Search results for: temperature process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7372

Search results for: temperature process

3412 Creating 3D Models Using Infrared Thermography with Remotely Piloted Aerial Systems

Authors: P. van Tonder, C. C. Kruger

Abstract:

Concrete structures deteriorate over time and degradation escalates due to various factors. The rate of deterioration can be complex and unpredictable in nature. Such deteriorations may be located beneath the surface of the concrete at high elevations. This emphasizes the need for an efficient method of finding such defects to be able to assess the severity thereof. Current methods using thermography to find defects require equipment to reach higher elevations. This could become costly and time consuming not to mention the risks involved in having personnel scaffold or abseiling at such heights. Accordingly, by combining the thermal camera needed for thermography and a remotely piloted aerial system (Drone/RPAS), it could be used to alleviate some of the issues mentioned. Images can be translated into a 3D temperature model to aid concrete diagnostics and with further research can relate back to the mechanical properties of the structure but will not be dealt with in this paper. Such diagnostics includes finding delamination, similar to finding delamination on concrete decks, which resides beneath the surface of the concrete before spalling can occur. Delamination can be caused by reinforcement eroding and causing expansion beneath the concrete surface. This could lead to spalling, where concrete pieces start breaking off from the main concrete structure.

Keywords: Concrete, diagnostic, infrared thermography, 3D thermal models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377
3411 A Fuzzy Model and Tool to Analyze SIVD Diseases Using TMS

Authors: A. Faro, D. Giordano, M. Pennisi, G. Scarciofalo, C. Spampinato, F. Tramontana

Abstract:

The paper proposes a methodology to process the signals coming from the Transcranial Magnetic Stimulation (TMS) in order to identify the pathology and evaluate the therapy to treat the patients affected by demency diseases. In particular, a fuzzy model is developed to identify the demency of the patients affected by Subcortical Ischemic Vascular Dementia and to measure the positive effect, if any, of a repetitive TMS on their motor performances. A tool is also presented to support the mentioned analysis.

Keywords: TMS, SIVD, Electromiography , Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1556
3410 Characterization of Ajebo Kaolinite Clay for Production of Natural Pozzolan

Authors: Gbenga M. Ayininuola, Olasunkanmi A. Adekitan

Abstract:

Calcined kaolinite clay (CKC) is a pozzolanic material that is current drawing research attention. This work investigates the conditions for the best performance of a CKC from a kaolinite clay source in Ajebo, Abeokuta (southwest Nigeria) known for its commercial availability. Samples from this source were subjected to X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). XRD shows that kaolinite is the main mineral in the clay source. This mineral is responsible for the pozzolanic behavior of CKC. DSC indicates that the transformation from the clay to CKC occurred between 550 and 750 oC. Using this temperature range, clay samples were milled and different CKC samples were produced in an electric muffle furnace using temperatures of 550, 600, 650, 700, 750 and 800 oC respectively for 1 hour each. This was also repeated for 2 hours. The degree of de-hydroxylation (dtg) and strength activity index (SAI) were also determined for each of the CKC samples. The dtg and SAI tests were repeated two more times for each sample and averages were taken. Results showed that peak dtg occurred at 750 oC for 1 hour calcining combination (94.27%) whereas marginal differences were recorded at some lower temperatures (90.97% for 650 oC for 2 hours; 91.05% for 700 oC for 1 hour and 92.77% for 700 oC for 2 hours). Optimum SAI was reported at 700 oC for 1 hour (99.05%). Rating SAI as a better parameter than dtg, 700 oC for 1 hour combination was adopted as the best calcining condition. The paper recommends the adoption of this clay source for pozzolan production by adopting the calcining conditions established in this work.

