
 

 

  

Abstract—Fuzzy set theory and its extensions (intuitionistic 

fuzzy sets, picture fuzzy sets, and neutrosophic sets) have been 

widely used to address imprecision and uncertainty in complex 

decision-making. However, they may struggle with inherent 

indeterminacy and inconsistency in real-world situations. This study 

introduces uncertainty sets as a promising alternative, offering a 

structured framework for incorporating both types of uncertainty 

into decision-making processes. 

This work explores the theoretical foundations and applications 

of uncertainty sets. A novel decision-making algorithm based on 

uncertainty set-based proximity measures is developed and 

demonstrated through a practical application: selecting the most 

suitable stealth combat aircraft. 

The results highlight the effectiveness of uncertainty sets in 

ranking alternatives under uncertainty. Uncertainty sets offer several 

advantages, including structured uncertainty representation, robust 

ranking mechanisms, and enhanced decision-making capabilities 

due to their ability to account for ambiguity. 

Future research directions are also outlined, including 

comparative analysis with existing MCDM methods under 

uncertainty, sensitivity analysis to assess the robustness of rankings, 

and broader application to various MCDM problems with diverse 

complexities. By exploring these avenues, uncertainty sets can be 

further established as a valuable tool for navigating uncertainty in 

complex decision-making scenarios. 

 

Keywords—Uncertainty set, stealth combat aircraft selection 

multiple criteria decision-making analysis, MCDM, uncertainty 

proximity analysis.  

I. INTRODUCTION 

fuzzy set (FS)   in a universe X is characterized by a 

membership function ( ) : [0,1]x X →  that maps each 

element x in X to a degree of membership between 0 and 1, 

 , ( ) |x x x X =    . The sum of these membership 

degrees over the entire universe is constrained to be 1:

( ) 1
x X

x


= . This restricts the total uncertainty in the 

system to lie between 0 (complete certainty) and 1 

(completely unknown) [1].  

A direct extension of fuzz set (FS), intuitionistic fuzzy set 

(IFS)  , ( ), ( ) |x x x x X   =     with the condition 

0 ( ) ( ) 1x x   +   incorporates hesitancy as a measure of 

uncertainty ( ) 1 ( ) ( )x x x    = − + , where the sum of 

membership degree ( )x and non-membership ( )x is 

constrained to be within the unitary interval [0,1]  [2]. 

While intuitionistic fuzzy sets (IFSs) do not explicitly 

account for indeterminacy, IFSs offer a means to represent 
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incomplete information by allowing for partial membership 

and non-membership values. This representation enables 

decision-makers to express uncertainty when precise 

evaluations are not feasible.  

Fuzzy set theory has been instrumental in representing 

uncertainty in various applications. However, it has 

limitations in capturing the nuances of real-world 

information. To address this challenge, extensions like 

intuitionistic fuzzy sets (IFS) and picture fuzzy sets (PFS) 

were introduced [3]. 

Basically, picture fuzzy sets (PFS) 

 , ( ), ( ), ( ) |x x x x x X     =     with the condition 

0 ( ) ( ) ( ) 1x x x     + +   are a direct extension of fuzzy 

sets (FS) and intuitionistic fuzzy sets (IFS). In a PFS, an 

element can belong to a set with varying degrees of 

membership ( )x , neutrality ( )x , and non-membership 

( )x . A key feature of PFS is the inclusion of a refusal 

membership degree ( 1 ( ) ( ) ( )x x x x      = − + +

alongside the positive and negative membership degrees.  

However, to maintain consistency with classical logic 

principles, the sum of all three membership degrees 

0 ( ) ( ) ( ) 1x x x     + +   is constrained to be within the 

unitary interval [0,1] . This ensures that the representation of 

uncertainty remains interpretable and avoids contradictions 

within the framework. 

Fuzzy set theory and its extensions have been successful in 

modeling uncertainty in various domains. However, these 

approaches may not fully capture the complexities of real-

world information, particularly situations where 

indeterminacy plays a significant role. 

To address these challenges, neutrosophic sets (NS) 

 , ( ), ( ), ( ) |x x x x x X     =     with the condition

0 ( ) ( ) ( ) 3x x x    − + + +   emerge as a further 

extension of fuzzy sets (FS) and intuitionistic fuzzy sets 

(IFS), aiming to address this limitation [4]. Unlike prior 

extensions, neutrosophic sets introduce independent truth 

( )x , indeterminacy ( )x , and falsity ( )x membership 

degrees. These degrees can vary independently within the 

interval ] 0,1 [− + , allowing for a more nuanced representation 

of uncertainty. However, to maintain some level of 

interpretability, the sum of all three membership degrees 

0 ( ) ( ) ( ) 3x x x     + +   is constrained to be within a 

specific range [0,3] . However, this constraint ensures that 
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the combined uncertainty representation exceeds the 

boundaries of classical logic entirely. A neutrosophic set 

explicitly accounts for inconsistency by allowing for truth, 

falsity, and indeterminacy values that can exceed classical 

boundaries. The expanded range accommodates scenarios 

where contradictory or ambiguous information exists 

simultaneously, reflecting a broader spectrum of uncertainty. 

Classical set theory struggles with real-world problems 

characterized by inconsistency and indeterminacy, where 

data may be contradictory, information imprecise, and 

existing methods fail to capture the full range of uncertainty. 

Fuzzy set theory and its extensions (intuitionistic fuzzy sets, 

picture fuzzy sets, and neutrosophic sets) have offered 

valuable tools for representing uncertainty in certain 

scenarios. 

