Search results for: phosphorus removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 596

Search results for: phosphorus removal

236 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T. Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: Process parameters, cutting process, energy efficiency, Material Removal Rate (MRR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371
235 Synthesis of Unconventional Materials Using Chitosan and Crown Ether for Selective Removal of Precious Metal Ions

Authors: Rabindra Prasad Dhakal, Tatsuya Oshima, Yoshinari Baba

Abstract:

The polyfunctional and highly reactive bio-polymer, the chitosan was first regioselectively converted into dialkylated chitosan using dimsyl anionic solution(NaH in DMSO) and bromodecane after protecting amino groups by phthalic anhydride. The dibenzo-18-crown-6-ether, on the other hand, was converted into its carbonyl derivatives via Duff reaction prior to incorporate into chitosan by Schiff base formation. Thus formed diformylated dibenzo-18-crown-6-ether was condensed with lipophilic chitosan to prepare the novel solvent extraction reagent. The products were characterized mainly by IR and 1H-NMR. Hence, the multidentate crown ether-embedded polyfunctional bio-material was tested for extraction of Pd(II) and Pt(IV) in aqueous solution.

Keywords: Lipophilic chitosan, Duff reaction, crown ether and precious metal ions extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
234 Non-Invasive Capillary Blood Flow Measurement: Laser Speckle and Laser Doppler

Authors: A.K.Jayanthy, N.Sujatha, M.Ramasubba Reddy

Abstract:

Microcirculation is essential for the proper supply of oxygen and nutritive substances to the biological tissue and the removal of waste products of metabolism. The determination of blood flow in the capillaries is therefore of great interest to clinicians. A comparison has been carried out using the developed non-invasive, non-contact and whole field laser speckle contrast imaging (LSCI) based technique and as well as a commercially available laser Doppler blood flowmeter (LDF) to evaluate blood flow at the finger tip and elbow and is presented here. The LSCI technique gives more quantitative information on the velocity of blood when compared to the perfusion values obtained using the LDF. Measurement of blood flow in capillaries can be of great interest to clinicians in the diagnosis of vascular diseases of the upper extremities.

Keywords: Blood flow, Laser Doppler flowmeter, LSCI, speckle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
233 Removal of Phenylurea Herbicides from Waters by using Chemical Oxidation Treatments

Authors: F. Javier Benitez, Carolina Garcia, Juan Luis Acero, Francisco J. Real

Abstract:

Four phenylurea herbicides (isoproturon, chlortoluron, diuron and linuron) were dissolved in different water matrices in order to study their chemical degradation by using UV radiation, ozone and some advanced oxidation processes (UV/H2O2, O3/H2O2, Fenton reagent and the photo- Fenton system). The waters used were: ultra-pure water, a commercial mineral water, a groundwater and a surface water taken from a reservoir. Elimination levels were established for each herbicide and for several global quality parameters, and a kinetic study was performed in order to determine basic kinetic parameters of each reaction between the target phenylureas and these oxidizing systems.

Keywords: Phenylurea herbicides, UV radiation; Ozone, Fenton reagent, Hydroxyl radicals, Rate constants, Quantum yields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
232 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
231 Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin

Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi

Abstract:

In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.

Keywords: Bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo basin, microalgae.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
230 Mitigation of Nitrate Pollution in Wastewater: A Case Study of the Treatment of Cassava Processing Effluent Using Cassava Peel Carbon Material

Authors: Olayinka Omotosho

Abstract:

The study investigated efficiency cassava peel carbon and Zinc Chloride activated cassava peel carbon at 1:3, 2:3 and 1:1 activation levels in the removal of nitrates from oxidized cassava processing wastewater. Results showed that the CPC and CPAC were effective in adsorption of nitrates. A summary of results from the study revealed that CPAC at 1:3 exhibited the highest initial decontamination (69.5% after 2 hrs) while CPAC at 1:1 activation ratio showed a slower initial decontamination rate. The CPC & CPAC exhibited Langmuir Rα values of 0.15, 0.11, 0.09, and 0.07 for the 0:1, 1:3, 2:3 and 1:1 confirming its suitability as adsorption material.

