the rotation matrix and the rotation

vector can be derived using Rodrigues’s Formula as follows:

R = I + (1− cos θ)(n∧)2 + sin θn∧ (2)

Wwhere, n∧ represents the antisymmetric matrix of the vector

n.
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Therefore, the utilization of a rotation vector is preferred

over a rotation matrix. At this juncture, we possess the pose

transformation from frame Ij to frame Ii, along with the

associated rotation angle θij , rotation axis nij , and translation

vector tij . It is worth mentioning that the following formulas

about vector addition and subtraction are carried out in the

same coordinate system.

δθ = θ21 − θ10 (3)

δt = t21 − t10 (4)

According to the assumptions of the constant acceleration

model, let T21 to T ∗
32 represent the change in rotation angle

δθ∗, and let δt∗ represent the change in the translation vector.

δt∗ = δt, δθ∗ = δθ (5)

Therefore, the rotation vector and translation vector

corresponding to T ∗
32 can be expressed as:

θ32 = θ21 + δθ∗ (6)

t∗32 = t21 + δt∗ (7)

According to the assumption made in the constant

acceleration model that the rotation axis remains constant over

a short period of time, the following can be observed:

n∗
32 = n21 (8)

Finally, the transform matrix can be recovered from the

estimation of the rotation vector and the translation vector,

which is:

T ∗
32 =

[
R∗

32 t∗32
0ᵀ 1

]
(9)

where R∗
32 is calculated by Rodriguez formula (2).

C. Error Estimation

1) Reprojection Search and Matching: In tracking by

motion model, it mainly uses the initial pose of the current

frame obtained by the motion model for reprojection search

and matching. As shown in Fig. 2, the 3D map points that

correspond to the feature points of the previous frame are

projected onto the current frame. The descriptors are then

calculated in the vicinity of the projection points to establish

a 3D-2D matching relationship. This relationship is utilized to

solve the pose of the current frame through BA optimization.

Now we suppose in continuous three moment τ1, τ2, τ3, the

corresponding image frame is I1, I2, I3, the corresponding

position is T1, T2, T3. By assumptions in the first I2 frame

with image feature points in the pi, its corresponding map

point is piw, the reprojection of map point to the I3 frame of

image point is p̂i, p̂i = π(T0P
i
w), where π(·) is the projection

equation of the camera, and the actual observation point of

this map point in frame I3 is pj . Now we suppose that I1
frame to I2 frame transformation matrix is T21, I2 to I3 frame

transformation matrix is T32, so the formation type:

T2w = T21T1w

T3w = T32T2w

(10)

When the camera moves at a constant velocity, the equality

T32 = T21 holds. The Euclidean distance between the

actual observation point pj and the reprojection point p̂i is

typically constrained within a specific range. This range can be

represented as a circle with a radius r, such that ‖pj−p̂i‖2 � r.

However, when the camera moves in variable speed, the

Euclidean distance between the actual observation point and

the reprojection point may be greater than r, so the algorithm

cannot search for the best actual observation point around the

reprojection point, which will lead to mismatching.

1I
2I

wo

r

1wT
2wT

3wT

i
wP

2

i
Ip

ˆ ip

jp

3I

Fig. 2 Reprojection search and matching

2) Error estimation: In this section, the theoretical analysis

of the tracking motion model error will be conducted.

According to the pinhole model of the camera, the coordinates

of the actual observation point pj and the reprojection point

p̂i can be derived using the following procedure:

p̂i = s−1KT21T2wP
i
w

pj = s−1KT32T2wP
i
w

(11)

where, s represents the depth value of the points, and K is

the internal parameter of the camera.

‖pj − p̂i‖2 � ‖s−1KT32T2wP
i
w − s−1KT21T2wP

i
w‖2 (12)

Since the 2-norm of the matrix is compatible with the 2-norm

of the vector, (12) can be expressed as:

‖pj − p̂i‖2 � s−1‖K‖m2
· ‖T32 − T21‖m2

· ‖T2wP
i
w‖2 (13)

let c = s−1‖K‖m2
‖T2wP

i
w‖2, c is constant.

‖pj − p̂i‖2 � c · ‖T32 − T21‖m2 (14)

Then,

‖T32 − T21‖m2 =tr((T32 − T21)
ᵀ(T32 − T21))

=tr(T ᵀ
32T32)− tr(T ᵀ

32T21)

− tr(T ᵀ
21T32) + tr(T ᵀ

21T21)

(15)

where tr(·) represents the trace of matrix.

