
 
 

 

  
Abstract—This paper presents a new method to detect high 

impedance faults in radial distribution systems. Magnitudes of third 
and fifth harmonic components of voltages and currents are used as a 
feature vector for fault discrimination. The proposed methodology 
uses a learning vector quantization (LVQ) neural network as a 
classifier for identifying high impedance arc-type faults. The network 
learns from the data obtained from simulation of a simple radial 
system under different fault and system conditions. Compared to a 
feed-forward neural network, a properly tuned LVQ network gives 
quicker response. 
 

Keywords—Fault identification, distribution networks, high 
impedance arc-faults, feature vector, LVQ networks.  

I. INTRODUCTION 
IGH impedance faults (HIFs) on distribution systems 
create unique challenges for the protection engineer. 

HIFs that occur do not produce enough fault current 
detectable by conventional overcurrent relays or fuses [1]. A 
high impedance ground fault results when a primary 
conductor makes unwanted electrical contact with a road 
surface, sidewalk, tree limb, or with some other surface, or 
object which restricts the flow of fault current to a level below 
that reliably detectable by conventional overcurrent devices 
[1]. These faults are characterized by intermittent arc-type 
nature and very low current rich in low harmonic content and 
high frequency noise spectra. The failure of HIF detection 
may lead to potential hazards to human beings and potential 
fire [2]. Therefore, from both public safety and operational 
reliability viewpoints, detection of HIFs is critically important. 

Engineering efforts for the development of a reliable 
method for the detection of high impedance arc-type faults led 
during the last two decades to important progress in 
understanding the electrical characteristics of these faults and 
in the evaluation of several detection concepts [3]. Various 
techniques of fault detection encompass fractal techniques [4], 
expert systems [5], neural networks [6-8] and dominant 
harmonic vectors [9, 10]. The use of high frequency 
harmonics is not feasible in practical relay because of the 
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filtering by the substation current transformers. Other methods 
that try to reduce the limitation of frequency domain methods 
include Kalman filtering [11] and wavelet transform based 
methods [2, 12]. Among many techniques proposed by 
different research groups, use of information contained in the 
low frequency spectral behavior, in terms of both magnitude 
and phase, seems to be the most promising approach for the 
next steps which will bring the industry closer to the 
realization of a fully operation HIF detector [13]. 

In [14], a novel time domain HIF detection scheme based 
on low frequency harmonic excursion patterns and phase 
portraits is used to detect the high impedance arc-type faults 
on a radial distribution system. In this paper we propose a 
novel approach of employing learning vector quantization 
(LVQ) neural networks to detect HIFs in radial distribution 
system. In the proposed scheme, the reference vectors are set 
to the locations mostly matching the probability distributions 
of training vectors to improve the learning characteristics of 
LVQ. The improved learning characteristics ensure more 
accurate classification results. The sample system studied in 
this paper is a 25 kV power distribution network studied in 
[14]. 

The paper is organized as follows. Section 2 deals with a 
brief review of the system description and fault simulation 
method. Section 3 provides a basic description of the 
employed LVQ networks. Section 4 reports the case study and 
discusses the simulation results. Section 5 concludes the paper 
with some general remarks on the idea of optimizing neural 
networks. 

II. SYSTEM DESCRIPTION AND FAULT SIMULATION 
Single line diagram of the sample radial distribution system 

[14] is shown in Fig. 1. The distribution line is represented by 
lumped passive elements without mutual coupling. Constant 
impedance load is assumed. Fig. 2 represents the equivalent 
per phase circuit during fault with nonlinear arcing fault 
resistance Rf. The training data is obtained by applying 
nonlinear and linear faults to the circuit model at different 
fault locations x. The system parameters and nonlinear arc 
model are given in the Appendix. 

Using Fig. 2, following nodal equations can be written in s-
domain. All variables are in s-domain and (s) is dropped for 
domain. The variables in s-domain are shown in capital letters. 
For linear faults, the fault resistance is not varying as shown in 
Appendix. 

High Impedance Fault Detection using LVQ 
Neural Networks 

Abhishek Bansal and G. N. Pillai 

H 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:1, No:4, 2007 

701International Scholarly and Scientific Research & Innovation 1(4) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
4,

 2
00

7 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
12

10
.p

df



 
 

 

 

SS
SS RsL

VVI
+

−=
1)( 1  

11 III SC −=  

11
1

CI
xCs

V =  

xRxLs
VVI f +

−=
1)( 11  

21 III f −=  

RxLsx
VVI f )1()1(

1)( 22 −+−
−=  

ffff IRsLV )( +=  

LC III −= 22  

2)1(
1

CL I
Csx

V
−

=  

LL
LL RsL

VI
+

=
1  

 
Using the above equations, a MATLAB/SIMULINK 

simulation model is made as shown in Fig. 3. The radial 
system is subjected to an Arc type fault at different locations 
from x=0 to full feeder length. For linear and nonlinear HIFs, 

the value of fault impedance Rf is given in the Appendix. 

