Search results for: Natural circulation boiling water reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3957

Search results for: Natural circulation boiling water reactor

87 Ultrasound Therapy: Amplitude Modulation Technique for Tissue Ablation by Acoustic Cavitation

Authors: Fares A. Mayia, Mahmoud A. Yamany, Mushabbab A. Asiri

Abstract:

In recent years, non-invasive Focused Ultrasound (FU) has been utilized for generating bubbles (cavities) to ablate target tissue by mechanical fractionation. Intensities >10 kW/cm2 are required to generate the inertial cavities. The generation, rapid growth, and collapse of these inertial cavities cause tissue fractionation and the process is called Histotripsy. The ability to fractionate tissue from outside the body has many clinical applications including the destruction of the tumor mass. The process of tissue fractionation leaves a void at the treated site, where all the affected tissue is liquefied to particles at sub-micron size. The liquefied tissue will eventually be absorbed by the body. Histotripsy is a promising non-invasive treatment modality. This paper presents a technique for generating inertial cavities at lower intensities (< 1 kW/cm2). The technique (patent pending) is based on amplitude modulation (AM), whereby a low frequency signal modulates the amplitude of a higher frequency FU wave. Cavitation threshold is lower at low frequencies; the intensity required to generate cavitation in water at 10 kHz is two orders of magnitude lower than the intensity at 1 MHz. The Amplitude Modulation technique can operate in both continuous wave (CW) and pulse wave (PW) modes, and the percentage modulation (modulation index) can be varied from 0 % (thermal effect) to 100 % (cavitation effect), thus allowing a range of ablating effects from Hyperthermia to Histotripsy. Furthermore, changing the frequency of the modulating signal allows controlling the size of the generated cavities. Results from in vitro work demonstrate the efficacy of the new technique in fractionating soft tissue and solid calcium carbonate (Chalk) material. The technique, when combined with MR or Ultrasound imaging, will present a precise treatment modality for ablating diseased tissue without affecting the surrounding healthy tissue.

Keywords: Focused ultrasound therapy, Histotripsy, generation of inertial cavitation, mechanical tissue ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
86 Re-interpreting Ruskin with Respect to the Wall

Authors: Anjali Sadanand, R. V. Nagarajan

Abstract:

Architecture morphs with advances in technology and the roof, wall, and floor as basic elements of a building, follow in redefining themselves over time. Their contribution is bound by time and held by design principles that deal with function, sturdiness, and beauty. Architecture engages with people to give joy through its form, material, design structure, and spatial qualities. This paper attempts to re-interpret John Ruskin’s “Seven lamps of Architecture” in the context of the architecture of the modern and present period. The paper focuses on the “wall” as an element of study in this context. Four of Ruskin’s seven lamps will be discussed, namely beauty, truth, life, and memory, through examples of architecture ranging from modernism to contemporary architecture of today. The study will focus on the relevance of Ruskin’s principles to the “wall” in specific, in buildings of different materials and over a range of typologies from all parts of the world. Two examples will be analyzed for each lamp. It will be shown that in each case, there is relevance to the significance of Ruskin’s lamps in modern and contemporary architecture. Nature to which Ruskin alludes to for his lamp of “beauty” is found in the different expressions of interpretation used by Corbusier in his Villa Stein façade based on proportion found in nature and in the direct expression of Toyo Ito in his translation of an understanding of the structure of trees into his façade design of the showroom for a Japanese bag boutique. “Truth” is shown in Mies van der Rohe’s Crown Hall building with its clarity of material and structure and Studio Mumbai’s Palmyra House, which celebrates the use of natural materials and local craftsmanship. “Life” is reviewed with a sustainable house in Kerala by Ashrams Ravi and Alvar Aalto’s summer house, which illustrate walls as repositories of intellectual thought and craft. “Memory” is discussed with Charles Correa’s Jawahar Kala Kendra and Venturi’s Vana Venturi house and discloses facades as text in the context of its materiality and iconography. Beauty is reviewed in Villa Stein and Toyo Ito’s Branded Retail building in Tokyo. The paper thus concludes that Ruskin’s Lamps can be interpreted in today’s context and add richness to meaning to the understanding of architecture.