Keywords: Calcined kaolinite clay, calcination, optimum-calcining conditions, pozzolanity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
3409 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium Disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through a glass melting method. The glass rods were then fabricated into dental crowns via a hot pressing at 900˚C and 850˚C in order to study the effect of the pressing temperatures on the phase formation and microstructure of the glasses. Different samples of as cast glass and heat treated samples (600˚C and 700˚C) were used to press for investigating the effect of an initial microstructure on the hot pressing technique. Xray diffraction (XRD) and scanning electron microscopy (SEM) were performed to determine the phase formation and microstructure of the samples, respectively. XRD results show that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F and SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formations but have less effect during pressing. SEM micrographs showed the microstructure of Li2Si2O5 as lath-like shape in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by the hot pressing and compiled microstructure.

Keywords: Lithium disilicate, Hot pressing, Dental crown, Microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4175
3408 Challenges on Adopting Scrum for Distributed Teams in Home Office Environments

Authors: Marlon Luz, Daniel Gazineu, Mauro Teófilo

Abstract:

This paper describes the two actual tendencies in the software development process usage: 'Scrum' and 'work in home office'. It-s exposed the four main challenges to adopt Scrum framework for distributed teams in this cited kind of work. The challenges are mainly based on the communication problems due distances since the Scrum encourages the team to work together in the same room, and this is not possible when people work distributed in their homes.

Keywords: Agile, Scrum, Distributed Work, Home Office.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
3407 Heat Transfer Characteristics and Fluid Flow past Staggered Flat-Tube Bank Using CFD

Authors: Zeinab Sayed Abdel-Rehim

Abstract:

A computational fluid dynamic (CFD-Fluent 6.2) for two-dimensional fluid flow is applied to predict the pressure drop and heat transfer characteristics of laminar and turbulent flow past staggered flat-tube bank. Effect of aspect ratio ((H/D)/(L/D)) on pressure drop, temperature, and velocity contour for laminar and turbulent flow over staggered flat-tube bank is studied. The theoretical results of the present models are compared with previously published experimental data of different authors. Satisfactory agreement is demonstrated. Also, the comparison between the present study and others analytical methods for the Re number with Nu number is done. The results show as the Reynolds number increases the maximum velocity in the passage between the upper and lower tubes increases. The comparisons show a fair agreement especially in the turbulent flow region. The good agreement of the data of this work with these recommended analytical methods validates the current study.

Keywords: Aspect ratio ((H/D)/(L/D)), CFD, fluid flow, heat transfer, staggered arrangement, tube bank, and turbulent flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3730
3406 Determination of Resistance to Freezing of Bonded Façade Joint

Authors: B. Nečasová, P. Liška, J. Šlanhof

Abstract:

Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding wastested and strength in shear was determined under tensile stress.Research data indicate that little, if any, damage to the bond results from freezingcycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.

Keywords: Adhesive system, bonded joints, wooden lightweight façade, timber substructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4669
3405 A Comparative Study of Image Segmentation using Edge-Based Approach

Authors: Rajiv Kumar, Arthanariee A. M.

Abstract:

Image segmentation is the process to segment a given image into several parts so that each of these parts present in the image can be further analyzed. There are numerous techniques of image segmentation available in literature. In this paper, authors have been analyzed the edge-based approach for image segmentation. They have been implemented the different edge operators like Prewitt, Sobel, LoG, and Canny on the basis of their threshold parameter. The results of these operators have been shown for various images.

Keywords: Edge Operator, Edge-based Segmentation, Image Segmentation, Matlab 10.4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3583
3404 Determination of Electromagnetic Properties of Human Tissues

Authors: Iliana Marinova, Valentin Mateev

Abstract:

In this paper a computer system for electromagnetic properties measurements is designed. The system employs Agilent 4294A precision impedance analyzer to measure the amplitude and the phase of a signal applied over a tested biological tissue sample. Measured by the developed computer system data could be used for tissue characterization in wide frequency range from 40Hz to 110MHz. The computer system can interface with output devices acquiring flexible testing process.