III. LEARNING VECTOR QUANTIZATION (LVQ) NEURAL 
NETWORKS 

LVQ networks are supervised versions of vector 
quantization for adaptive pattern classification [15]. The 
method illustrates how an unsupervised learning mechanism 
can be adapted to solve supervised learning tasks in which 
class membership is known for every training pattern. Vector 
quantization is a technique whereby the input space is divided 
into a number of distinct regions, and for each region a 
reconstruction vector is defined [16]. When presented with a 
new input x , a vector quantizer first determines the region in 
which the vector lies. Then the quantizer outputs an encoded 
version of the reconstruction vector iw  representing that 
particular region containing x . The set of all possible 
reconstruction vectors iw  is usually called the codebook of 
the quantizer. When the Euclidean distance similarity measure 
is used to decide on the region to which the input x belongs, 
the quantizer is called a Voronoi quantizer [16]. 

 
In LVQ networks, class information is used to fine-tune the 

reconstruction vectors in a Voronoi quantizer so as to improve 
the quality of the classifier decision regions [17]. In 
classification problems, it is the decision surface between 
classes and not the inside of the class distribution that should 
be described most accurately. The quantizer process can be 
easily adapted to optimize placement of decision surface 
between different classes. The method starts with the 
calibration of a trained Voronoi quantizer using a set of 
labeled input samples. Each iw  is then labeled is according to 
the majority of classes represented among those samples 
which have been assigned to iw . Here the distribution of the 
calibration samples to the various classes, as well as the 
relative numbers of the iw  assigned to these classes, must 
comply with the priori probabilities of the classes, if such 

 (1) 

 
 

Fig. 1 Single line diagram of a radial distribution line 

 
 

Fig. 2 Per phase equivalent circuit with HIF arc-type fault 
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Fig. 3 MATLAB/SIMULINK functional model of radial system 
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probabilities are known [15]. The tuning of the decision 
surfaces is done by rewarding correct classifications and 
punishing incorrect ones. When training pattern kx  from 
class jc  is presented to the network, let the closest 

reconstruction iw  belong to class lc . Then only vector iw is 
updated according to the following supervised rule 
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where the learning rate kη is assumed to be a monotonically 
decreasing function of the number of iterations k .The 
decreasing learning rate allows the network to converge the 
network to a state in which the weight vectors are stable. The 
primary effect of equation (2) is to minimize the number of 
misclassifications. At the same time, the vectors iw  are pulled 
away from the zones of class overlap where misclassifications 
persist. The algorithm described here is referred to as LVQ1 
learning rule. 

A. Feature extraction  
The radial distribution system is subjected to an arc type 

fault at different locations by varying x, measured from the 
substation bus. The voltage and current signals at feeder 
terminals v1 and i1 are used as detection signals as shown in 
Fig. 4. The instantaneous values of these detection signals are 
captured and transformed into frequency domain using one 
cycle Fast Fourier Transform FFT. The FFT-harmonic vectors 
v3, i3, v5, and i5 are processed to obtain feature vectors and are 
used to train the LVQ network. 

 
Many cases of linear and nonlinear faults are simulated by 

varying the fault locations, source impedances and fault 
resistance. Equal numbers of linear and nonlinear fault cases 
are simulated. The obtained data is cast into a classification 
problem by associating half of the samples into linear and the 
other half into nonlinear cases. 

B. LVQ network Configuration 
The input nodes of the LVQ neural network are v3, i3, v5, 

and i5. The output layer consists of two linear neurons 
representing the linear and nonlinear fault cases. This layer 
represents the target classes. The first layer is a competitive 
layer representing the prototype weight vectors. The prototype 
weight vectors classify the input vectors into subclasses. Both 

the competitive and linear layers have one neuron per (sub or 
target) class. The structure of the neural network is 4-10-2 
assuming 10 subclasses.  The LVQ1 learning rule is used for 
training the network. 

IV. SIMULATION RESULTS 
A set of 220 patterns obtained by the proposed system 

using the Matlab toolboxes is used for training the network.  
100 additional samples are generated for testing. Initial 
learning rate of 0.15 is selected for training the LVQ network. 
Repeated trials of the program show that this choice of 
learning rate is very helpful for faster convergence. Initially, 
reference vectors are randomly chosen for training the 
network. To improve the learning characteristics of the 
network, the reference vectors are set to the locations 
matching the probability distribution of training vectors. This 
is done by dividing the training data into different classes and 
calculating the mean of the samples in these classes.  Network 
structures with different number of reference vectors 
(subclasses) are tested. 