To address real-world challenges effectively, the concept 

of an uncertainty set (US) has emerged as a standardized 

framework for precisely defining complex decision 

environments. Drawing upon key features from fuzzy sets, 

intuitionistic fuzzy sets, picture fuzzy sets, and neutrosophic 

sets, uncertainty sets offer a comprehensive approach to 

modeling uncertainty in decision-making processes. 

Additionally, by adhering to a specific condition  

0 ( ) ( ) ( ) 1x x x     + +  , uncertainty sets provide a 

structured and coherent representation of uncertainty, 

allowing decision-makers to navigate intricate decision 

landscapes with clarity and precision. 

An uncertainty set, denoted mathematically as 

 , ( ), ( ), ( ) |x x x x x X     =     with the condition 

0 ( ) ( ) ( ) 1x x x     + +  , encompasses a collection of 

possible values or membership functions for a variable (x). 

Here, ( )x represents the degree of truth, ( )x represents 

the degree of indeterminacy, and ( )x represents the degree 

of falsity associated with variable (x). Unlike a traditional set 

with clear boundaries, an uncertainty set allows for a range of 

possibilities, acknowledging the inherent vagueness or 

ambiguity in information. 

Uncertainty sets offer a unified and coherent framework 

for modeling complex situations where membership is not 

always clear-cut. By quantifying the degree of inconsistency 

or indeterminacy associated with each element, uncertainty 

sets provide valuable information for making informed 

decisions in uncertain scenarios. 

Compared to other fuzzy set extensions like intuitionistic 

fuzzy sets, picture fuzzy sets, and neutrosophic sets, 

uncertainty sets strike a balance between inconsistency and 

indeterminacy. Uncertainty sets limit the combined effect of 

these factors to a unitary interval, ensuring a coherent and 

interpretable representation of uncertainty within classical 

logic principles.  

In contrast to intuitionistic fuzzy sets, which require 

separate consideration of membership and non-membership 

degrees without explicit incorporation of indeterminacy, 

uncertainty sets offer a unified approach to representing 

uncertainty. By encompassing both indeterminacy and 

inconsistency within a single constraint, uncertainty sets 

provide a comprehensive and simplified representation of 

uncertain information. 

Unlike neutrosophic sets, which allow for independent 

variation of truth, indeterminacy, and falsity values within an 

extended range, uncertainty sets adhere to classical logic by 

keeping the sum of these values within a conventional 

interval [0,1] . This adherence facilitates easier interpretation 

and integration with existing decision-making frameworks. 

The restriction of uncertainty sets to a unitary interval 

enhances interpretability and transparency in decision-

making processes. Decision-makers can easily grasp and 

interpret the degree of uncertainty associated with each 

element within a familiar range, promoting effective 

communication and informed decision-making. 

The flexibility and adaptability of uncertainty sets in 

representing a wide range of uncertain information make 

them a promising framework for addressing complex 

decision-making problems. By accommodating both 

indeterminacy and inconsistency while adhering to classical 

logic principles, uncertainty sets can capture various degrees 

of uncertainty encountered in real-world scenarios. 

Overall, uncertainty sets offer advantages in terms of 

balance, compatibility, simplicity, interpretability, and 

flexibility compared to other fuzzy set extensions. Their 

ability to provide a unified and coherent representation of 

uncertainty within classical logic boundaries makes them a 

powerful tool for decision-making in uncertain environments, 

effectively addressing different sources of uncertainty. 

This study focuses on core fuzzy set extensions and 

deliberately excludes power-parameter based extensions like 

pythagorean fuzzy subsets [5], q-rung orthopair fuzzy sets 

[6], circular intuitionistic fuzzy sets [7], fermatean fuzzy sets 

[8], spherical fuzzy sets [9] and their extensions. Here's the 

reasoning behind excluding these sets: 

Focus on core extensions: This study prioritizes exploring 

the fundamental principles of uncertainty representation 

through established fuzzy set extensions like intuitionistic 

fuzzy sets, picture fuzzy sets and neutrosohic sets. Power-

parameter based extensions introduce additional complexity 

by incorporating an extra parameter that can potentially 

complicate interpretation and analysis. 

Maintaining scope: Including all possible fuzzy set 

extensions could significantly broaden the scope of the study. 

Focusing on core extensions allows for a more in-depth 

exploration of fundamental concepts within the allotted 

timeframe or resource constraints. 

Comparison with established methods: By focusing on 

core extensions, this study facilitates a clearer comparison 

with existing well-understood methods like intuitionistic 

fuzzy sets, highlighting the advantages of uncertainty sets in 

a more direct way. Power-parameter based extensions can be 

explored in future research for even more nuanced 

uncertainty representation. 

The remainder of the paper is organized as follows: In 

Section 2 uncertainty sets are briefly summarized. The steps 

of uncertainty multiple criteria decision-making analysis are 

briefly summarized. In Section 3, a stealth combat aircraft 

selection application is carried out and, the results are 

analyzed. In Section 4, the paper concludes with a 
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recommendation for further future work. 

II. METHODOLOGY  

This section presents some basic definitions of uncertainty 

sets, uncertainty numbers, relations, operation and theoretical 

concepts of multiple criteria decision analysis [1-50].  

 

Definition 1. [1] Let X  be a fixed set in a universe of 

discourse. A fuzzy set   in X is an object having the form 

 

 , ( ) |x x x X =                                                         (1)                             

 

where ( ) : [0,1]x X →  represents a membership function 

of   with the condition  0 ( ) 1x  for all x X . 