Keywords: Adsorption, Cassava, Activated Carbon, Nitrate, Isotherm, Langmuir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
229 Kinetics of Cu (II) Transport through Bulk Liquid Membrane with Different Membrane Materials

Authors: Siu Hua Chang, Ayub Md Som, Jagannathan Krishnan

Abstract:

The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: fresh cooking oil, waste cooking oil and kerosene, each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined.

Keywords: Transport kinetics, Cu(II), bulk liquid membrane, waste cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
228 Development of a Catchment Water Quality Model for Continuous Simulations of Pollutants Build-up and Wash-off

Authors: Iqbal Hossain, Dr. Monzur Imteaz, Dr. Shirley Gato-Trinidad, Prof. Abdallah Shanableh

Abstract:

Estimation of runoff water quality parameters is required to determine appropriate water quality management options. Various models are used to estimate runoff water quality parameters. However, most models provide event-based estimates of water quality parameters for specific sites. The work presented in this paper describes the development of a model that continuously simulates the accumulation and wash-off of water quality pollutants in a catchment. The model allows estimation of pollutants build-up during dry periods and pollutants wash-off during storm events. The model was developed by integrating two individual models; rainfall-runoff model, and catchment water quality model. The rainfall-runoff model is based on the time-area runoff estimation method. The model allows users to estimate the time of concentration using a range of established methods. The model also allows estimation of the continuing runoff losses using any of the available estimation methods (i.e., constant, linearly varying or exponentially varying). Pollutants build-up in a catchment was represented by one of three pre-defined functions; power, exponential, or saturation. Similarly, pollutants wash-off was represented by one of three different functions; power, rating-curve, or exponential. The developed runoff water quality model was set-up to simulate the build-up and wash-off of total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The application of the model was demonstrated using available runoff and TSS field data from road and roof surfaces in the Gold Coast, Australia. The model provided excellent representation of the field data demonstrating the simplicity yet effectiveness of the proposed model.

Keywords: Catchment, continuous pollutants build-up, pollutants wash-off, runoff, runoff water quality model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090
227 Energy Consumption and Surface Finish Analysis of Machining Ti6Al4V

Authors: Salman Pervaiz, Ibrahim Deiab, Amir Rashid, Mihai Nicolescu, Hossam Kishawy

Abstract:

Greenhouse gases (GHG) emissions impose major threat to global warming potential (GWP). Unfortunately manufacturing sector is one of the major sources that contribute towards the rapid increase in greenhouse gases (GHG) emissions. In manufacturing sector electric power consumption is the major driver that influences CO2 emission. Titanium alloys are widely utilized in aerospace, automotive and petrochemical sectors because of their high strength to weight ratio and corrosion resistance. Titanium alloys are termed as difficult to cut materials because of their poor machinability rating. The present study analyzes energy consumption during cutting with reference to material removal rate (MRR). Surface roughness was also measured in order to optimize energy consumption.

Keywords: Energy Consumption, CO2 Emission, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
226 Durability Aspects of Recycled Aggregate Concrete: An Experimental Study

Authors: Smitha Yadav, Snehal Pathak

Abstract:

Aggregate compositions in the construction and demolition (C&D) waste have potential to replace normal aggregates. However, to re-utilise these aggregates, the concrete produced with these recycled aggregates needs to provide the desired compressive strength and durability. This paper examines the performance of recycled aggregate concrete made up of 60% recycled aggregates of 20 mm size in terms of durability tests namely rapid chloride permeability, drying shrinkage, water permeability, modulus of elasticity and creep without compromising the compressive strength. The experimental outcome indicates that recycled aggregate concrete provides strength and durability same as controlled concrete when processed for removal of adhered mortar.

