Search results for: fiber transmissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 506

Search results for: fiber transmissions

146 Analysis of a WDM System for Tanzania

Authors: Shaban Pazi, Chris Chatwin, Rupert Young, Philip Birch

Abstract:

Internet infrastructures in most places of the world have been supported by the advancement of optical fiber technology, most notably wavelength division multiplexing (WDM) system. Optical technology by means of WDM system has revolutionized long distance data transport and has resulted in high data capacity, cost reductions, extremely low bit error rate, and operational simplification of the overall Internet infrastructure. This paper analyses and compares the system impairments, which occur at data transmission rates of 2.5Gb/s and 10 Gb/s per wavelength channel in our proposed optical WDM system for Internet infrastructure in Tanzania. The results show that the data transmission rate of 2.5 Gb/s has minimum system impairments compared with a rate of 10 Gb/s per wavelength channel, and achieves a sufficient system performance to provide a good Internet access service.

Keywords: Internet infrastructure, WDM system, standard single mode fibers, system impairments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
145 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter

Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit

Abstract:

The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.

Keywords: Photocatalytic oxidation process, Formaldehyde (HCHO), Silk fibroin (SF), Titanium dioxide (TiO2).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
144 Performance of Membrane Bioreactor (MBR) in High Phosphate Wastewater

Authors: Aida Isma M. I., Putri Razreena A. R., Rozita Omar, Azni Idris

Abstract:

This study presents the performance of membrane bioreactor in treating high phosphate wastewater. The laboratory scale MBR was operated at permeate flux of 25 L/m2.h with a hollow fiber membrane (polypropylene, approx. pore size 0.01 - 0.2 μm) at hydraulic retention time (HRT) of 12 hrs. Scanning electron microscopy (SEM) and energy diffusive X-ray (EDX) analyzer were used to characterize the membrane foulants. Results showed that the removal efficiencies of COD, TSS, NH3-N and PO4 3- were 93, 98, 80 and 30% respectively. On average 91% of influent soluble microbial products (SMP) were eliminated, with the eliminations of polysaccharides mostly above 80%. The main fouling resistance was cake resistance. It should be noted that SMP were found in major portions of mixed liquor that played a relatively significant role in membrane fouling. SEM and EDX analyses indicated that the foulants covering the membrane surfaces comprises not only organic substances but also inorganic elements including Mg, Ca, Al, K and P.

Keywords: Membrane bioreactor (MBR), membrane fouling, phosphates, soluble microbial products (SMP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371
143 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: Composite membrane, electrospinning, fuel cell, nanofibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
142 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement

Authors: Sh. Minapoor, S. Ajeli

Abstract:

Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.

Keywords: Non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
141 Impact of Rebar-Reinforcement on Flexural Response of Shear-Critical Ultrahigh-Performance Concrete Beams

Authors: Yassir M. Abbas, Mohammad Iqbal Khan, Galal Fares

Abstract:

In the present work, the structural responses of 12 ultra-high-performance concrete (UHPC) beams to four-point loading conditions were experimentally and analytically studied. The inclusion of a fibrous system in the UHPC material increased its compressive and flexural strengths by 31.5% and 237.8%, respectively. Based on the analysis of the load-deflection curves of UHPC beams, it was found that UHPC beams with a low reinforcement ratio are prone to sudden brittle failure. This failure behavior was changed, however, to a ductile one in beams with medium to high ratios. The implication is that improving UHPC beam tensile reinforcement could result in a higher level of safety. More reinforcement bars also enabled the load-deflection behavior to be improved, particularly after yielding.

Keywords: Ultra-high-performance concrete, moment capacity, RC beams, hybrid fiber, ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138
140 Increasing Chickpea Quality and Agroecosystm Sustainability Using Organic and Natural Resources

Authors: Mohammadi K., Ghalavand A., Aghaalikhani M., Eskandari M.