Keywords: Beauty, design, façade, modernism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468
85 Changes in Subjective and Objective Measures of Performance in Ramadan

Authors: H. Alabed, K. Abuzayan, J. Waterhouse

Abstract:

The Muslim faith requires individuals to fast between the hours of sunrise and sunset during the month of Ramadan. Our recent work has concentrated on some of the changes that take place during the daytime when fasting. A questionnaire was developed to assess subjective estimates of physical, mental and social activities, and fatigue. Four days were studied: in the weeks before and after Ramadan (control days) and during the first and last weeks of Ramadan (experimental days). On each of these four days, this questionnaire was given several times during the daytime and once after the fast had been broken and just before individuals retired at night. During Ramadan, daytime mental, physical and social activities all decreased below control values but then increased to abovecontrol values in the evening. The desires to perform physical and mental activities showed very similar patterns. That is, individuals tried to conserve energy during the daytime in preparation for the evenings when they ate and drank, often with friends. During Ramadan also, individuals were more fatigued in the daytime and napped more often than on control days. This extra fatigue probably reflected decreased sleep, individuals often having risen earlier (before sunrise, to prepare for fasting) and retired later (to enable recovery from the fast). Some physiological measures and objective measures of performance (including the response to a bout of exercise) have also been investigated. Urine osmolality fell during the daytime on control days as subjects drank, but rose in Ramadan to reach values at sunset indicative of dehydration. Exercise performance was also compromised, particularly late in the afternoon when the fast had lasted several hours. Self-chosen exercise work-rates fell and a set amount of exercise felt more arduous. There were also changes in heart rate and lactate accumulation in the blood, indicative of greater cardiovascular and metabolic stress caused by the exercise in subjects who had been fasting. Daytime fasting in Ramadan produces widespread effects which probably reflect combined effects of sleep loss and restrictions to intakes of water and food.

Keywords: Drinking, Eating, Mental Performance, Physical Performance, Social Activity, Sleepiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
84 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria

Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman

Abstract:

Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.

Keywords: Anti-nutritional, healthy livelihood, nutritional waste, organic waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
83 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.

Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
82 Response of Local Cowpea to Intra Row Spacing and Weeding Regimes in Yobe State, Nigeria

Authors: A. G. Gashua, T. T. Bello, I. Alhassan, K. K. Gwiokura

Abstract:

Weeds are known to interfere seriously with crop growth, thereby affecting the productivity and quality of crops. Crops are also known to compete for natural growth resources if they are not adequately spaced, also affecting the performance of the growing crop. Farmers grow cowpea in mixtures with cereals and this is known to affect its yield. For this reason, a field experiment was conducted at Yobe State College of Agriculture Gujba, Damaturu station in the 2014 and 2015 rainy seasons to determine the appropriate intra row spacing and weeding regime for optimum growth and yield of cowpea (Vigna unguiculata L.) in pure stand in Sudan Savanna ecology. The treatments consist of three levels of spacing within rows (20 cm, 30 cm and 40 cm) and four weeding regimes (none, once at 3 weeks after sowing (WAS), twice at 3 and 6WAS, thrice at 3WAS, 6WAS and 9WAS); arranged in a Randomized Complete Block Design (RCBD) and replicated three times. The variety used was the local cowpea variety (white, early and spreading) commonly grown by farmers. The growth and yield data were collected and subjected to analysis of variance using SAS software, and the significant means were ranked by Students Newman Keul’s test (SNK). The findings of this study revealed better crop performance in 2015 than in 2014 despite poor soil condition. Intra row spacing significantly influenced vegetative growth especially the number of main branches, leaves and canopy spread at 6WAS and 9WAS with the highest values obtained at wider spacing (40 cm). The values obtained in 2015 doubled those obtained in 2014 in most cases. Spacing also significantly affected the number of pods in 2015, seed weight in both years and grain yield in 2014 with the highest values obtained when the crop was spaced at 30-40 cm. Similarly, weeding regime significantly influenced almost all the growth attributes of cowpea with higher values obtained from where cowpea was weeded three times at 3-week intervals, though statistically similar results were obtained even from where cowpea was weeded twice. Weeding also affected the entire yield and yield components in 2015 with the highest values obtained with increase weeding. Based on these findings, it is recommended that spreading cowpea varieties should be grown at 40 cm (or wider spacing) within rows and be weeded twice at three-week intervals for better crop performance in related ecologies.