Keywords: Electromagnetic properties, human tissue, bioimpedance, measurement system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
3403 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: Color depth sensor, human computer interface, interactive surface, spatial augmented reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
3402 A Sub-mW Low Noise Amplifier for Wireless Sensor Networks

Authors: Gianluca Cornetta, David J. Santos, Balwant Godara

Abstract:

A 1.2 V, 0.61 mA bias current, low noise amplifier (LNA) suitable for low-power applications in the 2.4 GHz band is presented. Circuit has been implemented, laid out and simulated using a UMC 130 nm RF-CMOS process. The amplifier provides a 13.3 dB power gain a noise figure NF< 2.28 dB and a 1-dB compression point of -15.69 dBm, while dissipating 0.74 mW. Such performance make this design suitable for wireless sensor networks applications such as ZigBee.

Keywords: Current Reuse, IEEE 802.15.4 (ZigBee), Low NoiseAmplifiers, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
3401 Gas Lift Optimization Using Smart Gas Lift Valve

Authors: Mohamed A. G. H. Abdalsadig, Amir Nourian, G. G. Nasr, M. Babaie

Abstract:

Gas lift is one of the most common forms of artificial lift, particularly for offshore wells because of its relative down hole simplicity, flexibility, reliability, and ability to operate over a large range of rates and occupy very little space at the well head. Presently, petroleum industry is investing in exploration and development fields in offshore locations where oil and gas wells are being drilled thousands of feet below the ocean in high pressure and temperature conditions. Therefore, gas-lifted oil wells are capable of failure through gas lift valves which are considered as the heart of the gas lift system for controlling the amount of the gas inside the tubing string. The gas injection rate through gas lift valve must be controlled to be sufficient to obtain and maintain critical flow, also, gas lift valves must be designed not only to allow gas passage through it and prevent oil passage, but also for gas injection into wells to be started and stopped when needed. In this paper, smart gas lift valve has been used to investigate the effect of the valve port size, depth of injection and vertical lift performance on well productivity; all these aspects have been investigated using PROSPER simulator program coupled with experimental data. The results show that by using smart gas lift valve, the gas injection rate can be controlled which leads to improved flow performance.

Keywords: Effect of gas lift valve port size, effect water cut, and vertical flow performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
3400 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process

Authors: M. Massour El Aoud, M. Franceschi, M. Maher

Abstract:

The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.

Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
3399 Modeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients

Authors: Paola Lecca, Lorenzo Dematte, Corrado Priami

Abstract:

The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic cells. In this work a mathematical treatment of diffusion that can be incorporated in a stochastic algorithm simulating the dynamics of a reaction-diffusion system is presented. The movement of a molecule A from a region i to a region j of the space is represented as a first order reaction Ai k- ! Aj , where the rate constant k depends on the diffusion coefficient. The diffusion coefficients are modeled as function of the local concentration of the solutes, their intrinsic viscosities, their frictional coefficients and the temperature of the system. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the intrinsic reaction kinetics and diffusion dynamics. To demonstrate the method the simulation results of the reaction-diffusion system of chaperoneassisted protein folding in cytoplasm are shown.

Keywords: Reaction-diffusion systems, diffusion coefficient, stochastic simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
3398 Design and Implementation of Medium Access Control Based Routing on Real Wireless Sensor Networks Testbed

Authors: Smriti Agarwal, Ashish Payal, B. V. R. Reddy

Abstract:

IEEE 802.15.4 is a Low Rate Wireless Personal Area Networks (LR-WPAN) standard combined with ZigBee, which is going to enable new applications in Wireless Sensor Networks (WSNs) and Internet of Things (IoT) domain. In recent years, it has become a popular standard for WSNs. Wireless communication among sensor motes, enabled by IEEE 802.15.4 standard, is extensively replacing the existing wired technology in a wide range of monitoring and control applications. Researchers have proposed a routing framework and mechanism that interacts with the IEEE 802.15.4 standard using software platform. In this paper, we have designed and implemented MAC based routing (MBR) based on IEEE 802.15.4 standard using a hardware platform “SENSEnuts”. The experimental results include data through light and temperature sensors obtained from communication between PAN coordinator and source node through coordinator, MAC address of some modules used in the experimental setup, topology of the network created for simulation and the remaining battery power of the source node. Our experimental effort on a WSN Testbed has helped us in bridging the gap between theoretical and practical aspect of implementing IEEE 802.15.4 for WSNs applications.