 

Definition 2. [2] Let X  be a fixed set in a universe of 

discourse. An intuitionistic fuzzy set  in X is an object 

having the form 

 

 , ( ), ( ) |x x x x X   =                                                 (2) 

 

where ( ) : [0,1]x X →  represents a membership function , 

a non-membership function : [0,1]X → , and a hesitancy 

degree ( ) 1 ( ) ( )x x x    = − +  of  with the condition  

0 ( ) ( ) 1x x   +  , for all x X . 

 

Definition 3. [3] Let X  be a fixed set in a universe of 

discourse. A picture fuzzy set  in X is an object having the 

form 

 

 , ( ), ( ) |x x x x X   =                                                 (3) 

 

where ( ) : [0,1]x X →  represents a positive membership 

function , a neutral membership function : [0,1]X → , a 

negative membership function : [0,1]X →  and a refusal 

degree ( 1 ( ) ( ) ( )x x x x      = − + +  of  with the 

condition  0 ( ) ( ) ( ) 1x x x     + +   for all x X . 

 

Definition 4. Let X  be a fixed set in a universe of discourse. 

An uncertainty set  in X is an object having the form 

 

 , ( ), ( ) |x x x x X   =                                                 (4) 

 

where ( ) : [0,1]x X →  represents a truth membership 

function, an indeterminacy membership function 

: [0,1]X → , and a falsity membership function 

: [0,1]X →  of   with the condition  

0 ( ) ( ) ( ) 1x x x     + +   for all x X . 

 

Definition 5. [4] Let X  be a fixed set in a universe of 

discourse. A single-valued neutrosophic set (SVNN)    in X 

is an object having the form 

 

 , ( ), ( ) |x x x x X   =                                               (5) 

 

where ( ) : [0,1]x X →  represents a truth membership 

function, an indeterminacy membership function 

: [0,1]X → , and a falsity membership function 

: [0,1]X →  of   with the condition  

0 ( ) ( ) ( ) 3x x x     + +   for all x X . 

Definition 6. Given two uncertainty sets 

 , ( ), ( ), ( ) |A A AA x x x x x X  =      and 

 ( , ( ), ( ), ( ) |B B BB x x x x x X  =     , the relations are 

defined as follows: 

a)
( ) ( ),

( ) ( ), ( ) ( )

A B

A B A B

A B if and only if x x

x x x x

 

   

 

 
           (6)                                                                                     

b)
( ) ( ),

( ) ( ), ( ) ( )

A B

A B A B

A B if and only if x x

x x x x

 

   

 =

= =
         (7)                                                                                      

c)
, ( )( ),

( )( ), ( )( ) |

A B

A B A B

x x
A B

x x x X

 

   

  
 =  

     
            (8)                                                                                

d)
, ( )( ),

( )( ), ( )( ) |

A B

A B A B

x x
A B

x x x X

 

   

  
 =  

     
            (9) 

                  

e)  , ( ), ( ), ( ) |A A AA x x x x x X  =                          (10)                                            

 

where the symbol   represents the t-norm, while 

represents the t-conorm.  

 

Definition 7. For 0  , the corresponding operations for 

three indeterminacy numbers (INs) 
1 1 11 ( , , )A A AA   = , 

2 2 22 ( , , )A A AA   = , and ( , , )A A AA   = are defined as 

follows:  

 

a)
1 2 1 2 1 2 1 21 2 ( , , )A A A A A A A AA A         = + −                  (11)                                                                                                 

b) 
1 2 1 2 1 2

1 2 1 2

1 2 ( , ,

)

A A A A A A

A A A A

A A      

   

 = + −

+ −
                            (12)   

c) (1 (1 ) , , )A A AA      = − −                                            (13)                                                                                                                     

d) ( ,1 (1 ) ,1 (1 ) )A A AA     = − − − −  where  0        (14)                                                                                                                                       

e)  0 ( ,1,0,0) |i x x X+ =                                            (15)                                                                                                                                                    

e)  0 ( ,0,1,1) |i x x X− =                                             (16)                                                                                                                                                

 

Definition 8. For any uncertainty number (UN) 

( , , )A A AA   = , the score ( )s A , the accuracy ( )h A , and the 

certainty ( )c A functions of A are defined as:  

 

( ) ( )A As A  = −                                  (17) 

( ) A A Ah A   = + +                              (18)   

( ) Ac A =                                                                            (19)                                                                                                                                                                           
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where ( ) [ 1,1]s A  − and ( ) [0,1]h A  . For any UNs 
1A and 

2A  

1. If 
1 2( ) ( )s A s A , then 

1 2( ) ( )A A , 

2. If
1 2( ) ( )s A s A= , then   

                  i. If 
1 2 1 2h(A )>h(A ) A  >A   

                  ii. If
1 2h(A )=h(A ) , then

1 2 A A  

 

Definition 9. Let ( 1,2,..., )ia i n= be a collection of 

uncertainty numbers (UNs) and 
1 2[ , ,..., ]T

n   = is the 

weight vector of 
ia with the condition 0i   and 

1
1

n

ii


=
= . Then, the uncertainty weighted averaging 

(UWA) operator is a mapping 
nA A→ such that  

 

1 2 1( , ,..., ) ( )n

n i i iUWA a a a a==   

1

1 2

1 1

1 (1 ) ,
( , ,..., )

