Search results for: Decision Feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2327

Search results for: Decision Feature

1937 Financial Information and Collective Bargaining: Conflicting or Complementing?

Authors: Humayun Murshed, Shibly Abdullah

Abstract:

The research conducted in early seventies apparently assumed the existence of a universal decision model for union negotiators and furthermore tended to regard financial information as a ‘neutral’ input into a rational decision making process. However, research in the eighties began to question the neutrality of financial information as an input in collective bargaining rather viewing it as a potentially effective means for controlling the labour force. Furthermore, this later research also started challenging the simplistic assumptions relating particularly to union objectives which have underpinned the earlier search for universal union decision models. Despite the above developments there seems to be a dearth of studies in developing countries concerning the use of financial information in collective bargaining. This paper seeks to begin to remedy this deficiency. Utilising a case study approach based on two enterprises, one in the public sector and the other a multinational, the universal decision model is rejected and it is argued that the decision whether or not to use financial information is a contingent one and such a contingency is largely defined by the context and environment in which both union and management negotiators work. An attempt is also made to identify the factors constraining as well as promoting the use of financial information in collective bargaining, these being regarded as unique to the organisations within which the case studies are conducted.

Keywords: Collective Bargaining, Developing Countries, Disclosures, Financial Information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
1936 Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis

Authors: C. Ardil

Abstract:

Being effective in every organizational activity has become necessary due to the escalating level of competition in all areas of corporate life. In the context of supply chain management, aircraft supplier selection is currently one of the most crucial activities. It is possible to choose the best aircraft supplier and deliver efficiency in terms of cost, quality, delivery time, economic status, and institutionalization if a systematic supplier selection approach is used. In this study, an effective multiple criteria decision-making methodology, proximity measure method (PMM), is used within a fuzzy environment based on the vague structure of the real working environment. The best appropriate aircraft suppliers are identified and ranked after the proposed multiple criteria decision making technique is used in a real-life scenario.

Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, PMM, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
1935 Application of Process Approach to Evaluate the Information Security Risk and its Implementation in an Iranian Private Bank

Authors: Isa Nakhai Kamal Abadi, Esmaeel Saberi, Ehsan Mirjafari

Abstract:

Every organization is continually subject to new damages and threats which can be resulted from their operations or their goal accomplishment. Methods of providing the security of space and applied tools have been widely changed with increasing application and development of information technology (IT). From this viewpoint, information security management systems were evolved to construct and prevent reiterating the experienced methods. In general, the correct response in information security management systems requires correct decision making, which in turn requires the comprehensive effort of managers and everyone involved in each plan or decision making. Obviously, all aspects of work or decision are not defined in all decision making conditions; therefore, the possible or certain risks should be considered when making decisions. This is the subject of risk management and it can influence the decisions. Investigation of different approaches in the field of risk management demonstrates their progress from quantitative to qualitative methods with a process approach.

Keywords: Risk Management, Information Security, Methodology, Probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1934 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1933 The Ethio-Eritrea Claims Commission on Use of Force: Issue of Self-Defense or Violation of Sovereignty

Authors: Isaias Teklia Berhe

Abstract:

A decision that deals with international disputes, be it arbitral or judicial, has to properly reflect objectivity and coherence with existing rules of international law. This paper shows the decision of the Ethio-Eritrea Claims Commission on the jus ad bellum case is bereft of objectivity and coherence, which contributed a disservice to international law on many aspects. The Commission’s decision that holds Eritrea in contravention to Art 2(4) of the UN Charter based on Ethiopia’s contention is flawed. It fails to consider: the illegitimacy of an actual authority established over contested territory through hostile acts, the proper determination of effectivites under international law, the sanctity of colonially determined boundaries, Ethiopia’s prior firm political recognition and undergirds to respect colonial boundary, and Ethio-Eritrea Border Commission’s decision. The paper will also argue that the Commission confused Eritrea’s right of self-defense with the rule against the non-use of force to settle territorial disputes; wherefore its decision sanitizes or sterilizes unlawful change of territory resulted through unlawful use of force to the effect of advantaging aggressions. The paper likewise argues that the decision is so sacrilegious that it disregards the ossified legal finality of colonial boundaries. Moreover, its approach toward armed attack does not reflect the peculiarity of the jus ad bellum case rather it brings about definitional uncertainties and sustains the perception that the law on self-defense is unsettled.