Abstract:

In order to increase in chickpea quality and agroecosystem sustainability, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different organic, chemical and biological fertilizers were investigated on grain yield and quality of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. The highest amounts of yield and yield components were obtained in G1×N5 interaction. Significant increasing of N, P, K, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis ability of the crop. The combined application of compost, farmyard manure and chemical phosphorus (N5) had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: Agroecosystem, sustainability, chickpea, naturalresources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
139 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: Crack, FRP, shear, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
138 Effect of Germination on Proximate, Available Phenol and Flavonoid Content, and Antioxidant Activities of African Yam Bean (Sphenostylis stenocarpa)

Authors: Nneka N. Uchegbu, Ndidi F. Amulu

Abstract:

The work studied the effect of germination on proximate, phenol and flavonoid content and antioxidant activities (AOA) of African Yam been (AYB). Germination was done in controlled dark chamber (100% RH, 28oC). The proximate, phenol and flavonoid content and antioxidant activities before and after germination were investigated. The crude protein, moisture, and crude fiber content of germinated AYB were significantly higher (P<0.05) than that of ungermianated seed, while the fat, Ash and carbohydrate content of ungerminated were higher than the germinated seed. Germination increased the phenol and flavoniod content by 19.14% and 14.53% respectively. The results of AOA assay showed that the DPPH, reducing power and FRAP of germinated AYB seed gave high values: 48.92 ±1.22 μg/ml, 0.75± 0.15μg/ml and 98.60±0.04 μmol/g while that of ungerminated seed were: 31.33μ/ml, 0.56±1.52μg/ml and 96.11±1.13μmol/g respectively. Germinated AYB has phytochemicals with potential AOA for disease prevention.

Keywords: Antioxidant, flovonoid, germination, phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
137 Surface Roughness Prediction Model for Grinding of Composite Laminate Using Factorial Design

Authors: P. Chockalingam, C. K. Kok, T. R. Vijayaram

Abstract:

Glass fiber reinforced polymer (GFRP) laminates have been widely used because of their unique mechanical and physical properties such as high specific strength, stiffness and corrosive resistance. Accordingly, the demand for precise grinding of composites has been increasing enormously. Grinding is the one of the obligatory methods for fabricating products with composite materials and it is usually the final operation in the assembly of structural laminates. In this experimental study, an attempt has been made to develop an empirical model to predict the surface roughness of ground GFRP composite laminate with respect to the influencing grinding parameters by factorial design approach of design of experiments (DOE). The significance of grinding parameters and their three factor interaction effects on grinding of GFRP composite have been analyzed in detail. An empirical equation has been developed to attain minimum surface roughness in GFRP laminate grinding.

Keywords: GFRP Laminates, Grinding, Surface Roughness, Factorial Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
136 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: High performance concrete, special concrete, structural design, structural lightweight concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
135 Influence of Plastic Waste Reinforcement on Compaction and Consolidation Behavior of Silty Soil

Authors: Maryam Meftahi, Yashar Hamidzadeh

Abstract:

In recent decades, the amount of solid waste production has been rising. In the meantime, plastic waste is one of the major parts of urban solid waste, so, recycling plastic waste from water bottles has become a serious challenge in the whole world. The experimental program includes the study of the effect of waste plastic fibers on maximum dry density (MDD), optimum moisture content (OMC) with different sizes and contents. Also, one dimensional consolidation tests were carried out to evaluate the benefit of utilizing randomly distributed waste plastics fiber to improve the engineering behavior of a tested soils. Silty soil specimens were prepared and tested at five different percentages of plastic waste content (i.e. 0.25%, 0.50%, 0.75%, 1% and 1.25% by weight of the parent soil). The size of plastic chips used, are 4 mm, 8 mm and 12 mm long and 4 mm in width. The results show that with the addition of waste plastic fibers, the MDD and OMC and also the compressibility of soil decrease significantly.

