Search results for: Agricultural soils
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 655

Search results for: Agricultural soils

295 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: Tunnel, Soil cementation, Static, Dynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
294 Long-term Irrigation with Dairy Factory Wastewater Influences Soil Quality

Authors: Yen-Yiu Liu, Richard J. Haynes

Abstract:

The effects of irrigation with dairy factory wastewater on soil properties were investigated at two sites that had received irrigation for > 60 years. Two adjoining paired sites that had never received DFE were also sampled as well as another seven fields from a wider area around the factory. In comparison with paired sites that had not received effluent, long-term wastewater irrigation resulted in an increase in pH, EC, extractable P, exchangeable Na and K and ESP. These changes were related to the use of phosphoric acid, NaOH and KOH as cleaning agents in the factory. Soil organic C content was unaffected by DFE irrigation but the size (microbial biomass C and N) and activity (basal respiration) of the soil microbial community were increased. These increases were attributed to regular inputs of soluble C (e.g. lactose) present as milk residues in the wastewater. Principal component analysis (PCA) of the soils data from all 11sites confirmed that the main effects of DFE irrigation were an increase in exchangeable Na, extractable P and microbial biomass C, an accumulation of soluble salts and a liming effect. PCA analysis of soil bacterial community structure, using PCR-DGGE of 16S rDNA fragments, generally separated individual sites from one another but did not group them according to irrigation history. Thus, whilst the size and activity of the soil microbial community were increased, the structure and diversity of the bacterial community remained unaffected.

Keywords: Dairy factory, wastewater; effluent, irrigation, soil quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
293 Long- term Irrigation with Dairy Factory Wastewater Influences Soil Quality

Authors: Yen-Yiu Liu, Richard J. Haynes

Abstract:

The effects of irrigation with dairy factory wastewater on soil properties were investigated at two sites that had received irrigation for > 60 years. Two adjoining paired sites that had never received DFE were also sampled as well as another seven fields from a wider area around the factory. In comparison with paired sites that had not received effluent, long-term wastewater irrigation resulted in an increase in pH, EC, extractable P, exchangeable Na and K and ESP. These changes were related to the use of phosphoric acid, NaOH and KOH as cleaning agents in the factory. Soil organic C content was unaffected by DFE irrigation but the size (microbial biomass C and N) and activity (basal respiration) of the soil microbial community were increased. These increases were attributed to regular inputs of soluble C (e.g. lactose) present as milk residues in the wastewater. Principal component analysis (PCA) of the soils data from all 11sites confirmed that the main effects of DFE irrigation were an increase in exchangeable Na, extractable P and microbial biomass C, an accumulation of soluble salts and a liming effect. PCA analysis of soil bacterial community structure, using PCR-DGGE of 16S rDNA fragments, generally separated individual sites from one another but did not group them according to irrigation history. Thus, whilst the size and activity of the soil microbial community were increased, the structure and diversity of the bacterial community remained unaffected.

Keywords: Dairy factory, wastewater; effluent, irrigation, soil quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
292 Population Trend of Canola Aphid, Lipaphis Erysimi (Kalt.) (Homoptera: Aphididae) and its Associated Natural Enemies in Different Brassica Lines along with the Effect of Gamma Radiation on Their Population

Authors: Ahmad-Ur-Rahman Saljoqi, Rahib Zada, Imtiaz Ali Khan, Iqbal Munir, Sadur-Rehman, Hazrat Jabir Alam Khan

Abstract:

Studies regarding the determination of population trend of Lipaphis erysimi (kalt.) and its associated natural enemies in different Brassica lines along with the effect of gamma radiation on their population were conducted at Agricultural Research Farm, Malakandher, Khyber Pakhtunkhwa Agricultural University Peshawar during spring 2006. Three different Brassica lines F6B3, F6B6 and F6B7 were used, which were replicated four times in Randomized Complete Block Design. The data revealed that aphid infestation invariably stated in all three varieties during last week of February 2006 (1st observation). The peak population of 4.39 aphids leaf-1 was s recorded during 2nd week of March and lowest population of 1.02 aphids leaf-1 was recorded during 5th week of March. The species of lady bird beetle (Coccinella septempunctata) and Syrphid fly (Syrphus balteatus) first appeared on 24th February with a mean number of 0.40 lady bird beetle leaf-1 and 0.87 Syrphid fly leaf-1, respectively. At the time when aphid population started to increase the peak population of C. septempunctata (0.70 lady bird beetle leaf- 1) and S. balteatus (1.04 syrphid fly leaf-1) was recorded on the 2nd week of March. Chrysoperla carnea appeared in the 1st week of March and their peak population was recorded during the 3rd week of March with mean population of 1.46 C. carnea leaf-1. Among all the Brassica lines, F6B7 showed comparatively more resistance as compared to F6B3 F6B6. F6B3 showed least resistance against L. erysimi, which was found to be the most susceptible cultivar. F6B7 was also found superior in terms of natural enemies. Maximum number of all natural enemies was recorded on this variety followed by F6B6. Lowest number of natural enemies was recorded in F6B3. No significant effect was recorded for the effect of gamma radiation on the population of aphids, natural enemies and on the varieties.