Keywords: Armed attack, self-defense, territorial integrity, use of force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
1932 Estimating Shortest Circuit Path Length Complexity

Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract:

When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.

Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1931 Decision Support System “Crop-9-DSS“ for Identified Crops

Authors: Ganesan V.

Abstract:

Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.

Keywords: Diagnostic, inference engine, knowledge base and user interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3060
1930 Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection

Authors: C. Ardil

Abstract:

Fighter aircraft selection is one of the most critical strategies for defense multiple criteria decision-making analysis to increase the decisive power of air defense and its superior power in the defense strategy. Vague set theory is an adequate approach for modeling vagueness, uncertainty, and imprecision in decision-making problems. This study integrates vague set theory and the technique for order of preference by similarity to ideal solution (TOPSIS) to support fighter aircraft selection. The proposed method is applied in the selection of fighter aircraft for the Air Force. In the proposed approach, the ratings of alternatives and the importance weights of criteria for fighter aircraft selection are represented by the vague set theory. Finally, an illustrative example for fighter aircraft selection is given to demonstrate the applicability and effectiveness of the proposed approach. The fighter aircraft candidates were selected under six criteria including costability, payloadability, maneuverability, speedability, stealthility, and survivability. Analysis results show that the best fighter aircraft is selected with the highest closeness coefficient value. The proposed method can also be applied to solve other multiple criteria decision analysis problems. 

Keywords: fighter aircraft selection, vague set theory, fuzzy set theory, neutrosophic set theory, multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
1929 Fast Search Method for Large Video Database Using Histogram Features and Temporal Division

Authors: Feifei Lee, Qiu Chen, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved fast search algorithm using combined histogram features and temporal division method for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal feature which is robust to color distortion. Combined with active search [4], a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by 6 hours of video to search for given 200 MPEG video clips which each length is 30 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 120ms, and Equal Error Rate (ERR) of 1% is achieved, which is more accurately and robust than conventional fast video search algorithm.

Keywords: Fast search, Adjacent pixel intensity differencequantization (APIDQ), DC image, Histogram feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1928 Unsupervised Texture Segmentation via Applying Geodesic Active Regions to Gaborian Feature Space

Authors: Yuan He, Yupin Luo, Dongcheng Hu

Abstract:

In this paper, we propose a novel variational method for unsupervised texture segmentation. We use a Gabor filter bank to extract texture features. Some of the filtered channels form a multidimensional Gaborian feature space. To avoid deforming contours directly in a vector-valued space we use a Gaussian mixture model to describe the statistical distribution of this space and get the boundary and region probabilities. Then a framework of geodesic active regions is applied based on them. In the end, experimental results are presented, and show that this method can obtain satisfied boundaries between different texture regions.

Keywords: Texture segmentation, Gabor filter, snakes, Geodesicactive regions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
1927 Uncertainty Multiple Criteria Decision Making Analysis for Stealth Combat Aircraft Selection

Authors: C. Ardil

Abstract:

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been widely used to address imprecision and uncertainty in complex decision-making. However, they may struggle with inherent indeterminacy and inconsistency in real-world situations. This study introduces uncertainty sets as a promising alternative, offering a structured framework for incorporating both types of uncertainty into decision-making processes.This work explores the theoretical foundations and applications of uncertainty sets. A novel decision-making algorithm based on uncertainty set-based proximity measures is developed and demonstrated through a practical application: selecting the most suitable stealth combat aircraft.

The results highlight the effectiveness of uncertainty sets in ranking alternatives under uncertainty. Uncertainty sets offer several advantages, including structured uncertainty representation, robust ranking mechanisms, and enhanced decision-making capabilities due to their ability to account for ambiguity.Future research directions are also outlined, including comparative analysis with existing MCDM methods under uncertainty, sensitivity analysis to assess the robustness of rankings,and broader application to various MCDM problems with diverse complexities. By exploring these avenues, uncertainty sets can be further established as a valuable tool for navigating uncertainty in complex decision-making scenarios.

Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty proximity analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 186
1926 Arabic Character Recognition using Artificial Neural Networks and Statistical Analysis

Authors: Ahmad M. Sarhan, Omar I. Al Helalat

Abstract:

In this paper, an Arabic letter recognition system based on Artificial Neural Networks (ANNs) and statistical analysis for feature extraction is presented. The ANN is trained using the Least Mean Squares (LMS) algorithm. In the proposed system, each typed Arabic letter is represented by a matrix of binary numbers that are used as input to a simple feature extraction system whose output, in addition to the input matrix, are fed to an ANN. Simulation results are provided and show that the proposed system always produces a lower Mean Squared Error (MSE) and higher success rates than the current ANN solutions.

Keywords: ANN, Backpropagation, Gaussian, LMS, MSE, Neuron, standard deviation, Widrow-Hoff rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
1925 Decision Tree Modeling in Emergency Logistics Planning

Authors: Yousef Abu Nahleh, Arun Kumar, Fugen Daver, Reham Al-Hindawi

Abstract:

Despite the availability of natural disaster related time series data for last 110 years, there is no forecasting tool available to humanitarian relief organizations to determine forecasts for emergency logistics planning. This study develops a forecasting tool based on identifying probability of disaster for each country in the world by using decision tree modeling. Further, the determination of aggregate forecasts leads to efficient pre-disaster planning. Based on the research findings, the relief agencies can optimize the various resources allocation in emergency logistics planning.

Keywords: Decision tree modeling, Forecasting, Humanitarian relief, emergency supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3307
1924 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
1923 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 431
1922 Importance of Risk Assessment in Managers´ Decision-Making Process

Authors: Mária Hudáková, Vladimír Míka, Katarína Hollá

Abstract:

Making decisions is the core of management and a result of conscious activities which is under way in a particular environment and concrete conditions. The managers decide about the goals, procedures and about the methods how to respond to the changes and to the problems which developed. Their decisions affect the effectiveness, quality, economy and the overall successfulness in every organisation. In spite of this fact, they do not pay sufficient attention to the individual steps of the decision-making process. They emphasise more how to cope with the individual methods and techniques of making decisions and forget about the way how to cope with analysing the problem or assessing the individual solution variants. In many cases, the underestimating of the analytical phase can lead to an incorrect assessment of the problem and this can then negatively influence its further solution. Based on our analysis of the theoretical solutions by individual authors who are dealing with this area and the realised research in Slovakia and also abroad we can recognise an insufficient interest of the managers to assess the risks in the decision-making process. The goal of this paper is to assess the risks in the managers´ decision-making process relating to the conditions of the environment, to the subject’s activity (the manager’s personality), to the insufficient assessment of individual variants for solving the problems but also to situations when the arisen problem is not solved. The benefit of this paper is the effort to increase the need of the managers to deal with the risks during the decision-making process. It is important for every manager to assess the risks in his/her decision-making process and to make efforts to take such decisions which reflect the basic conditions, states and development of the environment in the best way and especially for the managers´ decisions to contribute to achieving the determined goals of the organisation as effectively as possible.

Keywords: Risk, decision-making, manager, process, analysis, source of risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
1921 ISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset

Authors: Sunita Jahirabadkar, Parag Kulkarni

Abstract:

Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimensional subspaces of the higher dimensional feature space in which clusters exist. In this paper, we propose a new clustering algorithm, ISC – Intelligent Subspace Clustering, which tries to overcome three major limitations of the existing state-of-art techniques. ISC determines the input parameter such as є – distance at various levels of Subspace Clustering which helps in finding meaningful clusters. The uniform parameters approach is not suitable for different kind of databases. ISC implements dynamic and adaptive determination of Meaningful clustering parameters based on hierarchical filtering approach. Third and most important feature of ISC is the ability of incremental learning and dynamic inclusion and exclusions of subspaces which lead to better cluster formation.

Keywords: Density based clustering, high dimensional data, subspace clustering, dynamic parameter setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1920 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
1919 Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process

Authors: C. Ardil

Abstract:

The purpose of this paper is to present fuzzy TOPSIS in an entropic fuzzy environment. Due to the ambiguous concepts often represented in decision data, exact values are insufficient to model real-life situations. In this paper, the rating of each alternative is defined in fuzzy linguistic terms, which can be expressed with triangular fuzzy numbers. The weight of each criterion is then derived from the decision matrix using the entropy weighting method. Next, a vertex method is proposed to calculate the distance between two triangular fuzzy numbers. According to the TOPSIS concept, a closeness coefficient is defined to determine the ranking order of all alternatives by simultaneously calculating the distances to both the fuzzy positive-ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS). Finally, an illustrative example of selecting stealth fighter aircraft is shown at the end of this article to highlight the procedure of the proposed method. Correlation analysis and validation analysis using TOPSIS, WSM, and WPM methods were performed to compare the ranking order of the alternatives.