Keywords: Silty soil, waste plastic, compaction, consolidation, reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
134 Effects of Coupling Agent on the Properties of Durian Skin Fibre Filled Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir, Yousuf El-Shekeil

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological, and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: Durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
133 Nuts Composition and their Health Benefits

Authors: S. Azadmard-Damirchi, Sh. Emami, J. Hesari, S.H. Peighambardoust, M. Nemati

Abstract:

Nuts are part of a healthy diet such as Mediterranean diet. Benefits of nuts in reducing the risk of heart disease has been reasonably attributed to their composition of vitamins, minerals, unsaturated fatty acids, fiber and phytochemicals such as polyphenols, tocopherols, squalene and phytosterols. More than 75% of total fatty acids of nuts are unsaturated. α- tocopherol is the main tocopherol isomer present in most of the nuts. While walnuts, Brazil nut, cashew nut, peanut, pecan and pistachio nuts are rich in γ- tocopherol. β- sitosterol is dominant sterol in nuts. Pistachio and pine nut have the highest total phytosterol and Brazil nut and English walnut the lowest. Walnuts also contain large amount of phenolic compounds compared with other nuts. Nuts are rich in compounds with antioxidant properties and their consumption can offer preventing from incidence of many diseases including cardiovascular.

Keywords: Nuts, phenols, phytosterols, squalene, vitamin E.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5655
132 Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.

Keywords: CFRP, large opening, RC beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
131 Survey on Nano-fibers from Acetobacter Xylinum

Authors: A. Ashjaran, M. E. Yazdanshenas, A. Rashidi, R. Khajavi, A. Rezaee

Abstract:

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.

Keywords: Microbial cellulose, Biofabric, Microorganisms Acetobacter xylinum, Polysaccharide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
130 Osteogenesis by Dextran Coating on and among Fibers of a Polyvinyl Formal Sponge

Authors: M. Yoshikawa, N. Tsuji, T. Yabuuchi, Y Shimomura, H. Kakigi, H. Hayashi, H. Ohgushi

Abstract:

A scaffold is necessary for tooth regeneration because of its three-dimensional geometry. For restoration of defect, it is necessary for the scaffold to be prepared in the shape of the defect. Sponges made from polyvinyl alcohol with formalin cross-linking (PVF sponge) have been used for scaffolds for bone formation in vivo. To induce osteogenesis within the sponge, methods of growing rat bone marrow cells (rBMCs) among the fiber structures in the sponge might be considered. Storage of rBMCs among the fibers in the sponge coated with dextran (10 kDa) was tried. After seeding of rBMCs to PVF sponge immersed in dextran solution at 2 g/dl concentration, osteogenesis was recognized in subcutaneously implanted PVF sponge as a scaffold in vivo. The level of osteocalcin was 25.28±5.71 ng/scaffold and that of Ca was 129.20±19.69 µg/scaffold. These values were significantly higher than those in sponges without dextran coating (p<0.01). Osteogenesis was induced in many spaces in the inner structure of the sponge with dextran coated fibers.

Keywords: Dextran, Polyvinyl formal sponge, Osteogenesis, Scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
129 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats

Authors: S. Mohammadzadehmoghadam, Y. Dong

Abstract:

In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.

Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892
128 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: Nanocomposite, polysulfone, rheology, sepiolite, solution mixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3074
127 Mineral and Some Physico-Chemical Composition of 'Karayemis' (Prunus laurocerasus L.) Fruits Grown in Northeast Turkey

Authors: İsmail Hakkı Kalyoncu, Nilda Ersoy, Ayşe Yalcın Elidemir, Cansu Dolek

Abstract:

Some physico-chemical characteristics and mineral composition of 'Karayemis' (Prunus laurocerasus L.) fruits which grown naturally in Norteast Turkey was studied. 28 minerals ( Al, Mg, B, Mn, Co, Na, Ca, Ni, Cd, P, Cr, Pb, Cu, S, Fe, Zn, K, Sr, Li, As, V, Ag, Ba, Br, Ga, In, Se, Ti) were analyzed and 19 minerals were present at ascertainable levels. Karayemis fruit was richest in potassium (7938.711 ppm), magnesium (1242.186 ppm) and calcium (1158.853 ppm). And some physico-chemical characteristics of Karayemis fruit was investigated. Fruit length, fruit width, fruit thickness, fruit weight, total soluble solids, colour, protein, crude ash, crude fiber, crude oil values were determined as 2.334 cm, 1.884 cm, 2.112 cm, 5.35 g, 20.1 %, S99M99Y99, 0.29 %, 0.22 %, 6.63 % and 0.001 %, respectively. The seed of fruit mean weight, length, width and thickness were found to be 0.41 g, 1.303 cm, 0.921 cm and 0.803, respectively.