From (9), we can obtain the rotation matrix R32 and the

translation vector t32 corresponding to T32, R21 and t21
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corresponding to T21. In addition, since the rotation matrix

is orthogonal, tr(R32)
ᵀR32 = tr(R21)

ᵀR21 = 3. Therefore,

let a = t32 − t21, (15) can be expressed as:

‖T32 − T21‖m2 =tr(Rᵀ
32R32) + tᵀ32t32 − 2tr(Rᵀ

32R21)

− 2tᵀ32t21 + tr(Rᵀ
21R21) + tᵀ21t21

=6 + aᵀa− 2tr(Rᵀ
32R21)

(16)

Equation (2) shows that R32 can be represented by a rotation

vector θ32n32, R21 can be represented by a rotation vector

θ21n21. Therefore,

Rᵀ
32R21 = (cos θ32I+ (1− cos θ32)n32n

ᵀ
32 + sin θ32n

∧
32)·

(cos θ21I+ (1− cos θ21)n21n
ᵀ
21 + sin θ21n

∧
21)

(17)

To simplify (17), we get:

tr(Rᵀ
32R21) = 1 + 2 cos(θ32 − θ21) (18)

Combine (18) and (16), we have:

‖T01 − T12‖m2 = 6 + aᵀa− 2(1 + 2 cos(θ32 − θ21))

= 4− 4 cos(θ32 − θ21) + aᵀa
(19)

Finally, we can obtain the Euclidean distance between the

actual observation point and the reprojection point in the image

coordinate system:

‖pj − p̂i‖2 � c(4− 4 cos δθ + aᵀa) (20)

where δθ = θ32 − θ21.

It is not difficult to see from (20) that the accuracy of the

transformation matrix from the previous frame to the current

frame affects the distance between the actual point and the

projected point. Therefore, if we regard the camera motion

process as uniform motion, the accuracy of tracking will be

affected. And we know that uniform motion can also be viewed

as accelerating motion with zero acceleration. In this section,

the theoretical analysis of the error associated with tracking

using a constant velocity model is presented. From the results,

it can be seen that the error is related to the change of rotation

angle and the change of translation vector.

IV. EXPERIMENTAL RESULTS

In this section, we have implemented our proposed constant

acceleration model to the ORBSLAM3 system and conducted

an evaluation of our approach using the TUM datasets. The

proposed method was compared with the ORBSLAM3 system

using the constant speed model. In addition, the evo evaluation

tool [17] was used to calculate the absolute and relative

trajectory errors. The findings indicate that the accuracy of the

ORBSLAM3 system is enhanced by our proposed method. All

experiments were performed on a PC with an Intel i5-1035G1

CPU and 16GB RAM.

A. TUM Datasets

The TUM datasets [18] consist of 39 sequences

recorded in different indoor scenarios using Microsoft

Kinect sensor. The dataset comprises various sets of

data for distinct tasks, each encompassing multiple data

points. These datasets can be utilized to evaluate the

performance of multiple tasks. In this paper, freiburg2 desk
sequence and freiburg2 large with loopsequence are

selected for testing. The average angular velocity and

displacement velocity of freiburg2 desk sequence cameras

are 6.338deg/s, 0.193m/s, and the total duration is

99.36s. The average angular velocity of camera rotation in

freiburg2 large with loop sequence is 17.211deg/s, the

average displacement velocity is 0.231m/s, and the total

duration is 173.19s. Since the motion of this sequence is

fast and the running time is long enough, the effect of the

constant acceleration motion model on the system can be fully

evaluated.

(a) overall trajectory comparison (b) corner trajectory comparison

Fig. 3 Comparison of initial pose results between our method and the
original method on freiburg2 desk sequence

(a) deviation from reference on axis xyz of the world coordinate

(b) deviation from reference in rotation angle of pose

Fig. 4 The deviation of the initial pose of the constant acceleration model
and constant velocity model compared with the reference on

freiburg2 desk sequence
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TABLE I
COMPARISON OF TRACK ACCURACY ON freiburg2 desk SEQUENCE

Original method proposed method improvement
ATE(m) RPE(m) ATE(m) RPE(m) ATE(%) RPE(%)

max 0.041667 0.031183 0.0354820.0354820.035482 0.0261090.0261090.026109 14.8414.8414.84 16.2716.2716.27
mean 0.019566 0.002914 0.0180480.0180480.018048 0.0027750.0027750.002775 7.767.767.76 4.774.774.77

median 0.019975 0.002543 0.0175850.0175850.017585 0.0024580.0024580.002458 11.9611.9611.96 3.343.343.34
min 0.003574 0.0001510.0001510.000151 0.0016190.0016190.001619 0.000250 54.754.754.7 -
rmse 0.020342 0.003488 0.0189970.0189970.018997 0.0032110.0032110.003211 6.616.616.61 7.947.947.94
sse 0.899571 0.026443 0.7845610.7845610.784561 0.0224040.0224040.022404 12.7812.7812.78 15.2715.2715.27
std 0.0055660.0055660.005566 0.001917 0.005928 0.0016160.0016160.001616 - 15.7015.7015.70