( ) , ( )

i

i

i i

i i

n

ai

n n n

a ai i

UWA a a a



 



 

=

= =

 − −
 =
 
 



                  (20)                                                                                    

Definition 10. Let ( 1,2,..., )ia i n= be a collection of 

uncertainty numbers (UNs) and 
1 2[ , ,..., ]T

n   = is the 

weight vector of 
ia with the condition 0i   and 

1
1

n

ii


=
= . Then, the uncertainty weighted geometric 

(UWG) operator is a mapping 
nA A→ such that 

 

1 2 1( , ,..., ) ( )in

n i iUWG a a a a


==   

1 1

1 2

1

( ) ,1 (1 ) ,
( , ,..., )

1 (1 )

i i

i i

i

i

n n

a ai i

n n

ai

UWG a a a

 



 



= =

=

 − −
 =
 − − 

 


  (21)                                                                               

 

Definition 11. Given two uncertainty numbers (UNs) 

( , , )A A AA   =  and ( , , )B B BB   = , their distance 
1L  is 

defined as: 

1 1

| ( ) ( ) |
1

( , ) | ( ) ( ) |

| ( ) ( ) |

A i B i
n

L A i B ii

A i B i

x x

d A B x x
n

x x

 

 

 
=

− + 
 

= − + 
 − 

                            (22)                                                                        

 

Definition 12. Given two uncertainty numbers (UNs) 

( , , )A A AA   =  and ( , , )B B BB   = , their weighted 

distance 
1L is defined as: 

 

1 1

| ( ) ( ) |
1

( , ) | ( ) ( ) |

| ( ) ( ) |

A i B i
n

L i A i B ii

A i B i

x x

d A B x x
n

x x

 

  

 
=

− + 
 

= − + 
 − 

                        (23)                                               

 

Definition 13. Given two uncertainty numbers (UNs) 

( , , )A A AA   =  and ( , , )B B BB   = , their distance 
2L  is 

defined as: 

 

2

2

2

1

2

( ( ) ( ))
1

( , ) ( ( ) ( ))

( ( ) ( ))

A i B i

n

L A i B ii

A i B i

x x

d A B x x
n

x x

 

 

 

=

 − +
 

= − + 
 

− 

                       (24)                                                        

 

Definition 14. Given two uncertainty numbers (UNs) 

( , , )A A AA   =  and ( , , )B B BB   = , their weighted 

distance 
2L is defined as: 

 

2

2

2

1

2

( ( ) ( ))
1

( , ) ( ( ) ( ))

( ( ) ( ))

A i B i

n

L i A i B ii

A i B i

x x

d A B x x
n

x x

 

  

 

=

 − +
 

= − + 
 

− 

                   (25) 

                                                          

Definition 15. Given two uncertainty numbers (UNs) 

( , , )A A AA   =  and ( , , )B B BB   = , their distance L
 is 

defined as: 

 

1

| ( ) ( ) |,

( , ) max | ( ) ( ) |,

| ( ) ( ) |

A i B i
n

L A i B ii

A i B i

x x

d A B x x

x x

 

 

 
 =

− 
 

= − 
 − 

       (26)                                                                  

 

Definition 16. Given two uncertainty numbers (UNs) 

( , , )A A AA   =  and ( , , )B B BB   = , their weighted 

distance L
is defined as: 

 

1

| ( ) ( ) |, |

( , ) max ( ) ( ) |, |

( ) ( ) |

A i B i
n

L i A i B ii

A i B i

x x

d A B x x

x x

 

  

 
 =

 −  
  

= −  
  −  

                (27)  

                                                         

Definition 17. Given an uncertainty decision matrix 

[ ]a a ij mxnJ J=  with uncertainty numbers (UNs) 

( , , )A A AA   =  . Positive ideal solution J +
is defined as: 

 

( )
max , min , min

, ,
| 1, 2,...,

ij ij ij
j jj

j j jJ
j n

  
  + + + +

 
= =  

 = 

                 (28)  

 

Definition 18. Let  1 2, ,..., mX x x x=  be a set of alternatives, 

 1 2( , ,..., mC c c c=  be the set of attributes.  The ratings of 

alternatives ( 1,2,..., )jx X j n =  on attributes 
ic C are 

expressed with uncertainty number , ,ij ij ij ijA   = . Then, 

 

1 2

1 11 11 11 12 12 12 1 1 1

2
21 21 21 22 22 22 2 2 2

1 1 1 2 2 2

, , , , , ,

, , , , , ,[ ]

, , , , , ,

n
X XX

n n n

n n n
ij mxn

m
m m m m m m mn mn mn

c

c
A

c

        

        

        

 
 
 
 =
 
 
 
 
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[ ]ij mxnA  is called a multiple criteria decision-making matrix. 

The importance weight vector of attribute set 

 1 2( , ,..., mC c c c=  is given as: 

 

( )1 2 1 1 1 2 2 2( , ,..., ) , , , , , ,...., , ,i m m m m            = =  

 

The initial decision matrix is normalized [ ]ij mxnA : benefit-

type attributes remain the same, while the cost-type attributes 

are transformed into benefit-type according to Equation (10). 