Fig. 5 shows the training error as a function of no. of 
epochs with random initial vectors. The initial learning rate is 
0.15 and the number of subclasses is 10. It is clearly seen from 
the figure that substantial training error exists even after 150 

epochs and needs to be further minimized. 
In Fig. 6, the initial vectors are chosen in consistency with 

the probability distribution of the input features of the training 
samples. The initial learning rate and number of subclasses are 
same as in Fig. 5. Training error reduces to zero after 43 
epochs. Thus by properly selecting the initial reference 
vectors, the training error in an LVQ network can be reduced 
significantly. 

Table 1 shows the training and testing errors when the 
number of subclasses is changed from 8 to 16. When the 
number of subclasses is 10, the LVQ network gives better 
performance with both random and selected subclasses. The 

One Cycle
 FFTFrom feeder

v1

i1

v3

v5

i3

i5  
 

Fig. 4 Feature vector extraction  
 

Fig. 5 Training error as a function of no. of epochs in case of LVQ 
network with random initial vectors. 
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TABLE I 
TRAINING AND TESTING ERROR OF LVQ NETWORKS 

LVQ with random 
subclasses 

LVQ with selected 
subclasses No. of 

subclasses Training 
error % 

Testing 
error % 

Training 
error % 

Testing 
error % 

8 38.1 39 6.2 7 
10 37.1 38 0 01 

12 39.8 40 1.1 02 
16 37.6 39 2.2 04 

ability of the network to classify the samples is improved by 
the location of the reference vectors, topology of the network 
and initial learning constant. 

 The same data set is used to train a multilayer perceptron 
(MLP) with backpropagation algorithm [7-8]. The architecture 
used for simulation consists of two hidden layers and one 
output layer. The output layer consists of one neuron whose 
output is zero or one for discrimination between linear and 
nonlinear faults. In the hidden layers, the neurons in the first 
hidden layer and second hidden layer can be varied to get 
optimum results. The transfer function in the neurons is log-
sigmoid because the output of this function ranges from 0 to 1 
which matches the output of the linear fault cases (‘0’) and 
nonlinear fault cases (‘1’). The training algorithm used is the 
supervised Levemberg-Marquardt backpropagation 
implemented in Matlab’s ANN toolbox. A training error of 
1.67% and testing error of 5.0% was obtained when there 
were 8 neurons in the first hidden layer and 4 neurons in 
second hidden layer. But the algorithm took 1000 epochs to 
reach this training error. The training error can be further 
reduced by selecting more neurons in the hidden layers.  

 
 
 
 
 
 
 
 
 
 
From the results, it can be seen that an LVQ network has an 

inherent ability to classify more rapidly than the 
corresponding MLP with backpropagation algorithm. Further, 
architecture of MLP network with backpropagation algorithm 
is much more complex than corresponding LVQ network to 
obtain same rate of accuracy. 

 
One of the most attractive features of LVQ learning is that 

the parameterization in terms of prototype vectors allows for 
an immediate interpretation of the classifier. Prototypes are 
defined in the same space as the data; they are, for instance, 
images themselves and provide direct information about the 
achieved classification and the features that it is based on. 
This is in contrast to feed forward neural networks. 

V. CONCLUSION 
A method for detecting the high impedance fault in a radial 

distribution system using LVQ networks is proposed in this 
paper. The study involved computer simulation of power 
systems, frequency analysis and investigation to improve the 
learning characteristics of LVQ classifier. The proposed 
method is capable of detecting the arc-type high impedance 
faults with higher accuracy. The improvement in the 
performance of LVQ networks is achieved by properly 
selecting the learning constant, architecture and setting the 
proper location of initial weight vectors. A properly designed 
LVQ network for fault detection is simpler in architecture and 
faster than a feed-forward multilayer perceptron with 
backpropagation algorithm. 

APPENDIX 

(a) AC System  

               mHLRtV SSS 7;,7.0),314sin(
3
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(b) HIF Fault Model  

(1) Linear HIF fault 
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(2) Nonlinear (Arc-type) HIF fault 

 
 

Fig. 7 Training error as a function of no. of epochs in case of MLP with 
backpropagation algorithm.  

 
 

Fig. 6 Training error as a function of no. of epochs in case of LVQ 
network with selected initial vectors 
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(c) Transmission line  

  Length l = 32 km             
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(d) Load Parameters 
HLR ll 2.0180 =Ω=  
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