Keywords: Intra row spacing, local cowpea, Nigeria, weeding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
81 Influence of Chelators, Zn Sulphate and Silicic Acid on Productivity and Meat Quality of Fattening Pigs

Authors: A. Raceviciute-Stupeliene, V. Sasyte, V. Viliene, V. Slausgalvis, J. Al-Saifi, R. Gruzauskas

Abstract:

The objective of this study was to investigate the influence of special additives such as chelators, zinc sulphate and silicic acid on productivity parameters, carcass characteristics and meat quality of fattening pigs. The test started with 40 days old fattening pigs (mongrel (mother) and Yorkshire (father)) and lasted up to 156 days of age. During the fattening period, 32 pigs were divided into 2 groups (control and experimental) with 4 replicates (total of 8 pens).  The pigs were fed for 16 weeks’ ad libitum with a standard wheat-barley-soybean meal compound (Control group) supplemented with chelators, zinc sulphate and silicic acid (dosage 2 kg/t of feed, Experimental group). Meat traits in live pigs were measured by ultrasonic equipment Piglog 105. The results obtained throughout the experimental period suggest that supplementation of chelators, zinc sulphate and silicic acid tend to positively affect average daily gain and feed conversion ratio of pigs for fattening (p < 0.05). Pigs’ evaluation with Piglog 105 showed that thickness of fat in the first and second point was by 4% and 3% respectively higher in comparison to the control group (p < 0.05). Carcass weight, yield, and length, also thickness of fat showed no significant difference among the groups. The water holding capacity of meat in Experimental group was lower by 5.28%, and tenderness – lower by 12% compared with that of the pigs in the Control group (p < 0.05). Regarding pigs’ meat chemical composition of the experimental group, a statistically significant difference comparing with the data of the control group was not determined. Cholesterol concentration in muscles of pigs fed diets supplemented with chelators, zinc sulphate and silicic acid was lower by 7.93 mg/100 g of muscle in comparison to that of the control group. These results suggest that supplementation of chelators, zinc sulphate and silicic acid in the feed for fattening pigs had significant effect on pigs growing performance and meat quality.

Keywords: Chelators, meat quality, pigs, silicic acid, zinc sulphate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
80 Public Procurement Development Stages in Georgia

Authors: Giorgi Gaprindashvili

Abstract:

One of the best examples, in evolution of the public procurement, from post-soviet countries are reforms carried out in Georgia, which brought them close to international standards of procurement. In Georgia, public procurement legislation started functioning short after gaining independence. The reform has passed several stages and came in the form as it is today. It should also be noted, that countries with economy in transition, including Georgia, implemented all the reforms in public procurement based on recommendations and support of World Bank, the United Nations and other international organizations. The aim of first adopted law was regulation of the procurement process of budget-organizations, transparency and creation of competitive environment for private companies to access state funds legally. The priorities were identified quite clearly in the wording of the law, but operation/function of this law could not be reached on its level, because of some objective and subjective reasons. The high level of corruption in all levels of governance can be considered as a main obstacle reason and of course, it is natural, that it had direct impact on the procurement process, as well as on transparency and rational use of state funds. These circumstances were the reasons that reforms in this sphere continued, to improve procurement process, in particular, the first wave of reforms began after several years. Public procurement agency carried out reform with World Bank with main purpose of smartening the procurement legislation and its harmonization with international treaties and agreements. Also with the support of World Bank various activities were carried out to raise awareness of participants involved in procurement system. Further major changes in the legislation were filed bit later, which was also directed towards the improvement and smarten of the procurement process. The third wave of the reform more or less guaranteed the transparency of the procurement process, which later became the basis for the rational spending of state funds. The reform of the procurement system completely changed the procedures. Carried out reform in Georgia resulted in introducing new electronic tendering system, which benefit the transparency of the process, after this became the basis for the further development of a competitive environment, which become a prerequisite for the state rational spending. Increased number of supplier organizations participating in the procurement process resulted in reduction of the estimated cost and the actual cost. Assessment of the reforms in Georgia in the field of public procurement can be concluded, that proper regulation of the sector and relevant policy may proceed to rational and transparent spending of the budget from country’s state institutions. Also, the business sector has the opportunity to work in competitive market conditions and to make a preliminary analysis, which is a prerequisite for future strategy and development.