 

1 2

11 12 111 11 12 12 1 1
1

2 22 221 22 22 2 221 21

1 21 1 2 2

, , , , , ,

, , , , , ,[ ]

, , , , , ,

n
X XX

nn n

nn nij mxn

m

m m mnm m m m mn mn

c

c
A

c

        

        

        

 
 
 
 

=  
 
 
  
 

 

 

Then, the weighted normalized multiple criteria decision-

making matrix [ ] [ ]ij mxn i ij mxnA A= is presented as:  

 

1 2

11 12 111 11 12 12 1 11

2 21 22 221 21 22 22 2 2

1 21 1 2 2

, , , , , ,

, , , , , ,[ ]

, , , , , ,

n
X XX

nn n

nn nij mxn

m

m m mnm m m m mn mn

c

c
A

c

        

        

        

 
 
 
 

=  
 
 
 
 

 

 

where 

 

, , , , , ,

, ,

ijij ij i ij i i i ij ij ij

i ij i ij i ij i ij i ij

A         

         

= =

= + − + −
 

 

Based on the obtained weighted normalized decision 

matrices D1, D2, D3, and equation (13), the aggregated group 

decision matrix 
7 3[ ]ij xA  of all decision-makers is constructed 

as: 

 

1 2

12 111 11 12 12 1 1111

2 22 221 21 22 22 2 221

1 21 1 2 2

, , , , , ,

, , , , , ,[ ]

, , , , , ,

n
X XX

nn n

nn nij mxn

m

m m mnm m m m mn mn

c

c
A

c

        

        

        

 
 
 
 

=  
 
 
 
 

 

 

Then, the positive ideal solution J +
of the attributes 

( 1, 2,..., )ic C i m =  is determined from the weighted 

decision-making matrix [ ]ij mxnA  according to the Definition 

17: 

 

( )
max , min , min

, ,
| 1, 2,...,

ij ij ij
i ii

i i iJ
i m

  
  + + + +

 
= =  

 = 

         

 

The proximity scores 
1

( )Ls d , 
2

( )Ls d , and ( )Ls d


 are 

calculated according to Definitions 11, 13 and 15. 

Finally, the alternatives are ranked using the scores 
1

( )Ls d

, 
2

( )Ls d , and ( )Ls d


 according to Definitions 11, 13 and 15. 

 

Definition 19. Sensitivity analysis is a crucial technique used 

in decision-making and optimization. It assesses how changes 

in input parameters (such as weights, coefficients, or 

constraints) impact the output of a model or system. 

Sensitivity analysis is performed to measure the robustness 

of the results obtained from the proposed methodology. This 

analysis allows exploration of various scenarios related to 

decision-makers’ priorities regarding criterion weights, 

which could potentially impact the outcome of the proposed 

methodology.  

To achieve this, the uncertainty weights assigned by each 

expert to a specific criterion are modified while keeping the 

uncertainty weights of other criteria constant. Subsequently, 

the criteria weights are recalculated based on these new 

weights. The alternatives are then reordered using varying 

proximity values. Overall, the results are thoroughly analyzed 

by considering different scenarios. 

 

Let [ ]ij mxnA  be a decision-making matrix,   

( )1 2 1 1 1 2 2 2( , ,..., ) , , , , , ,...., , ,i m m m m            = =  

 

be a weighted vector and  

 
'

1 2

1 1 1 2 2 2

( , ,..., )

, , , , , ,....,

, , ,...., , ,

i m

T

k k k k k k m m ma

   

     

       

=

 
=  

 +  +  +  

 

 

be a changed weighted vector where 
ka , 

k and 
k are 

increments of 
k , 

k  and 
k , respectively.  

 

Definition 20. Let  1 2, ,..., nX x x x= be a set of alternatives, 

 1 2( , ,..., mC c c c=  be a set of attributes, and 

1
, ,i i i i mx

   =  be a weighted vector for attributes. Hence, 

the algorithm for ranking alternatives is presented: 

 

Algorithm 1:  

 

Step 1: Input initial decision-making matrices [ ]ij mxnA ;  

Step 2: Determine the weighted vector for attributes 

1
, ,i i i i mx

   = ;  

Step 3: Normalize the initial decision-making matrices  

[ ]ij mxnA  according to the equation (10); 

Step 4: Calculate the weighted normalized decision-making 

matrices [ ]ij mxnA ;  

Step 5: Calculate the aggregated group decision matrix 

[ ]ij mxnA    
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Step 6: Determine the positive ideal solution J +
of the 

attributes ( 1, 2,..., )ic C i m =  from the aggregated group 

decision matrix [ ]ij mxnA  according to the Definition 17; 

 

( )
max , min , min

, ,
| 1, 2,...,

ij ij ij
i ii

i i iJ
i m

  
  + + + +

 
= =  

 = 

         

 

Step 7: Calculate the proximity scores 
1

( )Ls d , 
2

( )Ls d , and 

( )Ls d


 according to Definitions 11, 13 and 15; 

Step 8: Rank the alternatives using the scores 
1

( )Ls d , 
2

( )Ls d

, and ( )Ls d


 according to Definitions 11, 13 and 15. 

III. APPLICATION  

In this section, the stealth combat aircraft selection 

problem was presented as an illustrative example to show its 

applicability and effectiveness in decision making problems. 

Assume that  1 2, ,..., nX x x x=  is a set of stealth combat 

aircraft alternatives, and  1 2( , ,..., mC c c c=  is a set of 

attributes: Stealth Capability (C1), Performance Capability 

(C2), Survivability (C3), Avionics and Sensors (C4), 

Interoperability (C5), Operational Capability (C6), and Cost 

and Maintenance Affordability (C7). Attributes C1-C6 are of 

benefit type, while C7 is a cost type attribute. 