Keywords: Compressive strength, recycled aggregate, shrinkage, rapid chloride permeation test, modulus of elasticity, water permeability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
225 A Kinetic Study on the Adsorption of Cd(II) and Zn(II) Ions from Aqueous Solutions on Zeolite NaA

Authors: Dimitar Georgiev, Bogdan Bogdanov, Irena Markovska, Yancho Hristov, Dencho Stanev

Abstract:

The present paper reports the removal of Cd(II) and Zn(II) ions using synthetic Zeolit NaA. The adsorption capacity of the sorbent (Zeolite NaA) strongly depends on simultaneous or not simultaneous (concurrent) presence of Cd(II) and Zn(II) in the sorbate. When Cd(II) and Zn(II) are present simultaneously (concurrently) in the sorbate, Zn(II) ions were sorbed at higher rate. Equilibrium data fitted Langmuir, Freundlich and Tempkin isotherms well. The applicability of the isotherm equation to describe the adsorption process was judged by the correlation coefficients R2. The Langmuir model yielded the best fit with R2 values equal to or higher than 0.970, as compared to the Freundlich and Tempkin models. The fact that 1/n values range from 0.322 to 0.755 indicates that the adsorption of Cd(II) and Zn(II) ions from aqueous solutions also favored by the Freundlich model.

Keywords: Adsorption, adsorption capacity, kinetic sorption, Zeolite NaA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
224 Removal of Tartrazine Dye form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite

Authors: Salem Ali Jebreil

Abstract:

In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.

Keywords: Adsorption, Composite, dye, Polyaniline, Tartrazine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
223 Influence of Ammonium Concentration on the Performance of an Inorganic Biofilter Treating Methane

Authors: Marc Veillette, Antonio Avalos Ramirez, Michèle Heitz

Abstract:

Among the technologies available to reduce methane emitted from the pig industry, biofiltration seems to be an effective and inexpensive solution. In methane (CH4) biofiltration, nitrogen is an important macronutrient for the microorganisms growth. The objective of this research project was to study the effect of ammonium (NH4 +) on the performance, the biomass production and the nitrogen conversion of a biofilter treating methane. For NH4 + concentrations ranging from 0.05 to 0.5 gN-NH4 +/L, the CH4 removal efficiency and the dioxide carbon production rate decreased linearly from 68 to 11.8 % and from 7.1 to 0.5 g/(m3-h), respectively. The dry biomass content varied from 4.1 to 5.8 kg/(m3 filter bed). For the same range of concentrations, the ammonium conversion decreased while the specific nitrate production rate increased. The specific nitrate production rate presented negative values indicating denitrification in the biofilter.

Keywords: Methane, biofiltration, pig, ammonium, nitrification, denitrification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
222 A Comparative Study of Metal Extraction from Spent Catalyst Using Acidithiobacillus ferrooxidans

Authors: Haragobinda Srichandan, Sradhanjali Singh, Dong Jin Kim, Seoung-Won Lee

Abstract:

The recovery of metal values and safe disposal of spent catalyst is gaining interest due to both its hazardous nature and increased regulation associated with disposal methods. Prior to the recovery of the valuable metals, removal of entrained deposits limit the diffusion of lixiviate resulting in low recovery of metals must be taken into consideration. Therefore, petroleum refinery spent catalyst was subjected to acetone washing and roasting at 500oC. The treated samples were investigated for metals bioleaching using Acidithiobacillus ferrooxidans in batch reactors and the leaching efficiencies were compared. It was found out that acetone washed spent catalysts results in better metal recovery compare to roasted spent. About 83% Ni, 20% Al, 50% Mo and 73% V were leached using the acetone washed spent catalyst. In both the cases, Ni, V and Mo was high compared to Al.