Keywords: stealth fighter aircraft selection, fuzzy uncertainty theory (FUT), fuzzy entropic decision (FED), fuzzy linguistic variables, triangular fuzzy numbers, multiple criteria decision making analysis, MCDMA, TOPSIS, WSM, WPM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
1918 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778
1917 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229
1916 High Impedance Fault Detection using LVQ Neural Networks

Authors: Abhishek Bansal, G. N. Pillai

Abstract:

This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.

Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
1915 Integrating Decision Tree and Spatial Cluster Analysis for Landslide Susceptibility Zonation

Authors: Chien-Min Chu, Bor-Wen Tsai, Kang-Tsung Chang

Abstract:

Landslide susceptibility map delineates the potential zones for landslide occurrence. Previous works have applied multivariate methods and neural networks for mapping landslide susceptibility. This study proposed a new approach to integrate decision tree model and spatial cluster statistic for assessing landslide susceptibility spatially. A total of 2057 landslide cells were digitized for developing the landslide decision tree model. The relationships of landslides and instability factors were explicitly represented by using tree graphs in the model. The local Getis-Ord statistics were used to cluster cells with high landslide probability. The analytic result from the local Getis-Ord statistics was classed to create a map of landslide susceptibility zones. The map was validated using new landslide data with 482 cells. Results of validation show an accuracy rate of 86.1% in predicting new landslide occurrence. This indicates that the proposed approach is useful for improving landslide susceptibility mapping.

Keywords: Landslide susceptibility Zonation, Decision treemodel, Spatial cluster, Local Getis-Ord statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
1914 Aerial Firefighting Aircraft Selection with Standard Fuzzy Sets using Multiple Criteria Group Decision Making Analysis

Authors: C. Ardil

Abstract:

Aircraft selection decisions can be challenging due to their multidimensional and interdisciplinary nature. They involve multiple stakeholders with conflicting objectives and numerous alternative options with uncertain outcomes. This study focuses on the analysis of aerial firefighting aircraft that can be chosen for the Air Fire Service to extinguish forest fires. To make such a selection, the characteristics of the fire zones must be considered, and the capability to manage the logistics involved in such operations, as well as the purchase and maintenance of the aircraft, must be determined. The selection of firefighting aircraft is particularly complex because they have longer fleet lives and require more demanding operation and maintenance than scheduled passenger air service. This paper aims to use the fuzzy proximity measure method to select the most appropriate aerial firefighting aircraft based on decision criteria using multiple attribute decision making analysis. Following fuzzy decision analysis, the most suitable aerial firefighting aircraft is ranked and determined for the Air Fire Service.

Keywords: Aerial firefighting aircraft selection, multiple criteria decision making, fuzzy sets, standard fuzzy sets, determinate fuzzy sets, indeterminate fuzzy sets, proximity measure method, Minkowski distance family function, Hausdorff distance function, MCDM, PMM, PMM-F

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399
1913 Spatial Data Mining by Decision Trees

Authors: S. Oujdi, H. Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
1912 Military Fighter Aircraft Selection Using Multiplicative Multiple Criteria Decision Making Analysis Method

Authors: C. Ardil

Abstract:

Multiplicative multiple criteria decision making analysis (MCDMA) method is a systematic decision support system to aid decision makers reach appropriate decisions. The application of multiplicative MCDMA in the military aircraft selection problem is significant for proper decision making process, which is the decisive factor in minimizing expenditures and increasing defense capability and capacity. Nine military fighter aircraft alternatives were evaluated by ten decision criteria to solve the decision making problem. In this study, multiplicative MCDMA model aims to evaluate and select an appropriate military fighter aircraft for the Air Force fleet planning. The ranking results of multiplicative MCDMA model were compared with the ranking results of additive MCDMA, logarithmic MCDMA, and regrettive MCDMA models under the L2 norm data normalization technique to substantiate the robustness of the proposed method. The final ranking results indicate the military fighter aircraft Su-57 as the best available solution.