In this group decision-making problem, a three-member 

decision-making committee with equal weights of 

importance from the National Ministry of Defense aims to 

select the best alternative stealth combat aircraft from three 

preselected alternatives, considering seven evaluation 

attributes. Utilizing criteria weights, such as the vector of 

importance weights for these attributes, enables decision-

makers (Ds) to establish priorities in the decision-making 

process. Hence, the solution steps of the Algorithm 1 

according to the Definition 20 are presented as follows: 

 

Step 1. Three initial decision-making matrices (D1,D2,D3) 

7 3[ ]ij xA are established as: 

 
D1 X1 X2 X3 

C1 <0.71,0.15,0.13> <0.77,0.03,0.19> <0.15,0.25,0.59> 

C2 <0.85,0.09,0.05> <0.35,0.03,0.61> <0.57,0.01,0.41> 

C3 <0.95,0.01,0.03> <0.87,0.05,0.07> <0.47,0.25,0.27> 

C4 <0.78,0.07,0.14> <0.71,0.09,0.19> <0.17,0.15,0.67> 

C5 <0.81,0.03,0.15> <0.37,0.03,0.59> <0.39,0.11,0.49< 

C6 <0.95,0.01,0.03> <0.87,0.03,0.09> <0.67,0.03,0.29> 

C7 <0.69,0.13,0.17> <0.79,0.05,0.15> <0.25,0.35,0.39> 

 
D2 X1 X2 X3 

C1 <0.61,0.15,0.23> <0.67,0.13,0.19> <0.55,0.25,0.19> 

C2 <0.75,0.09,0.15> <0.35,0.13,0.51> <0.57,0.01,0.41> 

C3 <0.85,0.01,0.13> <0.77,0.05,0.17> <0.47,0.15,0.37> 

C4 <0.67,0.17,0.15> <0.61,0.19,0.19> <0.87,0.05,0.07> 

C5 <0.81,0.03,0.15> <0.37,0.13,0.49> <0.79,0.07,0.13> 

C6 <0.85,0.01,0.13> <0.87,0.09,0.03> <0.57,0.13,0.29> 

C7 <0.67,0.13,0.19> <0.79,0.15,0.05> <0.65,0.15,0.19> 

 

 

D3 X1 X2 X3 

C1 <0.51,0.15,0.33> <0.57,0.13,0.29> <0.65,0.15,0.19> 

C2 <0.65,0.19,0.15> <0.45,0.13,0.41> <0.67,0.01,0.31> 

C3 <0.85,0.11,0.03> <0.67,0.15,0.17> <0.57,0.13,0.29> 

C4 <0.57,0.17,0.25> <0.51,0.19,0.29> <0.93,0.01,0.05> 

C5 <0.71,0.13,0.15> <0.47,0.13,0.39> <0.79,0.11,0.09> 

C6 <0.75,0.11,0.13> <0.77,0.09,0.13> <0.67,0.13,0.19> 

C7 <0.79,0.07,0.13> <0.69,0.15,0.15> <0.65,0.17,0.17> 

  

Step 2. The importance weight vector of attributes is 

determined as: 
1 2 3 4

5 6 7

0.43,0.29,0.23 , 0.61,0.13,0.21 , 0.71,0.11,0.13 , 0.59,0.17,0.19 ,

0.55,0.13,0.27 , 0.49,0.13,0.33 , 0.75,0.05,0.15

C C C C

C C C


 
 

=  
 
 

 

 

Step 3. Using the equation (10), the normalized decision 

matrices (D1,D2,D3)  7 3[ ]ij xA  are established as the basis for 

further analysis as:  

 
D1 X1 X2 X3 

C1 <0.71,0.15,0.13> <0.77,0.03,0.19> <0.15,0.25,0.59> 

C2 <0.85,0.09,0.05> <0.35,0.03,0.61> <0.57,0.01,0.41> 

C3 <0.95,0.01,0.03> <0.87,0.05,0.07> <0.47,0.25,0.27> 

C4 <0.78,0.07,0.14> <0.71,0.09,0.19> <0.17,0.15,0.67> 

C5 <0.81,0.03,0.15> <0.37,0.03,0.59> <0.39,0.11,0.49< 

C6 <0.95,0.01,0.03> <0.87,0.03,0.09> <0.67,0.03,0.29> 

C7 <0.17,0.13,0.69> <0.15,0.05,0.79> <0.39,0.35,0.25> 

 

 
D3 X1 X2 X3 

C1 <0.51,0.15,0.33> <0.57,0.13,0.29> <0.65,0.15,0.19> 

C2 <0.65,0.19,0.15> <0.45,0.13,0.41> <0.67,0.01,0.31> 

C3 <0.85,0.11,0.03> <0.67,0.15,0.17> <0.57,0.13,0.29> 

C4 <0.57,0.17,0.25> <0.51,0.19,0.29> <0.93,0.01,0.05> 

C5 <0.71,0.13,0.15> <0.47,0.13,0.39> <0.79,0.11,0.09> 

C6 <0.75,0.11,0.13> <0.77,0.09,0.13> <0.67,0.13,0.19> 

C7 <0.13,0.07,0.79> <0.15,0.15,0.69> <0.17,0.17,0.65> 

 

Step 4. Using the equation (12), the weighted normalized 

decision-making matrices (D1,D2,D3) [ ]ij mxnA  are found as: 