Keywords: Acetone wash, At. ferrooxidans, Bioleaching, Calcined, Metal recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549
221 Pollutants Removal from Synthetic Wastewater by the Combined Electrochemical Sequencing Batch Reactor

Authors: Amin Mojiri, Akiyoshi Ohashi, Tomonori Kindaichi

Abstract:

Synthetic domestic wastewater was treated via combining treatment methods, including electrochemical oxidation, adsorption, and sequencing batch reactor (SBR). In the upper part of the reactor, an anode and a cathode (Ti/RuO2-IrO2) were organized in parallel for the electrochemical oxidation procedure. Sodium sulfate (Na2SO4) with a concentration of 2.5 g/L was applied as the electrolyte. The voltage and current were fixed on 7.50 V and 0.40 A, respectively. Then, 15% working value of the reactor was filled by activated sludge, and 85% working value of the reactor was added with synthetic wastewater. Powdered cockleshell, 1.5 g/L, was added in the reactor to do ion-exchange. Response surface methodology was employed for statistical analysis. Reaction time (h) and pH were considered as independent factors. A total of 97.0% biochemical oxygen demand, 99.9% phosphorous and 88.6% cadmium were eliminated at the optimum reaction time (80.0 min) and pH (6.4).

Keywords: Adsorption, electrochemical oxidation, metals, sequencing batch reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
220 Determination of Temperature and Velocity Fields in a Corridor at a Central Interim Spent Fuel Storage Facility Using Numerical Simulation

Authors: V. Salajka, J. Kala, P. Hradil

Abstract:

The presented article deals with the description of a numerical model of a corridor at a Central Interim Spent Fuel Storage Facility (hereinafter CISFSF). The model takes into account the effect of air flows on the temperature of stored waste. The computational model was implemented in the ANSYS/CFX programming environment in the form of a CFD task solution, which was compared with an approximate analytical calculation. The article includes a categorization of the individual alternatives for the ventilation of such underground systems. The aim was to evaluate a ventilation system for a CISFSF with regard to its stability and capacity to provide sufficient ventilation for the removal of heat produced by stored casks with spent nuclear fuel.

Keywords: Temperature fields, Spent Fuel, Interim storage facility, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
219 Achieving Sustainable Agriculture with Treated Municipal Wastewater

Authors: Reshu Yadav, Himanshu Joshi, S. K.Tripathi

Abstract:

A pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town in Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and the emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2474.12 m3/ Ton. Most of the wastewater irrigated varieties displayed up to 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. A Percentage increase of GHG gases of irrigation with treated municipal wastewater as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4, CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce the existing use of fresh water sources in agriculture sector.

Keywords: Greenhouse gases, nutrients, water footprint, wastewater irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
218 Evaluation of Bakery Products Made from Barley-Gelatinized Corn Flour and Wheat-Defatted Rice Bran Flour Composites

Authors: Ahmed M. S. Hussein, Sahar Y. Al-Okbi

Abstract:

In the present research, whole meal barley flour (WBF) was supplemented with gelatinized corn flour (GCF) in 0 and 30%. Whole meal wheat flour (WWF) was mixed with defatted rice bran (DRB) to produce 0, 20, 25, and 30% replacement levels. Rheological properties of dough were studied. Thermal properties and starch crystallinity of flours were evaluated. Flat bread, balady bread and pie were prepared from the different flour blends. The different bakeries were sensory evaluated. Color of raw materials and crust of bakery products were determined. Nutrients contents of raw flours and food products were assessed. Results showed that addition of GCF to WBF increased the viscosity and falling number of the produced dough. Water absorption, dough development time and dough stability increased with increasing the level of DRB in dough while, weakening and mixing tolerance index decreased. Extensibility and energy decreased, while, resistance to extension increased as DRB level increased. Gelatinized temperature of WWF, WBF, GCF, and DRB were 13.26, 35.09, 28.33, and 39.63, respectively. Starch crystallinity was affected when DRB was added to WWF. The highest protein content was present in balady bread made from 70% WWF and 30% DRB. The highest calcium, phosphorus, and potassium levels were present in products made from 100% WBF. Sensory attributes of the products were slightly affected by adding DRB and GCF. Conclusion: Addition of DRB or GCF to WWF or WBF, respectively affect the physical, chemical, rheological and sensory properties of balady bread, flat bread, and pie while improved their nutritive values.