Keywords: Canola aphid, Lipaphis erysimi, natural enemies, brassica lines, gamma radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
291 The Impact of Water Reservoirs on Biodiversity and Food Security and the Creation of Adaptation Mechanisms

Authors: Inom S. Normatov, Abulqosim Muminov, Parviz I. Normatov

Abstract:

Problems of food security and the preservation of reserved zones in the region of Central Asia under the conditions of the climate change induced by the placement and construction of large reservoirs are considered. The criteria for the optimum placement and construction of reservoirs that entail the minimum impact on the environment are established. The need for the accounting of climatic parameters is shown by the calculation of the water quantity required for the irrigation of agricultural lands.

Keywords: Reservoir, Central Asia, food, reserved zones, adaptation, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
290 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system had ever built to avoid such a problem, but puddles still did not stop appearing after rain. Permeability parameter needs to be determined by using a simpler procedure to find exact method of solution. The instrument modelling was proposed according to the development of field permeability testing instrument. This experiment used a proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow from unsaturated until saturated soil condition. Volumetric water content (θ) were monitored by soil moisture measurement device. The results were correlations between k and θ which were drawn by numerical approach from Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr=68%) until 9.98 x 10-4 cm/sec (Sr=82%). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.

Keywords: Constant discharge method, in situ permeability test, sandy soil, unsaturated conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
289 The Protection and Enhancement of the Roman Roads in Algeria

Authors: T. Ninouh, A. Rouili

Abstract:

The Romain paths or roads offer a very interesting archaeological material, because they allow us to understand the history of human settlement and are also factors that increase territorial identity. Roman roads are one of the hallmarks of the Roman empire, which extends to North Africa. The objective of this investigation is to attract the attention of researchers of the importance of Roman roads and paths, which are found in Algeria, according to the quality of the materials and techniques used in this period our history, and to encourage other decision makers to protect and enhance these routes because the current urbanization, intensive agricultural practices, or simply forgotten, decreases the sustainability of this important historical heritage.

Keywords: Romain paths, material Materials, Property, Valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
288 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: Cyclic loading, DPIV, settlement, soil-structure interactions, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
287 Application of Mapping and Superimposing Rule for Solution of Parabolic PDE in Porous Medium under Cyclic Loading

Authors: Mohammad M. Toufigh, Ahad Ouria

Abstract:

This paper presents an analytical method to solve governing consolidation parabolic partial differential equation (PDE) for inelastic porous Medium (soil) with consideration of variation of equation coefficient under cyclic loading. Since under cyclic loads, soil skeleton parameters change, this would introduce variable coefficient of parabolic PDE. Classical theory would not rationalize consolidation phenomenon in such condition. In this research, a method based on time space mapping to a virtual time space along with superimposing rule is employed to solve consolidation of inelastic soils in cyclic condition. Changes of consolidation coefficient applied in solution by modification of loading and unloading duration by introducing virtual time. Mapping function is calculated based on consolidation partial differential equation results. Based on superimposing rule a set of continuous static loads in specified times used instead of cyclic load. A set of laboratory consolidation tests under cyclic load along with numerical calculations were performed in order to verify the presented method. Numerical solution and laboratory tests results showed accuracy of presented method.

Keywords: Mapping, Consolidation, Inelastic porous medium, Cyclic loading, Superimposing rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
286 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India

Authors: Rabindra K. Panda, Gurjeet Singh

Abstract:

The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.

Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
285 Effect of Confinement on the Bearing Capacity and Settlement of Spread Foundations

Authors: Tahsin Toma Sabbagh, Ihsan Al-Abboodi, Ali Al-Jazaairry

Abstract:

Allowable-bearing capacity is the competency of soil to safely carries the pressure from the superstructure without experiencing a shear failure with accompanying excessive settlements. Ensuring a safe bearing pressure with respect to failure does not tolerate settlement of the foundation will be within acceptable limits. Therefore, settlement analysis should always be performed since most structures are settlement sensitive. When visualising the movement of a soil wedge in the bearing capacity criterion, both vertically and horizontally, it becomes clear that by confining the soil surrounding the foundation, both the bearing capacity and settlement values improve. In this study, two sizes of spread foundation were considered; (2×4) m and (3×5) m. These represent two real problem case studies of an existing building. The foundations were analysed in terms of dimension as well as position with respect to a confining wall (i.e., sheet piles on both sides). Assuming B is the least foundation dimension, the study comprised the analyses of three distances; (0.1 B), (0.5 B), and (0.75 B) between the sheet piles and foundations alongside three depths of confinement (0.5 B), (1 B), and (1.5 B). Nonlinear three-dimensional finite element analysis (ANSYS) was adopted to perform an analytical investigation on the behaviour of the two foundations contained by the case study. Results showed that confinement of foundations reduced the overall stresses near the foundation by 65% and reduced the vertical displacement by 90%. Moreover, the most effective distance between the confinement wall and the foundation was found to be 0.5 B.

Keywords: Bearing capacity, cohesionless soils, spread footings, soil confinement, soil modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
284 The Potential Effect of Biochar Application on Microbial Activities and Availability of Mineral Nitrogen in Arable Soil Stressed by Drought

Authors: Helena Dvořáčková, Jakub Elbl, Irina Mikajlo, Antonín Kintl, Jaroslav Hynšt, Olga Urbánková, Jaroslav Záhora

Abstract:

Application of biochar to arable soils represents a new approach to restore soil health and quality. Many studies reported the positive effect of biochar application on soil fertility and development of soil microbial community. Moreover biochar may affect the soil water retention, but this effect has not been sufficiently described yet. Therefore this study deals with the influence of biochar application on: microbial activities in soil, availability of mineral nitrogen in soil for microorganisms, mineral nitrogen retention and plant production. To demonstrate the effect of biochar addition on the above parameters, the pot experiment was realized. As a model crop, Lactuca sativa L. was used and cultivated from December 10th 2014 till March 22th 2015 in climate chamber in thoroughly homogenized arable soil with and without addition of biochar. Five variants of experiment (V1 – V5) with different regime of irrigation were prepared. Variants V1 – V2 were fertilized by mineral nitrogen, V3 – V4 by biochar and V5 was a control. The significant differences were found only in plant production and mineral nitrogen retention. The highest content of mineral nitrogen in soil was detected in V1 and V2, about 250 % in comparison with the other variants. The positive effect of biochar application on soil fertility, mineral nitrogen availability was not found. On the other hand results of plant production indicate the possible positive effect of biochar application on soil water retention.

Keywords: Arable soil, biochar, drought, mineral Nitrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
283 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils

Authors: Muqdad Al-Juboori, Bithin Datta

Abstract:

Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.

Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
282 Mineralogical and Geochemical Characteristics of Serpentinite-Derived Ni-Bearing Laterites from Fars Province, Iran: Implications for the Lateritization Process and Classification of Ni-Laterites

Authors: S. Rasti, M. A. Rajabzadeh

Abstract:

Nickel-bearing laterites occur as two parallel belts along Sedimentary Zagros Orogenic (SZO) and Metamorphic Sanandaj-Sirjan (MSS) petrostructural zones, Fars Province, south Iran. An undisturbed vertical profile of these laterites includes protolith, saprolite, clay, and oxide horizons from base to top. Highly serpentinized harzburgite with relicts of olivine and orthopyroxene is regarded as the source rock. The laterites are unusual in lacking a significant saprolite zone with little development of Ni-silicates. Hematite, saponite, dolomite, smectite and clinochlore increase, while calcite, olivine, lizardite and chrysotile decrease from saprolite to oxide zones. Smectite and clinochlore with minor calcite are the major minerals in clay zone. Contacts of different horizons in laterite profiles are gradual and characterized by a decrease in Mg concentration ranging from 18.1 to 9.3 wt.% in oxide and saprolite, respectively. The maximum Ni concentration is 0.34 wt.% (NiO) in the base of the oxide zone, and goethite is the major Ni-bearing phase. From saprolite to oxide horizons, Al2O3, K2O, TiO2, and CaO decrease, while SiO2, MnO, NiO, and Fe2O3 increase. Silica content reaches up to 45 wt.% in the upper part of the soil profile. There is a decrease in pH (8.44-8.17) and an increase in organic matter (0.28-0.59 wt.%) from base to top of the soils. The studied laterites are classified in the oxide clans which were derived from ophiolite ultramafic rocks under Mediterranean climate conditions.