 
D1 X1 X2 X3 

C1 <0.31,0.40,0.33> <0.33,0.31,0.38> <0.06,0.47,0.68> 

C2 <0.52,0.21,0.25> <0.21,0.16,0.69> <0.35,0.14,0.53> 

C3 <0.67,0.12,0.16> <0.62,0.15,0.19> <0.33,0.33,0.36> 

C4 <0.46,0.23,0.30> <0.42,0.24,0.34> <0.10,0.29,0.73> 

C5 <0.45,0.16,0.38> <0.20,0.16,0.70> <0.21,0.23,0.63> 

C6 <0.47,0.14,0.35> <0.43,0.16,0.39> <0.33,0.16,0.52> 

C7 <0.13,0.17,0.74> <0.11,0.10,0.82> <0.29,0.38,0.36> 

 

 

 

 

 

 

D2 X1 X2 X3 

C1 <0.61,0.15,0.23> <0.67,0.13,0.19> <0.55,0.25,0.19> 

C2 <0.75,0.09,0.15> <0.35,0.13,0.51> <0.57,0.01,0.41> 

C3 <0.85,0.01,0.13> <0.77,0.05,0.17> <0.47,0.15,0.37> 

C4 <0.67,0.17,0.15> <0.61,0.19,0.19> <0.87,0.05,0.07> 

C5 <0.81,0.03,0.15> <0.37,0.13,0.49> <0.79,0.07,0.13> 

C6 <0.85,0.01,0.13> <0.87,0.09,0.03> <0.57,0.13,0.29> 

C7 <0.19,0.13,0.67> <0.05,0.15,0.79> <0.19,0.15,0.65> 
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D2 X1 X2 X3 

C1 <0.26,0.40,0.41> <0.29,0.38,0.38> <0.24,0.47,0.38> 

C2 <0.46,0.21,0.33> <0.21,0.24,0.61> <0.35,0.14,0.53> 

C3 <0.60,0.12,0.24> <0.55,0.15,0.28> <0.33,0.24,0.45> 

C4 <0.40,0.31,0.31> <0.36,0.33,0.34> <0.51,0.21,0.25> 

C5 <0.45,0.16,0.38> <0.20,0.24,0.63> <0.43,0.19,0.36> 

C6 <0.42,0.14,0.42> <0.43,0.21,0.35> <0.28,0.24,0.52> 

C7 <0.14,0.17,0.72> <0.04,0.19,0.82> <0.14,0.19,0.70> 

 
D3 X1 X2 X3 

C1 <0.22,0.40,0.48> <0.25,0.38,0.45> <0.28,0.40,0.38> 

C2 <0.40,0.30,0.33> <0.27,0.24,0.53> <0.41,0.14,0.45> 

C3 <0.60,0.21,0.16> <0.48,0.24,0.28> <0.40,0.23,0.38> 

C4 <0.34,0.31,0.39> <0.30,0.33,0.42> <0.55,0.18,0.23> 

C5 <0.39,0.24,0.38> <0.26,0.24,0.55> <0.43,0.23,0.34> 

C6 <0.37,0.23,0.42> <0.38,0.21,0.42> <0.33,0.24,0.46> 

C7 <0.10,0.12,0.82> <0.11,0.19,0.74> <0.13,0.21,0.70> 

 

Step 5. Using equation (13), the aggregated group decision 

matrix (AM) 
7 3[ ]ij xA  based on the obtained weighted 

normalized decision matrices (D1, D2, D3) of all decision-

makers is constructed as: 

 
AM X1 X2 X3 

C1 <0.26,0.40,0.40> <0.29,0.36,0.40> <0.20,0.44,0.46> 

C2 <0.46,0.23,0.30> <0.23,0.21,0.61> <0.37,0.14,0.51> 

C3 <0.63,0.14,0.18> <0.55,0.18,0.25> <0.36,0.26,0.40> 

C4 <0.40,0.28,0.33> <0.36,0.30,0.37> <0.42,0.22,0.35> 

C5 <0.43,0.18,0.38> <0.22,0.21,0.62> <0.37,0.21,0.43> 

C6 <0.42,0.16,0.39> <0.41,0.19,0.38> <0.31,0.21,0.50> 

C7 <0.12,0.15,0.76> <0.09,0.15,0.79> <0.19,0.25,0.56> 

 

Step 6: The positive ideal solution J +
of the attributes 

( 1, 2,..., )ic C i m =  from the aggregated group decision 

matrix (AM) 
7 3[ ]ij xA  is determined according to the 

Definition 17 as: 

 

( )
max , min , min

, ,
| 1, 2,...,

ij ij ij
i ii

i i iJ
i m

  
  + + + +

 
= =  

 = 

      

    
1 2 3 4

5 6 7

0.29,0.36,0.40 , 0.46,0.14,0.30 , 0.63,0.14,0.18 , 0.42,0.22,0.33 ,

0.43,0.18,0.38 , 0.42,0.16,0.38 , 0.19,0.15,0.56

C C C C

C C C
J +

 
 

=  
 
 

 

 

Step 7: The proximity scores 
1

( )Ls d , 
2

( )Ls d , and ( )Ls d


 of 

alternatives jA  are calculated according to Definitions 11, 13 

and 15 as: 

 
Measure X1 X2 X3 

1
( )Ls d  0.073 0.257 0.237 

jR  1 3 2 

2
( )Ls d  0.091 0.220 0.188 

jR  1 3 2 

( )Ls d


 0.263 0.606 0.608 

jR  1 2 3 

 

       

 Additionally: 

• The 
1L  norm is calculated as the sum of the absolute 

values of the vector. 

