
 

 

  
Abstract—The approach proposed here is oriented in the 

direction of fuzzy system for the analysis and the synthesis of 
intelligent climate controllers, the simulation of the internal climate 
of the greenhouse is achieved by a linear model whose coefficients 
are obtained by identification. The use of fuzzy logic controllers for 
the regulation of climate variables represents a powerful way to 
minimize the energy cost. Strategies of reduction and optimization 
are adopted to facilitate the tuning and to reduce the complexity of 
the controller. 
 

Keywords—Greenhouse, fuzzy logic, optimization, gradient 
descent. 

I. INTRODUCTION 
HE agricultural greenhouse make parts of an important 
class of process agro food bio (greenhouses, cellars of 

fermentations…) that require the development of regulator 
multivariables to improve the development of a specific 
culture and to minimize the cost of production.    

The production under greenhouse can contribute efficiently 
to increase the productivity.  

To cover these needs it is therefore necessary to perfect the 
air-conditioning of the greenhouses in order to maintain the 
cultures in the conditions that are compatible with the 
agriculturist's agronomic and the economic objective. Seen the 
importance of such a process, systems of traditional air-
conditioning used in the habitat (refrigerated machine) are too 
expensive and cannot be put in work in the conditions of 
production. Other methods such as the statistical ventilation 
(roofing), the screens of shadiness or the cooling evaporative 
(moistening) can be adopted. These methods, if they are less 
costly, they are too difficult to control and to optimize because 
they call on very complex physical mechanisms.   

The interdependence of the temperature and the humidity 
requires a control strategy which takes into account the 
relationship between these two parameters, thus the approach 
proposed in this work is oriented in the synthesis of an 
intelligent climate controller based on the fuzzy logic.  

The use of the fuzzy logic in this work is due to exploit the 
tolerance of imprecision, uncertainty and partial truth, the use 
of human contributions, low solution cost and better rapport 
with reality.  

In recent fuzzy applications, it is getting more important to 
consider how to design optimal fuzzy controller from training 
data, in order to construct a reasonable and suitable fuzzy  

 
 

system. Due to the above reasons, it is natural and necessary 
to generate or tune fuzzy controller by some learning 
techniques like the gradient descent method. 

The model that we use to simulate the greenhouse in this 
work is a linear model whose coefficients are obtained by an 
out line identification [7], [18] and [20].  

In this paper, we propose two different approaches: a basic 
fuzzy controller and an optimised one. 

This paper shows that the optimized fuzzy controller can be 
successfully applied to control the greenhouse environment.  

II. GREENHOUSE MODEL  
A greenhouse has one purpose: to provide and maintain the 

environment that will result in optimum crop production for 
maximum profit. This includes an environment which 
efficiently works as well as for crop growth. We are in 
presence of a Multi Input – Multi Output (MIMO) system, non 
linear and non stationary in which intervene the energizing 
exchanges of the biologic functions assuring the development 
of the plants. Many works have been done on the development 
of the models of the greenhouse [1], [2], [3], [4], [5], [6], [18], 
[20], [21].  

Different works have been achieved on the agricultural 
greenhouses. Indeed, we can distinguish between two classes 
of models, the statistical models and the dynamic ones. 

The statistical models have been studied by various authors 
[3], [5] and [6]. They are directly descended of the physics of 
the process; they present themselves under the shape of 
algebraic equations established from the energizing balances. 
The dynamic models have been studied by various authors [4], 
[8] and [21]. The dynamic approach covers the set of the 
physical processe and describes the behaviour transient of it.   

The clarification of a regulation of the greenhouse must 
take in consideration the evolution of the meteorological 
variables and the thermal state of the greenhouse. 
The objective is to simulate the internal state of the 
greenhouse in order to test algorithms of control. We will 
present in this work a model of simulation of a greenhouse 
that uses the external weather to predict the internal state of 
the greenhouse.   

To describe the different properties of the greenhouse, we 
take the model [7] and [20]. 

This model can be considered like linear and stationary 
around a particular operating point in which the parameter 
values are determined by dynamic identification. 
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The model possesses two types of variables of entries: 
 

- The disruptions variables (weather) :  
• eT    : External temperature  
• eH  : External humidity  
• sR   : Solar radiation  
• vV   : Wind velocity 

- The commands variables :  
• Ch  : Heating  
• Br  : Moistening   
• Ov  : Roofing 
• Om : Shadowing   
 

We intend to control:  
       - inT   : Internal temperature 
.       - inH  : Internal Humidity. 