Keywords: Prunus laurocerasus L., physico-chemical properties, nutritional properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
126 Nutritional Evaluation of Sorghum Flour (Sorghumbicolor L. Moench) During Processing of Injera

Authors: Noha A. Mohammed, Isam A. Mohamed Ahmed, Elfadil E. Babiker

Abstract:

The present study was carried out to evaluate the nutritional value of sorghum flour during processing of injera (unleavened thick bread). The proximate composition of sorghum flour before and after fermentation and that of injera was determined. Compared to the raw flour and fermented one, injera had low protein (11.55%), ash (1.57%) and fat (2.40%) contents but high in fiber content. Moreover, injera was found to have significantly (P ≤ 0.05) higher energy (389.08 Kcal/100g) compared to raw and fermented sorghum flour. Injera contained lower levels of anti-nutritional factors (polyphenols, phytate and tannins) compared to raw and fermented sorghum. Also it was found to be rich in Ca (4.75mg/100g), Fe (3.95 mg/100g), and Cu (0.7 mg/100g) compared to that of raw and fermented flour. Moreover, both the extractable minerals and protein digestibility were high for injera due to low amount of anti-nutrients. Injera was found to contain an appreciable amount of amino acids except arginine and tyrosine.

Keywords: Cooking, Fermentation, Malt, Protein fractions, Sorghum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4115
125 Numerical Analysis and Design of Dielectric to Plasmonic Waveguides Couplers

Authors: Emanuela Paranhos Lima, Vitaly Félix Rodríguez Esquerre

Abstract:

In this work, efficient directional coupler composed of dielectric waveguides and metallic film has been analyzed in details by simulations using finite element method (FEM). The structure consists of a step-index fiber with dielectric core, silica cladding, and a metal nanowire parallel to the core. The results show that an efficient conversion of optical dielectric modes to long range plasmonic is possible. Low insertion losses in conjunction with short coupling length and a broadband operation can be achieved under certain conditions. This kind of couplers has potential applications for the design of photonic integrated circuits for signal routing between dielectric/plasmonic waveguides, sensing, lithography, and optical storage systems. A high efficient focusing of light in a very small region can be obtained.

Keywords: Directional coupler, finite element method, metallic nanowire, plasmonic, surface plasmon polariton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
124 Green Prossesing of PS/Nanoparticle Fibers and Studying Morphology and Properties

Authors: M. Kheirandish, S. Borhani

Abstract:

In this experiment Polystyrene/Zinc-oxide (PS/ZnO) nanocomposite fibers were produced by electrospinning technique using limonene as a green solvent. First, the morphology of electrospun pure polystyrene (PS) and PS/ZnO nanocomposite fibers investigated by SEM. Results showed the PS fiber diameter decreased by increasing concentration of Zinc Oxide nanoparticles (ZnO NPs). Thermo Gravimetric Analysis (TGA) results showed thermal stability of nanocomposites increased by increasing ZnO NPs in PS electrospun fibers. Considering Differential Scanning Calorimeter (DSC) thermograms for electrospun PS fibers indicated that introduction of ZnO NPs into fibers affects the glass transition temperature (Tg) by reducing it. Also, UV protection properties of nanocomposite fibers were increased by increasing ZnO concentration. Evaluating the effect of metal oxide NPs amount on mechanical properties of electrospun layer showed that tensile strength and elasticity modulus of the electrospun layer of PS increased by addition of ZnO NPs. X-ray diffraction (XRD) pattern of nanopcomposite fibers confirmed the presence of NPs in the samples.