Keywords: Public Administration, Public Procurement, Reforms, Transparency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
79 Clinical Comparative Study Comparing Efficacy of Intrathecal Fentanyl and Magnesium as an Adjuvant to Hyperbaric Bupivacaine in Mild Pre-Eclamptic Patients Undergoing Caesarean Section

Authors: Sanchita B. Sarma, M. P. Nath

Abstract:

Adequate analgesia following caesarean section decreases morbidity, hastens ambulation, improves patient outcome and facilitates care of the newborn. Intrathecal magnesium, an NMDA antagonist, has been shown to prolong analgesia without significant side effects in healthy parturients. The aim of this study was to evaluate the onset and duration of sensory and motor block, hemodynamic effect, postoperative analgesia, and adverse effects of magnesium or fentanyl given intrathecally with hyperbaric 0.5% bupivacaine in patients with mild preeclampsia undergoing caesarean section. Sixty women with mild preeclampsia undergoing elective caesarean section were included in a prospective, double blind, controlled trial. Patients were randomly assigned to receive spinal anesthesia with 2 mL 0.5% hyperbaric bupivacaine with 12.5 μg fentanyl (group F) or 0.1 ml of 50% magnesium sulphate (50 mg) (group M) with 0.15ml preservative free distilled water. Onset, duration and recovery of sensory and motor block, time to maximum sensory block, duration of spinal anaesthesia and postoperative analgesic requirements were studied. Statistical comparison was carried out using the Chi-square or Fisher’s exact tests and Independent Student’s t-test where appropriate. The onset of both sensory and motor block was slower in the magnesium group. The duration of spinal anaesthesia (246 vs. 284) and motor block (186.3 vs. 210) were significantly longer in the magnesium group. Total analgesic top up requirement was less in group M. Hemodynamic parameters were similar in both the groups. Intrathecal magnesium caused minimal side effects. Since Fentanyl and other opioid congeners are not available throughout the country easily, magnesium with its easy availability and less side effect profile can be a cost effective alternative to fentanyl in managing pregnancy induced hypertension (PIH) patients given along with Bupivacaine intrathecally in caesarean section.

Keywords: Analgesia, magnesium, preeclampsia, spinal anaesthesia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2165
78 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading

Authors: Laurent Pitteloud, Jörg Meier

Abstract:

Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were success­fully implemented for several high-rise buildings world­wide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be deter­mined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better under­standing of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measure­ments shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measure­ments are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.

Keywords: Dynamic loading, high-frequency monitoring, piled raft foundations, wind loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
77 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

Authors: C. Lanzerstorfer, M. Hinterberger

Abstract:

The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.

Keywords: Iron ore concentrate, flowability, moisture content, wall friction angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
76 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: Airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 858
75 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
74 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: Absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675
73 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
72 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth

Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey

Abstract:

Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with  nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.

Keywords: Nanoparticles, seed germination, seed soaking, wheat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
71 Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India

Authors: Stanzin Gawa, Nalini Ranjan Kumar, Gohar Bilal Wani, Vinay Maruti Hatte, A. Vinay

Abstract:

Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.