Keywords: Bakeries, rheological properties, chemical and sensory attributes, flour thermal properties and starch crystallinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
217 Investigating the Treatability of a Compost Leachate in a Hybrid Anaerobic Reactor: An Experimental Study

Authors: Shima Rajabi, Leila Vafajoo

Abstract:

Compost manufacturing plants are one of units where wastewater is produced in significantly large amounts. Wastewater produced in these plants contains high amounts of substrate (organic loads) and is classified as stringent waste which creates significant pollution when discharged into the environment without treatment. A compost production plant in the one of the Iran-s province treating 200 tons/day of waste is one of the most important environmental pollutant operations in this zone. The main objectives of this paper are to investigate the compost wastewater treatability in hybrid anaerobic reactors with an upflow-downflow arrangement, to determine the kinetic constants, and eventually to obtain an appropriate mathematical model. After starting the hybrid anaerobic reactor of the compost production plant, the average COD removal rate efficiency was 95%.

Keywords: Leachate treatment, anaerobic hybrid reactor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
216 Treatment of Petroleum Refinery Wastewater by using UASB Reactors

Authors: H.A. Gasim, S.R.M. Kutty, M.H. Isa, M.P.M. Isa

Abstract:

Petroleum refineries discharged large amount of wastewater -during the refining process- that contains hazardous constituents that is hard to degrade. Anaerobic treatment process is well known as an efficient method to degrade high strength wastewaters. Up-flow Anaerobic Sludge Blanker (UASB) is a common process used for various wastewater treatments. Two UASB reactors were set up and operated in parallel to evaluate the treatment efficiency of petroleum refinery wastewater. In this study four organic volumetric loading rates were applied (i.e. 0.58, 0.89, 1.21 and 2.34 kg/m3·d), two loads to each reactor. Each load was applied for a period of 60 days for the reactor to acclimatize and reach steady state, and then the second load applied. The chemical oxygen demand (COD) removals were satisfactory with the removal efficiencies at the loadings applied were 78, 82, 83 and 81 % respectively.

Keywords: Petroleum refinery wastewater, anaerobic treatment, UASB, organic volumetric loading rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
215 A Detailed Review on Pin Fin Heat Sink

Authors: Vedulla Manoj Kumar, B. Nageswara Rao, Sk. Farooq

Abstract:

Heat sinks are being considered in many advanced heat transfer applications including automotive and stationary fuel cells as well as cooling of electronic devices. However, there are innumerable fundamental issues in the fields of heat transfer and fluid mechanics perspectives which remains unresolved. The present review emphasizes on the progress of research in the field of pin fin heat sinks, while understanding the fluid dynamics and heat transfer characteristics with a detailed and sophisticated prediction of the temperature distribution, high heat flux removal and by minimizing thermal resistance. Lot of research work carried out across the globe to address this challenge and trying to come up with an economically viable and user friendly solution. The high activities for future pin fin heat sinks research and development to meet the current issue is recorded in this article.

Keywords: Heat sinks, heat transfer, heat flux, thermal resistance, electronic devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
214 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp and using them in medical application. Carboxymethyl cellulose (CMC) is produced and applied in the preparation of antimicrobial hydrogel.

Keywords: Carboxymethyl cellulose, cellulose, hydrogel olive pulp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
213 Chromium Adsorption by Modified Wood

Authors: I. Domingos, B. Esteves, A. Figueirinha, Luísa P. Cruz-Lopes, J. Ferreira, H. Pereira

Abstract:

Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem.

Adsorption tests were performed at different pH, different times and with varying concentrations.

Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97.

The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies.

Keywords: Adsorption, chromium, heat treatment, wood modification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
212 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel

Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul

Abstract:

Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.