Keywords: IEEE 802.15.4, routing, wireless sensor networks, ZigBee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
3397 Characterization and Geochemical Modeling of Cu and Zn Sorption Using Mixed Mineral Systems Injected with Iron Sulfide under Sulfidic-Anoxic Conditions I: Case Study of Cwmheidol Mine Waste Water, Wales, United Kingdom

Authors: D. E. Egirani, J. E. Andrews, A. R. Baker

Abstract:

This study investigates sorption of Cu and Zn contained in natural mine wastewater, using mixed mineral systems in sulfidic-anoxic condition. The mine wastewater was obtained from disused mine workings at Cwmheidol in Wales, United Kingdom. These contaminants flow into water courses. These water courses include River Rheidol. In this River fishing activities exist. In an attempt to reduce Cu-Zn levels of fish intake in the watercourses, single mineral systems and 1:1 mixed mineral systems of clay and goethite were tested with the mine waste water for copper and zinc removal at variable pH. Modelling of hydroxyl complexes was carried out using phreeqc method. Reactions using batch mode technique was conducted at room temperature. There was significant differences in the behaviour of copper and zinc removal using mixed mineral systems when compared  to single mineral systems. All mixed mineral systems sorb more Cu than Zn when tested with mine wastewater.

Keywords: Cu- Zn, hydroxyl complexes, kinetics, mixed mineral systems, reactivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
3396 Solving Fully Fuzzy Linear Systems by use of a Certain Decomposition of the Coefficient Matrix

Authors: S. H. Nasseri, M. Sohrabi, E. Ardil

Abstract:

In this paper, we give a certain decomposition of the coefficient matrix of the fully fuzzy linear system (FFLS) to obtain a simple algorithm for solving these systems. The new algorithm can solve FFLS in a smaller computing process. We will illustrate our method by solving some examples.

Keywords: Fully fuzzy linear system, Fuzzy number, LUdecomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687
3395 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment

Authors: Beena Sethi

Abstract:

This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.

Keywords: Degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis. DSC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
3394 Identification of Cellulose-Hydrolytic Thermophiles Isolated from Sg. Klah Hot Spring Based On 16S rDNA Gene Sequence

Authors: M. J. Norashirene, Y. Zakiah, S. Nurdiana, I. Nur Hilwani, M. H. Siti Khairiyah, M. J. Muhamad Arif

Abstract:

In this study, six bacterial isolates of a slightly thermophilic organism from the Sg. Klah hot spring, Malaysia were successfully isolated and designated as M7T55D1, M7T55D2, M7T55D3, M7T53D1, M7T53D2 and M7T53D3 respectively. The bacterial isolates were screened for their cellulose hydrolytic ability on Carboxymethlycellulose agar medium. The isolated bacterial strains were identified morphologically, biochemically and molecularly with the aid of 16S rDNA sequencing. All of the bacteria showed their optimum growth at a slightly alkaline pH of 7.5 with a temperature of 55°C. All strains were Gram-negative, non-spore forming type, strictly aerobic, catalase-positive and oxidase-positive with the ability to produce thermostable cellulase. Based on BLASTn results, bacterial isolates of M7T55D2 and M7T53D1 gave the highest homology (97%) with similarity to Tepidimonas ignava while isolates M7T55D1, M7T55D3, M7T53D2 and M7T53D3 showed their closest homology (97%-98%) with Tepidimonas thermarum. These cellulolytic thermophiles might have a commercial potential to produce valuable thermostable cellulase.

Keywords: Cellulase, Cellulolytic, Thermophiles, 16S rDNA Gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
3393 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction

Authors: A. Yazdanmehr, H. Jahed

Abstract:

Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.