Keywords: Trout, Kashmir, value chain, linkages, culture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
70 Solar Energy Collection using a Double-layer Roof

Authors: S. Kong Wang

Abstract:

The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.

Keywords: solar energy collection, double-layer solar roof, energy conservation, ORC, OTEC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2293
69 Role of Community Youths in Conservation of Forests and Protected Areas of Bangladesh

Authors: Obaidul Fattah Tanvir, Zinat Ara Afroze

Abstract:

Community living adjacent to forests and Protected Areas, especially in South Asian countries, have a common practice in extracting resources for their living and livelihoods. This extraction of resources, because the way it is done, destroys the biophysical features of the area. Deforestation, wildlife poaching, illegal logging, unauthorized hill cutting etc. are some of the serious issues of concern for the sustainability of the natural resources that has a direct impact on environment and climate as a whole. To ensure community involvement in conservation initiatives of the state, community based forest management, commonly known as Comanagement, has been in practice in 6 South Asian countries. These are -India, Nepal, Sri Lanka, Pakistan, Bhutan and Bangladesh. Involving community in forestry management was initiated first in Bangladesh in 1979 and reached as an effective co-management approach through a several paradigm shifts. This idea of Comanagement has been institutionalized through a Government Order (GO) by the Ministry of Environment and Forests, Government of Bangladesh on November 23, 2009. This GO clearly defines the structure and functions of Co-management and its different bodies. Bangladesh Forest Department has been working in association with community to conserve and manage the Forests and Protected areas of Bangladesh following this legal document. Demographically young people constitute the largest segment of population in Bangladesh. This group, if properly sensitized, can produce valuable impacts on the conservation initiatives, both by community and government. This study traced the major factors that motivate community youths to work effectively with different tiers of comanagement organizations in conservation of forests and Protected Areas of Bangladesh. For the purpose of this study, 3 FGDs were conducted with 30 youths from the community living around the Protected Areas of Cox’s bazar, South East corner of Bangladesh, who are actively involved in Co-management organizations. KII were conducted with 5 key officials of Forest Department stationed at Cox’s Bazar. 2 FGDs were conducted with the representatives of 7 Co-management organizations working in Cox’s Bazar region and approaches of different community outreach activities conducted for forest conservation by 3 private organizations and Projects have been reviewed. Also secondary literatures were reviewed for the history and evolution of Co-management in Bangladesh and six South Asian countries. This study found that innovative community outreach activities that are financed by public and private sectors involving youths and community as a whole have played a pivotal role in conservation of forests and Protected Areas of the region. This approach can be replicated in other regions of Bangladesh as well as other countries of South Asia where Co-Management exists in practice.

Keywords: Community, co-management, conservation, forests, protected areas, youth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3710
68 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment / bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance / quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water was observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: Bioremediation, Contaminated sediment, Land farming, Oily sludge, Oil Terminal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
67 Screening and Evaluation of in vivo and in vitro Generated Insulin Plant (Vernonia divergens) for Antimicrobial and Anticancer Activities

Authors: Santosh Kumar, Anand Prakash, Kanak Sinha, Anita K Verma

Abstract:

Vernonia divergens Benth., commonly known as “Insulin Plant” (Fam: Asteraceae) is a potent sugar killer. Locally the leaves of the plant, boiled in water are successfully administered to a large number of diabetic patients. The present study evaluates the putative anti-diabetic ingredients, isolated from the in vivo and in vitro grown plantlets of V. divergens for their antimicrobial and anticancer activities. Sterilized explants of nodal segments were cultured on MS (Musashige and Skoog, 1962) medium in presence of different combinations of hormones. Multiple shoots along with bunch of roots were regenerated at 1mg l-1 BAP and 0.5 mg l-1 NAA. Micro-plantlets were separated and sub-cultured on the double strength (2X) of the above combination of hormones leading to increased length of roots and shoots. These plantlets were successfully transferred to soil and survived well in nature. The ethanol extract of plantlets from both in vivo & in vitro sources were prepared in soxhlet extractor and then concentrated to dryness under reduced pressure in rotary evaporator. Thus obtainedconcentrated extracts showed significant inhibitory activity against gram negative bacteria like Escherichia coli and Pseudomonas aeruginosa but no inhibition was found against gram positive bacteria. Further, these ethanol extracts were screened for in vitro percentage cytotoxicity at different time periods (24 h, 48 h and 72 h) of different dilutions. The in vivo plant extract inhibited the growth of EAC mouse cell lines in the range of 65, 66, 78, and 88% at 100, 50, 25 & 12.5μg mL-1 but at 72 h of treatment. In case of the extract of in vitro origin, the inhibition was found against EAC cell lines even at 48h. During spectrophotometric scanning, the extracts exhibited different maxima (ʎ) - four peaks in in vitro extracts as against single in in vivo preparation suggesting the possible change in the nature of ingredients during micropropagation through tissue culture techniques.

Keywords: Anti-cancer, Anti-microbial, EAC mouse cell, Tissue culture, Vernonia divergens.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
66 Analysis of Structural and Photocatalytical Properties of Anatase, Rutile and Mixed Phase TiO2 Films Deposited by Pulsed-Direct Current and Radio Frequency Magnetron Co-Sputtering

Authors: S. Varnagiris, M. Urbonavicius, S. Tuckute, M. Lelis, K. Bockute

Abstract:

Amongst many water purification techniques, TiO2 photocatalysis is recognized as one of the most promising sustainable methods. It is known that for photocatalytical applications anatase is the most suitable TiO2 phase, however heterojunction of anatase/rutile phases could improve the photocatalytical activity of TiO2 even further. Despite the relative simplicity of TiO2 different synthesis methods lead to the highly dispersed crystal phases and photocatalytic activity of the corresponding samples. Accordingly, suggestions and investigations of various innovative methods of TiO2 synthesis are still needed. In this work structural and photocatalytical properties of TiO2 films deposited by the unconventional method of simultaneous co-sputtering from two magnetrons powered by pulsed-Direct Current (pDC) and Radio Frequency (RF) power sources with negative bias voltage have been studied. More specifically, TiO2 film thickness, microstructure, surface roughness, crystal structure, optical transmittance and photocatalytical properties were investigated by profilometer, scanning electron microscope, atomic force microscope, X-ray diffractometer and UV-Vis spectrophotometer respectively. The proposed unconventional two magnetron co-sputtering based TiO2 film formation method showed very promising results for crystalline TiO2 film formation while keeping process temperatures below 100 °C. XRD analysis revealed that by using proper combination of power source type and bias voltage various TiO2 phases (amorphous, anatase, rutile or their mixture) can be synthesized selectively. Moreover, strong dependency between power source type and surface roughness, as well as between the bias voltage and band gap value of TiO2 films was observed. Interestingly, TiO2 films deposited by two magnetron co-sputtering without bias voltage had one of the highest band gap values between the investigated films but its photocatalytic activity was superior compared to all other samples. It is suggested that this is due to the dominating nanocrystalline anatase phase with various exposed surfaces including photocatalytically the most active {001}.

Keywords: Films, magnetron co-sputtering, photocatalysis, TiO2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614
65 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: Coregionalization, ordinary cokriging, multivariate geostatistical analysis, soil contamination, soil heavy metals, risk maps, spatial distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
64 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya

Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson

Abstract:

The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.

