Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33090
Active Surface Tracking Algorithm for All-Fiber Common-Path Fourier-Domain Optical Coherence Tomography
Authors: Bang Young Kim, Sang Hoon Park, Chul Gyu Song
Abstract:
A conventional optical coherence tomography (OCT) system has limited imaging depth, which is 1-2 mm, and suffers unwanted noise such as speckle noise. The motorized-stage-based OCT system, using a common-path Fourier-domain optical coherence tomography (CP-FD-OCT) configuration, provides enhanced imaging depth and less noise so that we can overcome these limitations. Using this OCT systems, OCT images were obtained from an onion, and their subsurface structure was observed. As a result, the images obtained using the developed motorized-stage-based system showed enhanced imaging depth than the conventional system, since it is real-time accurate depth tracking. Consequently, the developed CP-FD-OCT systems and algorithms have good potential for the further development of endoscopic OCT for microsurgery.Keywords: Common-path OCT, FD-OCT, OCT, Tracking algorithm.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1123596
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661References:
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, 1. G. Fujimoto, "Optical coherence tomography," Science, vol. 254, no. 5035, pp. 1178-1181, 1991.
[2] S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging, " Nat. Med., vol. 4, no. 7, pp. 861-865,1998.
[3] G. J. Teamey, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science, vol. 276, no. 5321, pp. 2037-2039, 1997.
[4] B. Vakhtin, D. J. Kane, W. R. Wood, K. A. Peterson, "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Optics, vol. 42, no. 34, pp. 6953-6958, 2003.
[5] R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Opt. Express, vol. 14, no. 5, pp. 1878-1887, 2006.
[6] U. Sharma, J. U. Kang, "Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography," Rev. Sci. Instrum., vol. 78, no. 11, pp. 113102, 2007.
[7] K. M. Tan, M. Mazilu, T. H. Chow, W. M. Lee, K. Taguchi, B. K. Ng, W. Sibbett, C. S. Herrington, C.T. A. Brown, K. Dholakia, "In-fiber common-path optical coherence tomography using a conical-tip fiber," Opt. Express, vol. 17, no. 4, pp. 2375-2384, 2009.
[8] Low, G. Teamey, B. Bouma, I. Jang, "Technology insight: Optical coherence tomography - Current status and future development," Nat. Clin. Pract. Card., vol. 3, no. 3, pp. 154-162,2006.
[9] N. Iftimia, B. Bouma, J. F. de Boer, B. Park, B. Cense, G. Teamey, "Adaptive ranging for optical coherence tomography," Opt. Express, vol. 12, no. 17, pp. 4025-4034, 2004.
[10] G. Maguluri, M. Mujat, B. Park, K. Kim, W. Sun, N. Iftimia, R. Ferguson, D. Hammer, T. Chen, J. Boer, "Three dimensional tracking for volumetric spectral-domain optical coherence tomography," Opt. Express, vol. 15, no. 25, pp. 16808-16817,2007.
[11] M. Pircher, B. Baumann, E. Gotzinger, H. Sattmann, C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction, " Opt. Express, vol. 15, no. 25, pp. 16922-16932, 2007.
[12] K. Aljasem, A. Werber, H. Zappe, "Tunable endoscopic MEMS-probe for optical coherence tomography," Proc. 2007 IEEEILEOS Int. Conf. Optical MEMS and Nanophotonics, pp. 8-9, Hualien, Taiwan, 2007.
[13] H. Wang, Y. Pan, A. M. Rollins, "Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch, " Opt. Lett., vol. 33, no. 22, pp. 2632-2634, 2008.
[14] K. Zhang, W. Wang, J. Han, 1. U. Kang, "A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography, " IEEE T. Biomed. Eng., vol. 56, no. 9, pp. 2318-2321, 2009.
[15] J. Luo, K. Ying, J. Bai, "Savitzky-Golay smoothing and differentiation filter for even number data," Signal Process., vol. 85, no. 7, pp. 1429-1434,2005.