Keywords: Iran, laterite, mineralogy, ophiolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
281 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading

Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool

Abstract:

The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.

Keywords: Shallow foundation, seismic behavior, raft thickness, damping ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
280 Application of Robot Formation Scheme for Screening Solar Energy in a Greenhouse

Authors: George K. Fourlas, Konstantinos Kalovrektis, Evangelos Fountas

Abstract:

Many agricultural and especially greenhouse applications like plant inspection, data gathering, spraying and selective harvesting could be performed by robots. In this paper multiple nonholonomic robots are used in order to create a desired formation scheme for screening solar energy in a greenhouse through data gathering. The formation consists from a leader and a team member equipped with appropriate sensors. Each robot is dedicated to its mission in the greenhouse that is predefined by the requirements of the application. The feasibility of the proposed application includes experimental results with three unmanned ground vehicles (UGV).

Keywords: Greenhouses application, robot formation, solarenergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
279 Complexity of Operation and Maintenance in Irrigation Network Management-A Case of the Dez Scheme in the Greater Dezful, Iran

Authors: Najaf Hedayat

Abstract:

Food and fibre production in arid and semi-arid regions has emerged as one of the major challenges for various socio-economic and political reasons such as the food security and self-sufficiency. Productive use of the renewable water resources has risen on top ofthe decision-making agenda. For this reason, efficient operation and maintenance of modern irrigation and drainage schemes become part and parcel and indispensible reality in agricultural policy making arena. The aim of this paper is to investigate the complexity of operating and maintaining such schemes, mainly focussing on challenges which enhance and opportunities that impedsustainable food and fibre production. The methodology involved using secondary data complemented byroutine observations and stakeholders views on issues that influence the O&M in the Dez command area. The SPSS program was used as an analytical framework for data analysis and interpretation.Results indicate poor application efficiency in most croplands, much of which is attributed to deficient operation of conveyance and distribution canals. These in turn, are reportedly linked to inadequate maintenance of the pumping stations and hydraulic structures like turnouts,flumes and other control systems particularly in the secondary and tertiary canals. Results show that the aforementioned deficiencies have been the major impediment to establishing regular flow toward the farm gates which subsequently undermine application efficiency and tillage operationsat farm level. Results further show that accumulative impact of such deficiencies has been the major causes of poorcrop yield and quality that deem production system in these croplands uneconomic. Results further show that the present state might undermine the sustainability of agricultural system in the command area. The overall conclusion being that present water management is unlikely to be responsive to challenges that the sector faces. And in the absence of coherent measures to shift the status quo situation in favour of more productive resource use, it would be hard to fulfil the objectives of the National Economic and Socio-cultural Development Plans.

Keywords: renewable water resources, Dez scheme, irrigationand drainage, sustainable crop production, O&M

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
278 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant

Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet

Abstract:

Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.

Keywords: Agricultural waste, chemical treatment, fiber characteristics, natural fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
277 Effect of Utilization of Geosynthetic on Reducing the Required Thickness of Subbase Layer of a Two Layered Soil

Authors: R. Ziaie Moayed, M. Nazari

Abstract:

This paper tries to study the effect of geosynthetic inclusion on the improvement of the load-settlement characters of two layered soil. In addition, the effect of geogrid and geotextile in reduction of the required thickness of subbase layer in unpaved roads is studied. Considering the vast application of bearing ratio tests in road construction projects, this test is used in present investigation. Bearing ratio tests were performed on two layered soil including a granular soil layer at the top (as the subbase layer) and a weak clayey soil placed at the bottom (as the subgrade layer). These tests were performed for different conditions including unreinforced and reinforced by geogrid and geotextile and three thicknesses for top layer soil (subbase layer). In the reinforced condition the reinforcing element was placed on the interface of the top granular layer and the beneath clayey layer to study the separation effect of geosynthetics. In all tests the soils (both granular and clayey soil layers) were compacted according to optimum water content. At the end, the diagrams were plotted and were compared with each other. Furthermore, a comparison between geogrids and geotextiles behaviors on two layer soil is done in this paper. The results show an increase in compression strength of reinforced specimen in comparison with unreinforced soil sample. The effect of geosynthetic inclusion reduces by increasing the subbase thickness. In addition it was found that geogrids have more desirable behavior rather than geotextiles due to interlocking with the subbase layer aggregates.