The model can be described in the discrete – time domain 
by: 

 
( 1) ( ( ))y k f kϕ+ =                                      (1) 

 
    Where the regression vector:  
 

1 1 1( ) [ ( ) ( ) ( ) ( ) ( ) ( )]n m qk y k y k u k u k p k p kϕ Τ=           (2) 
 
    This vector composed of m  process inputs ( )U k , q  
measurable disturbances ( )P k  and n  process outputs ( )Y k .  
    The unknown function (.)f  is determined by identification 
and k is the discrete time; the identification is made from data 
taken in a greenhouse situated to the University of Toulon-
Var.  

We have used a least squares method [15], [16] as an 
algorithm of identification. This method presents the 
advantage to have a simple formulation. 

The identification had several zones where the parameters 
converge locally [18], what corresponds to several points of 
working.  

A first zone corresponds to the night; the second 
corresponds to the morning and the third to the afternoon. 
Then, for a same day we had 3 models to represent the 
greenhouse. 

III. STRUCTURE OF THE FUZZY CONTROLLER 
The approach used in this work to control of the greenhouse 

is the implementation of a fuzzy control algorithm. 
The block diagram of a fuzzy controller is shown in Fig. 2. 

It is composed of four principal modules: 
 
- Definition of the entries and interface of fuzzification.   
- Basis of rules.   
- Mechanism of inference.   
- Interface of défuzzification. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The first module treats the entries of the system, which has 

four entries that we reduced with a reduction method based on 
mathematical fusion, and we associates him with Gaussian 
membership functions. We call fuzzification the stage that 
consists to partner to every real value of an entry variable, a 
function of adherence, therefore to transform the real entry in 
a fuzzy subset. The basis of rules is constituted of a set of 25 
rules. 

These rules, expressed in natural language, translate 
symbolically the knowledge in the process. The mechanism of 
inference permits, from the basis of rules and a vector of entry 
given, the calculation of the order of the system.    

Because of the number important of parameters to identify, 
the global optimization of a fuzzy controller is delicate to 
achieve, it is why several techniques of optimization are 
considered often jointly, to optimize the controller's part [14], 
[19]. 

The system of fuzzy inference is initialized with Gaussians 
membership function, the used technique is based on the 
method of coming down of the gradient.   

IV. AUTO – TUNING OF THE FUZZY CONTROLLER  
The method described here is based on the fact that the 

parameters of the controller can be adjusted automatically. 
The proposed tuning method for automatic adjustment of 
parameters of a fuzzy controller is a learning algorithm based 
on gradient descent  
The initialization of the fuzzy controller is achieved like 
follows:     

The procedure of auto - regulating of the fuzzy controller 
(C.F) is based on an adaptive order structure [19]. Witch is 
presented by the Fig. 3. 

Fig. 1 The greenhouse model 
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Fig. 2 Block diagram of fuzzy controller 
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We distinguish in this diagram an intern of regulation and 
an external permitting to modify the parameters of the mad 
controller. Adaptation of parameters is achieved by presenting 
pairs of input and desired output vectors to the system and 
applying an adaptive algorithm which adjust the parameters, 
by minimising a measure of the actual output of the system. 

The auto regulating of the fuzzy controller consists in 
minimizing a quadratic criteria. 

 

( ) ( ) ( )
fin fin

début début

t t t t
T

t t t t

V e t Qe t v t
= =

= =

= =∑ ∑                              (3) 

 
With  ( ) ( ) ( )= −e t y t C t  the difference of the real output 

and the desired one ( )C t . 
Q  Is a diagonal matrix definite non negative. 
The instantaneous gradient descent training rule updates the 

parameters vector Γ  by:  
 

 

( )( 1) ( ) ( )
end

start

t t

t t

V tt t η
=

=

∂
Γ + = Γ −

∂Γ∑                               (4) 

 
With Γ the parameter to adjust and η  is the predefined 

constant named learning rate. 
The algorithm ends when the variation of the criteria has 

not significant value. 
The variables of entries of the fuzzy controller are:   

- The mistake of the temperature    
- The variation of the mistake of the temperature     
- The mistake of the hygrometry    
- The variation of the mistake of the hygrometry    

One of the difficulties, for the implementation of a fuzzy 
system, is the choice and the number of input variables. In our 
case the structure of the MIMO fuzzy controller has four 
variables of entries and outputs; we used the temperature and 
humidity variations compared to their references.     

