%0 Journal Article
	%A Reshu Yadav and  Himanshu Joshi and  S. K.Tripathi
	%D 2015
	%J International Journal of Agricultural and Biosystems Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 102, 2015
	%T Achieving Sustainable Agriculture with Treated Municipal Wastewater
	%U https://publications.waset.org/pdf/10001767
	%V 102
	%X A pilot field study was conducted at the Jagjeetpur
Municipal Sewage treatment plant situated in the Haridwar town in
Uttarakhand state, India. The objectives of the present study were to
study the effect of treated wastewater on the production of various
paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB
1509) and the emission of GHG gases (CO2, CH4 and N2O) as
compared to the same varieties grown in the control plots irrigated
with fresh water. Of late, the concept of water footprint assessment
has emerged, which explains enumeration of various types of water
footprints of an agricultural entity from its production to processing
stages. Paddy, the most water demanding staple crop of Uttarakhand
state, displayed a high green water footprint value of 2474.12 m3/
Ton. Most of the wastewater irrigated varieties displayed up to 6%
increase in production, except Menaka and PB-1121, which showed a
reduction in production (6% and 3% respectively), due to pest and
insect infestation. The treated wastewater was observed to be rich in
Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and
Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not
requiring any external nutritional supplements. A Percentage increase
of GHG gases of irrigation with treated municipal wastewater as
compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1%
- 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati,
displayed maximum production (5.5 ton/ha) and emerged as the most
resistant variety against pests and insects. The emission values of
CH4, CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and
400.21 mg/m2/d in water stagnant condition.
This study highlighted a successful possibility of reuse of
wastewater for non-potable purposes offering the potential for
exploiting this resource that can replace or reduce the existing use of
fresh water sources in agriculture sector.
	%P 644 - 647