Keywords: Large strain, compression-tension, loading-unloading, Mg alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
3392 Computer-Based Assessment of Pre-assigned Individual Education Plans in Special Education

Authors: Yasar Guneri Sahin, Mehmet Cudi Okur

Abstract:

Assessment of IEP (Individual Education Plan) is an important stage in the area of special education. This paper deals with this problem by introducing computer software which process the data gathered from application of IEP. The software is intended to be used by special education institution in Turkey and allows assessment of school and family trainings. The software has a user friendly interface and its design includes graphical developer tools.

Keywords: Disabled individual, software for education, assessment of education, special education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
3391 Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching

Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker

Abstract:

We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.

Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
3390 Influence of Number Parallels Paths of a Winding on Overvoltage in the Asynchronous Motors Fed by PWM- converters

Authors: Belassel Mohand-Tahar

Abstract:

This work is devoted to the calculation of the undulatory parameters and the study of the influence of te number parallel path of a winding on overvoltage compared to the frame and between turns (sections) in a multiturn random winding of an asynchronous motors supplied with PWM- converters.

Keywords: Asynchronous Motors, Parallel path, PWMconverters, Undulatory process, Undulatory parameters, Undulatory voltage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
3389 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
3388 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials

Authors: P. Ninduangdee, V. I. Kuprianov

Abstract:

Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behavior of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.

Keywords: Palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008
3387 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

Authors: H. Mohammadiun, A. Kianifar, A. Kargar

Abstract:

Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.

Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
3386 Development of Molecular Imprinted Polymers (MIPs) for the Selective Removal of Carbamazepine from Aqueous Solution

Authors: Bianca Schweiger, Lucile Bahnweg, Barbara Palm, Ute Steinfeld

Abstract:

The occurrence and removal of trace organic contaminants in the aquatic environment has become a focus of environmental concern. For the selective removal of carbamazepine from loaded waters molecularly imprinted polymers (MIPs) were synthesized with carbamazepine as template. Parameters varied were the type of monomer, crosslinker, and porogen, the ratio of starting materials, and the synthesis temperature. Best results were obtained with a template to crosslinker ratio of 1:20, toluene as porogen, and methacrylic acid (MAA) as monomer. MIPs were then capable to recover carbamazepine by 93% from a 10-5 M landfill leachate solution containing also caffeine and salicylic acid. By comparison, carbamazepine recoveries of 75% were achieved using a nonimprinted polymer (NIP) synthesized under the same conditions, but without template. In landfill leachate containing solutions carbamazepine was adsorbed by 93-96% compared with an uptake of 73% by activated carbon. The best solvent for desorption was acetonitrile, with which the amount of solvent necessary and dilution with water was tested. Selected MIPs were tested for their reusability and showed good results for at least five cycles. Adsorption isotherms were prepared with carbamazepine solutions in the concentration range of 0.01 M to 5*10-6 M. The heterogeneity index showed a more homogenous binding site distribution.

Keywords: Carbamazepine, landfill leachate, removal, reuse

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
3385 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi

Authors: P. Phenpun, S. Wareewan

Abstract:

This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.

Keywords: Humanized care service, volunteer activity, nursing student, and learning log.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
3384 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation

Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince

Abstract:

In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.

Keywords: Ambient anaerobic digestion, biogas recovery, poultry manure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
3383 Selection the Optimum Cooling Scheme for Generators based on the Electro-Thermal Analysis

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

Optimal selection of electrical insulations in electrical machinery insures reliability during operation. From the insulation studies of view for electrical machines, stator is the most important part. This fact reveals the requirement for inspection of the electrical machine insulation along with the electro-thermal stresses. In the first step of the study, a part of the whole structure of machine in which covers the general characteristics of the machine is chosen, then based on the electromagnetic analysis (finite element method), the machine operation is simulated. In the simulation results, the temperature distribution of the total structure is presented simultaneously by using electro-thermal analysis. The results of electro-thermal analysis can be used for designing an optimal cooling system. In order to design, review and comparing the cooling systems, four wiring structures in the slots of Stator are presented. The structures are compared to each other in terms of electrical, thermal distribution and remaining life of insulation by using Finite Element analysis. According to the steps of the study, an optimization algorithm has been presented for selection of appropriate structure.

Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730