Keywords: Bearing ratio, Subgrade, Subbase, Sand layer thickness, Geosynthetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3262
276 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: Cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
275 Farmers’ Perception, Willingness and Capacity in Utilization of Household Sewage Sludge as Organic Resources for Peri-Urban Agriculture around Jos Nigeria

Authors: C. C. Alamanjo, A. O. Adepoju, H. Martin, R. N. Baines

Abstract:

Peri-urban agriculture in Jos Nigeria serves as a major means of livelihood for both urban and peri-urban poor, and constitutes huge commercial inclination with a target market that has spanned beyond Plateau State. Yet, the sustainability of this sector is threatened by intensive application of urban refuse ash contaminated with heavy metals, as a result of the highly heterogeneous materials used in ash production. Hence, this research aimed to understand the current fertilizer employed by farmers, their perception and acceptability in utilization of household sewage sludge for agricultural purposes and their capacity in mitigating risks associated with such practice. Mixed methods approach was adopted, and data collection tools used include survey questionnaire, focus group discussion with farmers, participants and field observation. The study identified that farmers maintain a complex mixture of organic and chemical fertilizers, with mixture composition that is dependent on fertilizer availability and affordability. Also, farmers have decreased the rate of utilization of urban refuse ash due to labor and increased logistic cost and are keen to utilize household sewage sludge for soil fertility improvement but are mainly constrained by accessibility of this waste product. Nevertheless, farmers near to sewage disposal points have commenced utilization of household sewage sludge for improving soil fertility. Farmers were knowledgeable on composting but find their strategic method of dewatering and sun drying more convenient. Irrigation farmers were not enthusiastic for treatment, as they desired both water and sludge. Secondly, household sewage sludge observed in the field is heterogeneous due to nearness between its disposal point and that of urban refuse, which raises concern for possible cross-contamination of pollutants and also portrays lack of extension guidance as regards to treatment and management of household sewage sludge for agricultural purposes. Hence, farmers concerns need to be addressed, particularly in providing extension advice and establishment of decentralized household sewage sludge collection centers, for continuous availability of liquid and concentrated sludge. Urgent need is also required for the Federal Government of Nigeria to increase commitment towards empowering her subsidiaries for efficient discharge of corporate responsibilities.

Keywords: Ash, farmers, household, peri-urban, refuse, sewage, sludge, urban.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
274 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: Coal mine, risk, soil, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
273 Conjunctive Surface Runoff and Groundwater Management in Salinity Soils

Authors: S. Chuenchooklin, T. Ichikawa, P. Mekpruksawong

Abstract:

This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.

Keywords: Surface water, groundwater observation, irrigation, water balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
272 Effect of Fines on Liquefaction Susceptibility of Sandy Soil

Authors: Ayad Salih Sabbar, Amin Chegenizadeh, Hamid Nikraz

Abstract:

Investigation of liquefaction susceptibility of materials that have been used in embankments, slopes, dams, and foundations is very essential. Many catastrophic geo-hazards such as flow slides, declination of foundations, and damage to earth structure are associated with static liquefaction that may occur during abrupt shearing of these materials. Many artificial backfill materials are mixtures of sand with fines and other composition. In order to provide some clarifications and evaluations on the role of fines in static liquefaction behaviour of sand sandy soils, the effect of fines on the liquefaction susceptibility of sand was experimentally examined in the present work over a range of fines content, relative density, and initial confining pressure. The results of an experimental study on various sand-fines mixtures are presented. Undrained static triaxial compression tests were conducted on saturated Perth sand containing 5% bentonite at three different relative densities (10, 50, and 90%), and saturated Perth sand containing both 5% bentonite and slag (2%, 4%, and 6%) at single relative density 10%. Undrained static triaxial tests were performed at three different initial confining pressures (100, 150, and 200 kPa). The brittleness index was used to quantify the liquefaction potential of sand-bentonite-slag mixtures. The results demonstrated that the liquefaction susceptibility of sand-5% bentonite mixture was more than liquefaction susceptibility of clean sandy soil. However, liquefaction potential decreased when both of two fines (bentonite and slag) were used. Liquefaction susceptibility of all mixtures decreased with increasing relative density and initial confining pressure.  

Keywords: Bentonite, brittleness index, liquefaction, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
271 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load

Authors: R. Ziaie Moayed, E. Ghanbari Alamouty

Abstract:

Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.

Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
270 Estimation of Geotechnical Parameters by Comparing Monitoring Data with Numerical Results: Case Study of Arash–Esfandiar-Niayesh Under-Passing Tunnel, Africa Tunnel, Tehran, Iran

Authors: Aliakbar Golshani, Seyyed Mehdi Poorhashemi, Mahsa Gharizadeh

Abstract:

The under passing tunnels are strongly influenced by the soils around. There are some complexities in the specification of real soil behavior, owing to the fact that lots of uncertainties exist in soil properties, and additionally, inappropriate soil constitutive models. Such mentioned factors may cause incompatible settlements in numerical analysis with the obtained values in actual construction. This paper aims to report a case study on a specific tunnel constructed by NATM. The tunnel has a depth of 11.4 m, height of 12.2 m, and width of 14.4 m with 2.5 lanes. The numerical modeling was based on a 2D finite element program. The soil material behavior was modeled by hardening soil model. According to the field observations, the numerical estimated settlement at the ground surface was approximately four times more than the measured one, after the entire installation of the initial lining, indicating that some unknown factors affect the values. Consequently, the geotechnical parameters are accurately revised by a numerical back-analysis using laboratory and field test data and based on the obtained monitoring data. The obtained result confirms that typically, the soil parameters are conservatively low-estimated. And additionally, the constitutive models cannot be applied properly for all soil conditions.

Keywords: NATM tunnel, initial lining, field test data, laboratory test data, monitoring data, numerical back-analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
269 The Influence of Biofuels on the Permeability of Sand-Bentonite Liners

Authors: Mousa Bani Baker, Maria Elektorowicz, Adel Hanna, Altayeb Qasem

Abstract:

Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.

Keywords: Biofuel, Ethanol; Hydraulic conductivity Landfill, Leakage, Liner failure, Liner performance Fine-grained soils, Particle size, Sand-bentonite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
268 Curing Time Effect on Behavior of Cement Treated Marine Clay

Authors: H. W. Xiao, F. H. Lee

Abstract:

Cement stabilization has been widely used for improving the strength and stiffness of soft clayey soils. Cement treated soil specimens used to investigate the stress-strain behaviour in the laboratory study are usually cured for 7 days. This paper examines the effects of curing time on the strength and stress strain behaviour of cement treated marine clay under triaxial loading condition. Laboratory-prepared cement treated Singapore marine clay with different mix proportion S-C-W (soil solid-cement solid-water) and curing time (7 days to 180 days) was investigated through conducting unconfined compressive strength test and triaxial test. The results show that the curing time has a significant effect on the unconfined compressive strength u q , isotropic compression behaviour and stress strain behaviour. Although the primary yield loci of the cement treated soil specimens with the same mix proportion expand with curing time, they are very narrowly banded and have nearly the same shape after being normalized by isotropic compression primary stress ' py p . The isotropic compression primary yield stress ' py p was shown to be linearly related to unconfined compressive strength u q for specimens with different curing time and mix proportion. The effect of curing time on the hardening behaviour will diminish with consolidation stress higher than isotropic compression primary yield stress but its damping rate is dependent on the cement content.

Keywords: Cement treated soil, curing time effect, hardening behaviour, isotropic compression primary yield stress, unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3900
267 Adsorption Studies on the Removal of Pesticides(Carbofuran) using Activated Carbon from Rice Straw Agricultural Waste

Authors: Ken-Lin Chang, Jun-Hong Lin, Shui-Tein Chen

Abstract:

In this study, we used a two-stage process and potassium hydroxide (KOH) to transform waste biomass (rice straw) into activated carbon and then evaluated the adsorption capacity of the waste for removing carbofuran from an aqueous solution. Activated carbon was fast and effective for the removal of carbofuran because of its high surface area. The native and carbofuran-loaded adsorbents were characterized by elemental analysis. Different adsorption parameters, such as the initial carbofuran concentration, contact time, temperature and pH for carbofuran adsorption, were studied using a batch system. This study demonstrates that rice straw can be very effective in the adsorption of carbofuran from bodies of water.

Keywords: Rice straw, Carbofuran, Activated carbon

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4114
266 Statistical Assessment of Models for Determination of Soil – Water Characteristic Curves of Sand Soils

Authors: S. J. Matlan, M. Mukhlisin, M. R. Taha

Abstract:

Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and timeconsuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study.

Keywords: Soil-water characteristic curve (SWCC), statistical analysis, unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2659