Keywords: Coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 915
63 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
62 An Appraisal of Coal Fly Ash Soil Amendment Technology (FASAT) of Central Institute of Mining and Fuel Research (CIMFR)

Authors: L.C. Ram, R.E. Masto, Smriti Singh, R.C. Tripathi, S.K. Jha, N.K. Srivastava, A.K. Sinha, V.A. Selvi, A. Sinha

Abstract:

Coal will continue to be the predominant source of global energy for coming several decades. The huge generation of fly ash (FA) from combustion of coal in thermal power plants (TPPs) is apprehended to pose the concerns of its disposal and utilization. FA application based on its typical characteristics as soil ameliorant for agriculture and forestry is the potential area, and hence the global attempt. The inferences drawn suffer from the variations of ash characteristics, soil types, and agro-climatic conditions; thereby correlating the effects of ash between various plant species and soil types is difficult. Indian FAs have low bulk density, high water holding capacity and porosity, rich silt-sized particles, alkaline nature, negligible solubility, and reasonable plant nutrients. Findings of the demonstrations trials for more than two decades from lab/pot to field scale long-term experiments are developed as FA soil amendment technology (FASAT) by Central Institute of Mining and Fuel Research (CIMFR), Dhanbad. Performance of different crops and plant species in cultivable and problematic soils, are encouraging, eco-friendly, and being adopted by the farmers. FA application includes ash alone and in combination with inorganic/organic amendments; combination treatments including bio-solids perform better than FA alone. Optimum dose being up to 100 t/ha for cultivable land and up to/ or above 200 t/ha of FA for waste/degraded land/mine refuse, depending on the characteristics of ash and soil. The elemental toxicity in Indian FA is usually not of much concern owing to alkaline ashes, oxide forms of elements, and elemental concentration within the threshold limits for soil application. Combating toxicity, if any, is possible through combination treatments with organic materials and phytoremediation. Government initiatives through extension programme involving farmers and ash generating organizations need to be accelerated

Keywords: Fly ash, soil quality, CIMFR, FASAT, agriculture, forestry, toxicity, remediation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3031
61 Soil/Phytofisionomy Relationship in Southeast of Chapada Diamantina, Bahia, Brazil

Authors: Marcelo Araujo da Nóbrega, Ariel Moura Vilas Boas

Abstract:

This study aims to characterize the physicochemical aspects of the soils of southeastern Chapada Diamantina - Bahia related to the phytophysiognomies of this area, rupestrian field, small savanna (savanna fields), small dense savanna (savanna fields), savanna (Cerrado), dry thorny forest (Caatinga), dry thorny forest/savanna, scrub (Carrasco - ecotone), forest island (seasonal semi-deciduous forest - Capão) and seasonal semi-deciduous forest. To achieve the research objective, soil samples were collected in each plant formation and analyzed in the soil laboratory of ESALQ - USP in order to identify soil fertility through the determination of pH, organic matter, phosphorus, potassium, calcium, magnesium, potential acidity, sum of bases, cation exchange capacity and base saturation. The composition of soil particles was also checked; that is, the texture, step made in the terrestrial ecosystems laboratory of the Department of Ecology of USP and in the soil laboratory of ESALQ. Another important factor also studied was to show the variations in the vegetation cover in the region as a function of soil moisture in the different existing physiographic environments. Another study carried out was a comparison between the average soil moisture data with precipitation data from three locations with very different phytophysiognomies. The soils found in this part of Bahia can be classified into 5 classes, with a predominance of oxisols. All of these classes have a great diversity of physical and chemical properties, as can be seen in photographs and in particle size and fertility analyzes. The deepest soils are located in the Central Pediplano of Chapada Diamantina where the dirty field, the clean field, the executioner and the semideciduous seasonal forest (Capão) are located, and the shallower soils were found in the rupestrian field, dry thorny forest, and savanna fields, the latter located on a hillside. As for the variations in water in the region's soil, the data indicate that there were large spatial variations in humidity in both the rainy and dry periods.