Keywords: Aircraft Selection, Military Fighter Aircraft Selection, Air Force Fleet Planning, Multiplicative MCDMA, Additive MCDMA, Logarithmic MCDMA, Regrettive MCDMA, Mean Weight, Multiple Criteria Decision Making Analysis, Sensitivity Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 771
1911 Real-time 3D Feature Extraction without Explicit 3D Object Reconstruction

Authors: Kwangjin Hong, Chulhan Lee, Keechul Jung, Kyoungsu Oh

Abstract:

For the communication between human and computer in an interactive computing environment, the gesture recognition is studied vigorously. Therefore, a lot of studies have proposed efficient methods about the recognition algorithm using 2D camera captured images. However, there is a limitation to these methods, such as the extracted features cannot fully represent the object in real world. Although many studies used 3D features instead of 2D features for more accurate gesture recognition, the problem, such as the processing time to generate 3D objects, is still unsolved in related researches. Therefore we propose a method to extract the 3D features combined with the 3D object reconstruction. This method uses the modified GPU-based visual hull generation algorithm which disables unnecessary processes, such as the texture calculation to generate three kinds of 3D projection maps as the 3D feature: a nearest boundary, a farthest boundary, and a thickness of the object projected on the base-plane. In the section of experimental results, we present results of proposed method on eight human postures: T shape, both hands up, right hand up, left hand up, hands front, stand, sit and bend, and compare the computational time of the proposed method with that of the previous methods.

Keywords: Fast 3D Feature Extraction, Gesture Recognition, Computer Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
1910 Young People’s Participation in Decision-Making Using Information and Communication Technology

Authors: Marina Diković

Abstract:

By giving personal opinions, suggestions and criticism through e-democracy, young people can reinforce the adoption of decisions which they have an impact on. The purpose of this research was to examine the opinion of university students about the possibility of their decision-making by using information and communication technology (ICT). The questionnaire examined young people's values and behaviour associated with e-democracy and the related decision-making. Students are most active online when it comes to finding information connected with their academic responsibilities, but less frequently take part in democratic processes in society, both at the national and local level. E-democracy as a tool can be learned in programmes of Human Rights Education and Citizenship Education. 

Keywords: Active citizens, e-democracy, information and communication technology, university students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1909 Optimization and GIS-Based Intelligent Decision Support System for Urban Transportation Systems Analysis

Authors: Mohamad K. Hasan, Hameed Al-Qaheri

Abstract:

Optimization plays an important role in most real world applications that support decision makers to take the right decision regarding the strategic directions and operations of the system they manage. Solutions for traffic management and traffic congestion problems are considered major problems that most decision making authorities for cities around the world are looking for. This review paper gives a full description of the traffic problem as part of the transportation planning process and present a view as a framework of urban transportation system analysis where the core of the system is a transportation network equilibrium model that is based on optimization techniques and that can also be used for evaluating an alternative solution or a combination of alternative solutions for the traffic congestion. Different transportation network equilibrium models are reviewed from the sequential approach to the multiclass combining trip generation, trip distribution, modal split, trip assignment and departure time model. A GIS-Based intelligent decision support system framework for urban transportation system analysis is suggested for implementation where the selection of optimized alternative solutions, single or packages, will be based on an intelligent agent rather than human being which would lead to reduction in time, cost and the elimination of the difficulty, by human being, for finding the best solution to the traffic congestion problem.

Keywords: Multiclass simultaneous transportation equilibrium models, transportation planning, urban transportation systems analysis, intelligent decision support system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
1908 Fuzzy Group Decision Making for the Assessment of Health-Care Waste Disposal Alternatives in Istanbul

Authors: Mehtap Dursun, E. Ertugrul Karsak, Melis Almula Karadayi

Abstract:

Disposal of health-care waste (HCW) is considered as an important environmental problem especially in large cities. Multiple criteria decision making (MCDM) techniques are apt to deal with quantitative and qualitative considerations of the health-care waste management (HCWM) problems. This research proposes a fuzzy multi-criteria group decision making approach with a multilevel hierarchical structure including qualitative as well as quantitative performance attributes for evaluating HCW disposal alternatives for Istanbul. Using the entropy weighting method, objective weights as well as subjective weights are taken into account to determine the importance weighting of quantitative performance attributes. The results obtained using the proposed methodology are thoroughly analyzed.

Keywords: Entropy weighting method, group decision making, health-care waste management, hierarchical fuzzy multi-criteriadecision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687