Keywords: Activated carbon, chemical activation, H2SO4, microwave, pomegranate peel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702
211 COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

Authors: Tayeb Aissaoui, Inas M. AlNashef

Abstract:

In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry.

Keywords: COSMO-RS, deep eutectic solvents, dehydration, natural gas, structure, organic salt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
210 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater

Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris

Abstract:

This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.

Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3335
209 Application of Ti/RuO2-SnO2-Sb2O5 Anode for Degradation of Reactive Black-5 Dye

Authors: Jayesh P. Ruparelia, Bhavna D. Soni

Abstract:

Electrochemical-oxidation of Reactive Black-5 (RB- 5) was conducted for degradation using DSA type Ti/RuO2-SnO2- Sb2O5 electrode. In the study, for electro-oxidation, electrode was indigenously fabricated in laboratory using titanium as substrate. This substrate was coated using different metal oxides RuO2, Sb2O5 and SnO2 by thermal decomposition method. Laboratory scale batch reactor was used for degradation and decolorization studies at pH 2, 7 and 11. Current density (50mA/cm2) and distance between electrodes (8mm) were kept constant for all experiments. Under identical conditions, removal of color, COD and TOC at initial pH 2 was 99.40%, 55% and 37% respectively for initial concentration of 100 mg/L RB-5. Surface morphology and composition of the fabricated electrode coatings were characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) respectively. Coating microstructure was analyzed by X-ray diffraction (XRD). Results of this study further revealed that almost 90% of oxidation occurred within 5-10 minutes.

Keywords: Electrochemical-oxidation, RB- dye, Decolorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
208 Removal of Hexavalent Chromium from Wastewater by Use of Scrap Iron

Authors: Marius Gheju, Rodica Pode

Abstract:

Hexavalent chromium is highly toxic to most living organisms and a known human carcinogen by the inhalation route of exposure. Therefore, treatment of Cr(VI) contaminated wastewater is essential before their discharge to the natural water bodies. Cr(VI) reduction to Cr(III) can be beneficial because a more mobile and more toxic chromium species is converted to a less mobile and less toxic form. Zero-valence-state metals, such as scrap iron, can serve as electron donors for reducing Cr(VI) to Cr(III). The influence of pH on scrap iron capacity to reduce Cr(VI) was investigated in this study. Maximum reduction capacity of scrap iron was observed at the beginning of the column experiments; the lower the pH, the greater the experiment duration with maximum scrap iron reduction capacity. The experimental results showed that highest maximum reduction capacity of scrap iron was 12.5 mg Cr(VI)/g scrap iron, at pH 2.0, and decreased with increasing pH up to 1.9 mg Cr(VI)/g scrap iron at pH = 7.3.

Keywords: hexavalent chromium, heavy metals, scrap iron, reduction capacity, wastewater treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
207 Evaluation Biofilm Sewage Treatment Plant

Authors: K. M. Shahot. I. A. Ekhmaj

Abstract:

The research study is carried out to determine the efficiency of the Biofilm sewage treatment plant which is located at the Engineering Complex-s. Wastewater analyses have been carried out at the Environmental Engineering laboratory to study the six parameters: Biochemical Oxygen Demand BOD, Chemical Oxygen Demand COD l, and Total Suspended Solids TSS, Ammoniac Nitrogen NH3-N and Phosphorous P which have been selected to determine the wastewater quality. The plant was designed to treat 750 Pe (population equivalent) at hydraulic retention time of 5 hours in the aerobic zone. The results show that Biofilm wastewater treatment plant was able to treat sewage successfully at different flow condition. The discharge has fulfilled the Malaysia Environmental of Standard A water quality. The achieved BOD removal is more than 85%, COD is more than 80%, TSS is more than 80%, NH3-N is more than 70%, and P was more than 70%. The Biofilm system provides a very efficient process for sewage treatment and it is compact in structure thus minimizes the required land area.

Keywords: Sewage, Bio film, Cosmo-Ball, Activated sludge

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282