TABLE II
COMPARISON OF TRACK ACCURACY ON freiburg2 large with loop SEQUENCE

original method proposed method improvement
ATE(m) RPE(m) ATE(m) RPE(m) ATE(%) RPE(%)

max 0.356589 0.6131805 0.3211180.3211180.321118 0.5092530.5092530.509253 9.959.959.95 16.9516.9516.95
mean 0.132854 0.018648 0.1301150.1301150.130115 0.018656 2.062.062.06 -

median 0.138500 0.013229 0.1343090.1343090.134309 0.0128650.0128650.012865 4.484.484.48 2.752.752.75
min 0.009728 0.000903 0.0057540.0057540.005754 0.0004880.0004880.000488 40.8540.8540.85 45.9645.9645.96
rmse 0.146425 0.030712 0.1416160.1416160.141616 0.0297110.0297110.029711 3.283.283.28 3.233.233.23
sse 25.964133 1.141311 24.28671224.28671224.286712 1.0681151.0681151.068115 6.466.466.46 6.416.416.41
std 0.061564 0.024403 0.0559030.0559030.055903 0.0231230.0231230.023123 9.209.209.20 5.255.255.25

B. Evaluation Results

We used both Absolute Trajectory Error (ATE) and

Relative Pose Error (RPE) to evaluate our proposed method.

Specifically, the ATE is:

ATEall =

√√√√ 1

N

N∑
i=1

‖log(T−1
gt,iTesti,i)∨‖22 (21)

The RPE is:

RPEall =

√√√√ 1

N −�t

N−�t∑
i=1

‖log(M)∨‖22 (22)

where M = (T−1
gt,iTgt,i+�t)

−1(T−1
esti,iTesti,i+�t). Tgti is real

trajectory, Testii is estimated trajectory.

Fig. 3 shows the initial pose estimation results of our

proposed method and the original method of ORBSLAM3 on

freiburg2 desk sequence. Since the actual motion speed of

the test sequence is not very fast, there is little difference in the

overall trajectory. As can be seen from Fig. 3(b), at the corner,

the initial pose estimated by the constant acceleration model is

closer to the real trajectory. Fig. 4(a) shows the deviation of the

initial pose of the two models compared with the reference on

the xyz axis of the world coordinate, and Fig. 4(b) shows the

deviation of the rotation angle of the pose compared with the

reference. After the analysis of the error estimation in Section

III, we know that the motion model needs to provide a more

accurate initial pose. It can be seen from the figure that our

proposed method has better results. We also show the pose

results after optimizing the initial pose provided by the two

motion models. As shown in Fig. 5, it can be seen that the

optimized trajectory obtained by using our proposed method

is closer to the real trajectory. Fig. 6 shows the results of

testing on freiburg2 large with loop sequence, which is a

long sequence and moves fast. Fig. 6(a) shows the comparison

between the trajectories generated by the two motion models

and the real trajectory.

(a) overall trajectory comparison (b) corner trajectory comparison

Fig. 5 Comparison of optimized pose results between our method and the
original method on freiburg2 desk sequence

Table I presents the test results for the freiburg2 desk
sequence, while Table II displays the test results for the

freiburg2 large with loop sequence. The notation max
represents the maximum value, mean represents the mean

value, median represents the median value, min represents

the minimum value, rmse represents the root mean square

error, sse represents the sum of squared residual, and

std represents the standard deviation. As evident from

the comparison of results presented in Tables I and II,

our proposed method demonstrates superiority over the

method employed by ORBSLAM3 in nearly all performance

indicators. In particular, the rmse of ATE is improved

by 6.61% on the freiburg2 desk sequence and improved

by 6.46% on the freiburg2 large with loop sequence

compared with the original method.

V. CONCLUSION

In this paper, we proposed a motion tracking model.

We assume that the acceleration of camera motion remains

constant over a brief time interval. At the same time, we

decoupled the transformation matrix and estimated the rotation

matrix and the translation vector respectively. Furthermore, a
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(a) trajectory comparison (b) deviation from reference on axis xyz (c) deviation from reference in rotation angle of
pose

Fig. 6 Comparison of the results evaluated by the constant acceleration model and the constant velocity model on freiburg2 large with loop sequence

theoretical analysis was conducted to examine the tracking

error of the constant velocity model. The findings indicate

that the error is influenced by variations in both angular

velocity and displacement vector. Finally, the proposed method

was implemented and subsequently evaluated using the TUM

dataset. Our methodology enhances the precision of the

ORBSLAM3 system and offers a comparatively more precise

estimation of the initial pose. In our forthcoming research, we

intend to incorporate the motion model into the ORBSLAM3

system during the key frame extraction process, with the aim

of enhancing the overall system performance.
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