Keywords: Bahia, Chapada diamantina, phytophysiognomies, soils.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
60 Development of Mechanical Properties of Self Compacting Concrete Contain Rice Husk Ash

Authors: M. A. Ahmadi, O. Alidoust, I. Sadrinejad, M. Nayeri

Abstract:

Self-compacting concrete (SCC), a new kind of high performance concrete (HPC) have been first developed in Japan in 1986. The development of SCC has made casting of dense reinforcement and mass concrete convenient, has minimized noise. Fresh self-compacting concrete (SCC) flows into formwork and around obstructions under its own weight to fill it completely and self-compact (without any need for vibration), without any segregation and blocking. The elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. SCC mixes generally have a much higher content of fine fillers, including cement, and produce excessively high compressive strength concrete, which restricts its field of application to special concrete only. To use SCC mixes in general concrete construction practice, requires low cost materials to make inexpensive concrete. Rice husk ash (RHA) has been used as a highly reactive pozzolanic material to improve the microstructure of the interfacial transition zone (ITZ) between the cement paste and the aggregate in self compacting concrete. Mechanical experiments of RHA blended Portland cement concretes revealed that in addition to the pozzolanic reactivity of RHA (chemical aspect), the particle grading (physical aspect) of cement and RHA mixtures also exerted significant influences on the blending efficiency. The scope of this research was to determine the usefulness of Rice husk ash (RHA) in the development of economical self compacting concrete (SCC). The cost of materials will be decreased by reducing the cement content by using waste material like rice husk ash instead of. This paper presents a study on the development of Mechanical properties up to 180 days of self compacting and ordinary concretes with rice-husk ash (RHA), from a rice paddy milling industry in Rasht (Iran). Two different replacement percentages of cement by RHA, 10%, and 20%, and two different water/cementicious material ratios (0.40 and 0.35), were used for both of self compacting and normal concrete specimens. The results are compared with those of the self compacting concrete without RHA, with compressive, flexural strength and modulus of elasticity. It is concluded that RHA provides a positive effect on the Mechanical properties at age after 60 days. Base of the result self compacting concrete specimens have higher value than normal concrete specimens in all test except modulus of elasticity. Also specimens with 20% replacement of cement by RHA have the best performance.

Keywords: Self compacting concrete (SCC), Rice husk ash(RHA), Mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3645
59 Regional Low Gravity Anomalies Influencing High Concentrations of Heavy Minerals on Placer Deposits

Authors: T. B. Karu Jayasundara

Abstract:

Regions of low gravity and gravity anomalies both influence heavy mineral concentrations on placer deposits. Economically imported heavy minerals are likely to have higher levels of deposition in low gravity regions of placer deposits. This can be found in coastal regions of Southern Asia, particularly in Sri Lanka and Peninsula India and areas located in the lowest gravity region of the world. The area about 70 kilometers of the east coast of Sri Lanka is covered by a high percentage of ilmenite deposits, and the southwest coast of the island consists of Monazite placer deposit. These deposits are one of the largest placer deposits in the world. In India, the heavy mineral industry has a good market. On the other hand, based on the coastal placer deposits recorded, the high gravity region located around Papua New Guinea, has no such heavy mineral deposits. In low gravity regions, with the help of other depositional environmental factors, the grains have more time and space to float in the sea, this helps bring high concentrations of heavy mineral deposits to the coast. The effect of low and high gravity can be demonstrated by using heavy mineral separation devices.  The Wilfley heavy mineral separating table is one of these; it is extensively used in industries and in laboratories for heavy mineral separation. The horizontally oscillating Wilfley table helps to separate heavy and light mineral grains in to deferent fractions, with the use of water. In this experiment, the low and high angle of the Wilfley table are representing low and high gravity respectively. A sample mixture of grain size <0.85 mm of heavy and light mineral grains has been used for this experiment. The high and low angle of the table was 60 and 20 respectively for this experiment. The separated fractions from the table are again separated into heavy and light minerals, with the use of heavy liquid, which consists of a specific gravity of 2.85. The fractions of separated heavy and light minerals have been used for drawing the two-dimensional graphs. The graphs show that the low gravity stage has a high percentage of heavy minerals collected in the upper area of the table than in the high gravity stage. The results of the experiment can be used for the comparison of regional low gravity and high gravity levels of heavy minerals. If there are any heavy mineral deposits in the high gravity regions, these deposits will take place far away from the coast, within the continental shelf.

Keywords: Anomaly, gravity, influence, mineral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
58 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator

Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur

Abstract:

Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.

Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 546