Keywords: Electrospininng, nanoparticle, polystyrene, ZnO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
123 Effect of Different Methods of Soil Fertility on Grain Yield and Chickpea Quality

Authors: Mohammadi K., Ghalavand A., Aghaalikhani M

Abstract:

In order to evaluation the effects of natural, biological and chemical fertilizers on grain yield and chickpea quality, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different organic, chemical and biological fertilizers were investigated on grain yield and quality of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. The highest amounts of yield and yield components were obtained in G1×N5 interaction. Significant increasing of N, P, K, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis ability of the crop. The combined application of compost, farmyard manure and chemical phosphorus (N5) had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: soil fertility, grain yield, chickpea, natural resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
122 Carbon-Based Composites Enable Monitoring of Internal States in Concrete Structures

Authors: René Čechmánek, Jiří Junek, Bohdan Nešpor, Pavel Šteffan

Abstract:

Regarding previous research studies it was concluded that thin-walled fiber-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibers are less conductive than metal fibers, composites with carbon fibers were evaluated as better current conductors than the composites with metal fibers. The level of electric conductivity is monitored by the means of impedance measurement of designed samples. These composites could be used for a range of applications such as heating of trafficable surfaces or shielding of electro-magnetic fields. The aim of the present research was to design an element with the ability to monitor internal processes in building structures and prevent them from collapsing. As a typical element for laboratory testing there was chosen a concrete column, which was repeatedly subjected to load by simple pressure with continual monitoring of changes in electrical properties.

Keywords: Carbon, conductivity, loading, monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
121 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: Automatic bias control, optical fiber communication, optical modulation, optical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566
120 Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography

Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song

Abstract:

A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.

Keywords: Common-path OCT, FD-OCT, OCT, Tracking algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
119 An Experimental Study on the Measurement of Fuel to Air Ratio Using Flame Chemiluminescence

Authors: Sewon Kim, Chang Yeop Lee, Minjun Kwon

Abstract:

This study is aiming at establishing the relationship between the optical signal of flame and an equivalent ratio of flame. In this experiment, flame optical signal in a furnace is measured using photodiode. The combustion system is composed of metal fiber burner and vertical furnace, and flame chemiluminescence is measured at various experimental conditions. In this study, the flame chemiluminescence of laminar premixed flame is measured using commercially available photodiode. It is experimentally investigated the relationship between equivalent ratio and photodiode signal. In addition, the strategy of combustion control method is proposed using the optical signal and fuel pressure. The results showed that certain relationship between optical data of photodiode and equivalence ratio exists, and this leads to the successful application of this system for instantaneous measurement of equivalence ration of the combustion system.

Keywords: Flame chemiluminescence, photo diode, equivalence ratio, combustion control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
118 Effect of Impact Load on the Bond between Steel and CFRP Laminate

Authors: A. Al-Mosawe, R. Al-Mahaidi

Abstract:

Carbon fiber reinforced polymersarewidely used to strengthen steel structural elements. These structural elements are normally subjected to static, dynamic and fatigue loadings during their life-time. CFRP laminate is commonly used to strengthen these structures under the subjected loads. A number of studies have focused on the characteristics of CFRP sheets bonded to steel members under static, dynamic and fatigue loadings. However, there is a gap in understanding the bonding behavior between CFRP laminates and steel members under impact loading. This paper shows the effect of high load rates on this bond. CFRP laminate CFK 150/2000 was used to strengthen steel joints using Araldite 420 epoxy. The results show that applying a high load rate significantly affects the bond strength but has little influence on the effective bond length.

Keywords: Adhesively-bonded joints, Bond strength, CFRP laminate, Impact tensile loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2568
117 Numerical Prediction of Bearing Strength on Composite Bolted Joint Using Three Dimensional Puck Failure Criteria

Authors: M. S. Meon, M. N. Rao, K-U. Schröder

Abstract:

Mechanical fasteners especially bolting is commonly used in joining carbon-fiber reinforced polymer (CFRP) composite structures due to their good joinability and easy for maintenance characteristics. Since this approach involves with notching, a proper progressive damage model (PDM) need to be implemented and verified to capture existence of damages in the structure. A three dimensional (3D) failure criteria of Puck is established to predict the ultimate bearing failure of such joint. The failure criteria incorporated with degradation scheme are coded based on user subroutine executed in Abaqus. Single lap joint (SLJ) of composite bolted joint is used as target configuration. The results revealed that the PDM adopted here could sufficiently predict the behaviour of composite bolted joint up to ultimate bearing failure. In addition, mesh refinement near holes increased the accuracy of predicted strength as well as computational effort.

Keywords: Bearing strength, bolted joint, degradation scheme, progressive damage model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702