• The 
2L  norm is calculated as the square root of the sum 

of the squared vector values. 

• The L
 norm is calculated as the maximum vector value. 

 

Ranking Alternatives and Decision Making: The proposed 

uncertainty set-based MCDM approach utilizes a proximity 

measure to rank alternatives. This measure calculates the 

closeness of each alternative to an ideal solution within the 

uncertainty set framework. Lower proximity scores indicate 

a greater preference for that alternative. Based on the 

calculated proximity scores, the alternatives are ranked in 

ascending order, with the lowest score representing the most 

desirable option. 

 

Step 8: In the context of the presented stealth combat aircraft 

selection problem, the ranking orders (
jR ) of alternatives  

(
jA ) obtained through the uncertainty-based MCDM 

analysis using (L1), (L2), and (L∞) norms according to 

Definitions 11, 13, and 15 are as follows: 

 

jR  Ranking orders 

of alternatives 

1( )R L  
1 3 2X X X  

2( )R L  
1 3 2X X X  

( )R L
 

1 2 3X X X  

 

These ranking orders indicate that alternative (
1X ) 

exhibits the lowest proximity to the ideal solution within the 

defined uncertainty set. Therefore, according to the analysis, 

(
1X ) is the most suitable choice for the given decision 

scenario. The correlation analysis of the ranking orders of 

alternatives is found as follows: 

 

  1( )R L  
2( )R L  ( )R L

 

1( )R L  1   

2( )R L  1 1  
( )R L

 0,5 0,5 1 

 

  Strengths of Uncertainty Sets: Uncertainty sets offer 

several advantages for tackling MCDM problems 

characterized by ambiguity and imprecision. Here are some 

key points: 

Structured representation of uncertainty: Uncertainty sets 

provide a structured framework for incorporating uncertainty 

information into both criteria weights and attribute 

evaluations. This allows for a more nuanced and realistic 

representation of the decision-making environment. 

Robust ranking mechanism: The proximity measure 

employed within the uncertainty set framework facilitates the 

establishment of a robust ranking order for alternatives. By 

considering the inherent ambiguity in the data, the method 

avoids overly simplistic rankings based on single-point 

estimations. 
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Enhanced decision-making: By accounting for uncertainty, 

uncertainty set-based MCDM analysis empowers decision-

makers with a more comprehensive understanding of the 

trade-offs involved in selecting the most suitable alternative. 

Future Considerations: While the current study 

demonstrates the effectiveness of the proposed approach for 

the stealth combat aircraft selection problem, further research 

can explore potential extensions: 

Comparative analysis: Comparisons with existing MCDM 

methods under uncertainty could provide valuable insights 

into the relative strengths and weaknesses of the uncertainty 

set-based approach. 

Sensitivity analysis: Investigating the sensitivity of the 

ranking order to variations in the initial uncertainty 

parameters would further enhance the robustness of the 

methodology. 

Generalization:Exploring the application of the uncertainty 

set-based MCDM framework to a wider range of MCDM 

problems with diverse complexities would solidify its broad 

applicability. 

In conclusion, this study introduces an uncertainty set-

based MCDM approach for ranking alternatives in the 

presence of ambiguity and imprecision. The application to a 

real-world stealth combat aircraft selection problem 

demonstrates the effectiveness of the proposed methodology 

in providing a robust ranking order for decision-making. The 

inherent flexibility and adaptability of uncertainty sets 

position them as a valuable tool for navigating uncertainty in 

various MCDM scenarios. 

IV. CONCLUSION 

This study introduces uncertainty sets as a vital 

mathematical framework for confronting the pervasive 

ambiguity and imprecision inherent in real-world decision-

making scenarios. The increasing recognition of complexities 

in multiple criteria decision-making analysis (MCDM), 

particularly within fuzzy environments, necessitates robust 

methodologies for handling uncertainty. This work addresses 

this need by introducing uncertainty sets and exploring their 

applications in decision-making processes. 

The introduction of uncertainty sets establishes a 

foundation for understanding and managing uncertainty 

systematically. These sets provide a structured approach to 

represent and navigate imprecise information, offering a 

promising avenue for grappling with the intricacies of 

decision-making under uncertainty. Basic concepts 

surrounding uncertainty sets are elucidated, setting the stage 

for subsequent development and analysis. 

The focus then shifts towards employing uncertainty sets 

in the context of MCDM problems. The challenge of 

incorporating uncertainty information into criteria weights 

and attribute evaluations is addressed, aiming to rank 

alternatives while accounting for inherent ambiguity. A novel 

proximity method is developed within the uncertainty set 

framework to establish a robust ranking order for alternatives, 

navigating the complexity of decision-making with 

confidence. 

To illustrate the applicability of this approach, uncertainty-

based MCDM analysis is applied to a practical problem: 

stealth combat aircraft selection. By carefully considering 

seven evaluation attributes and three candidate alternatives, 

the effectiveness of this methodology is demonstrated in a 

real-world scenario. The results underscore the potency of 

uncertainty sets in informing decision-making processes, 

offering valuable insights into complex decision landscapes. 

Beyond aircraft selection, the proposed uncertainty-based 

MCDM analysis holds broad applicability across diverse 

fields. Researchers and practitioners can leverage this 

approach to tackle a myriad of real-life problems, from 

resource allocation and project prioritization to risk 

assessment. The flexibility and adaptability of this method 

position it as a valuable tool for navigating uncertainty and 

making informed decisions in an ever-changing environment. 
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