The construction of fuzzy controller is a complex task 
because many parameters are required for its design. To 
reduce the number of rules we decrease the number of entries 
of the fuzzy controller [22], by a mathematical fusion of entry 
variables. This fusion of variables of entries of the fuzzy 
controller gives the following variables: 

 

 

2 1Ti Ti TiE K Kε ε= Δ +     ( )1 20, 0K K> >  

4 3Hi Hi HiE K Kε ε= Δ +   ( )3 40, 0> >K K                                   (5) 
 

With TiE  and HiE  represent, respectively, the state of the 
temperature and the state of the hygrometry, CH and CT 
represent desired output of the internal humidity and 
temperature.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The gains in entries 1K , 2K , 3K , 4K are equivalent to factors 
of scale, they are initialized therefore a priori from a 
knowledge of the maximal value of their entries. The 
functions of adherence are spaced regularly on their universe 
of speech normalized and form a fuzzy partition. The basis of 
rules is initialized from a practiced knowledge on the process.   
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Fig. 5 An initial Gaussians membership functions 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 6 Consequences values for the fuzzy logic controller 
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Fig 3 A learning scheme of the fuzzy controller 
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Fig. 4 Diagram of the regulation after reduction 
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While taking account of the number of entries, the number 
of adherence functions and of the constraints of the process, 
the basis of rules contains 25 ones defined by an analysis of 
the greenhouse system. The considered rules are those of 
Takagi-Sugeno of order zero.    
   

TABLE I 
EXAMPLE OF RULE BASIS 

ETi EHi CH Br Ov Om 
N N Beauc Pas Pas Pas 
Z N Pas Beauc Pas Pas 
P N Pas Beauc Pas Pas 
N Z Beauc Pas Pas Pas 
Z Z Pas Pas Pas Pas 
P Z Pas Pas Beauc Pas 

 
Pas : not to manipulate the order ; 
Peu : to manipulate the order fairly;  
Beauc : to manipulate the order to the maximum. 

V. RESULTS 
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Fig. 7 The membership function to one random moment in the 

simulation 
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Fig. 8 Simulation of internal temperature and humidity basic on the 

fuzzy controller 
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Fig. 9 Simulation of command in the greenhouse basic on the fuzzy 

controller 
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Fig. 10 Simulation of internal temperature and humidity basic on 
optimised fuzzy controller 
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Fig. 11 Simulation of command in the greenhouse basic on the 

optimised fuzzy controller 
 

The goal searched for in this work is the regulation of the 
temperature and the humidity inside the greenhouse.  
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The fuzzy controller is initialized with tree Gaussians 
membership functions. 

The Fig. 7, shows the membership function in a random 
moment of the simulation because the Gaussians membership 
functions move in the same time that the simulation. 

The internal temperature inT  and humidity inH  react 
correctly with the variation of the references Figs. 8, 10. 

After the transient periods at the time of changes of 
references the temperature and the humidity follow the desired 
profiles correctly. Error of regulation and tracking remain in 
the acceptable limits. Signals applied to the greenhouse 
present the non agitated behaviour. 

The choice of the references is fixed in relation to the 
external climate because we haven’t a strong air-conditioning 
installed in the greenhouse.   

The behaviour of inT  and inH  in Fig. 10 is more perfect to 
the one without optimization represented in Fig. 8. This is due 
to the adaptation of the membership functions in the universe 
of work. 

The command of the heating CH is not activated at 5h to 
11h between 12h to 13h and 19 to 22h00 when the 
temperature is lower to the desired order Fig. 11.   
We note the same thing for Br it only intervenes when the 
humidity is lower to the order and when the command of 
heating is not activated, it is normal seen the basis of rules 
table 3 their actions are opposed. 

The roofing is activated when the internal temperature is 
high in comparison with the reference and when the 
moistening is activated; the goal is to reduce the internal 
temperature. 

The follow-up of the reference for the optimization fuzzy 
control is very satisfactory compared to a fuzzy control 
without tuning of the membership functions 

VI. CONCLUSION  
This paper shows that we can applied the control of the 

agricultural greenhouse with the help of the fuzzy logic 
associated to an algorithm of optimization. We have shown 
that a fuzzy control associated to a tuning of the membership 
functions is an efficient approach for the control of such 
MIMO system. 
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