Search results for: Numerical method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9316

Search results for: Numerical method

5566 Complex Dynamic Behaviors in an Ivlev-type Stage-structured Predator-prey System Concerning Impulsive Control Strategy

Authors: Shunyi Li, Zhifang He, Xiangui Xue

Abstract:

An Ivlev-type predator-prey system and stage-structured for predator concerning impulsive control strategy is considered. The conditions for the locally asymptotically stable prey-eradication periodic solution is obtained, by using Floquet theorem and small amplitude perturbation skills——when the impulsive period is less than the critical value. Otherwise, the system is permanence. Numerical examples show that the system considered has more complicated dynamics, including high-order quasi-periodic and periodic oscillating, period-doubling and period-halving bifurcation, chaos and attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.

Keywords: Stage-structured predator-prey system, Impulsive, Permanence, Bifurcation, Chaos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
5565 Nanostructure of Gamma-Alumina Prepared by a Modified Sol-Gel Technique

Authors: Débora N. Zambrano, Marina O. Gosatti, Leandro M. Dufou, Daniel A. Serrano, M. Mónica Guraya, Soledad Perez-Catán

Abstract:

Nanoporous g-Al2O3 samples were synthesized via a sol-gel technique, introducing changes in the Yoldas´ method. The aim of the work was to achieve an effective control of the nanostructure properties and morphology of the final g-Al2O3. The influence of the reagent temperature during the hydrolysis was evaluated in case of water at 5 ºC and 98 ºC, and alkoxide at -18 ºC and room temperature. Sol-gel transitions were performed at 120 ºC and room temperature. All g-Al2O3 samples were characterized by X-ray diffraction, nitrogen adsorption and thermal analysis. Our results showed that temperature of both water and alkoxide has not much influence on the nanostructure of the final g-Al2O3, thus giving a structure very similar to that of samples obtained by the reference method as long as the reaction temperature above 75 ºC is reached soon enough. XRD characterization showed diffraction patterns corresponding to g-Al2O3 for all samples. Also BET specific area values (253-280 m2/g) were similar to those obtained by Yoldas’s original method. The temperature of the sol-gel transition does not affect the resulting sample structure, and crystalline boehmite particles were identified in all dried gels. We analyzed the reproducibility of the samples’ structure by preparing different samples under identical conditions; we found that performing the sol-gel transition at 120 ºC favors the production of more reproducible samples and also reduces significantly the time of the sol-gel reaction.

Keywords: Nanostructure alumina, boehmite, sol-gel technique, N2 adsorption/desorption isotherm, pore size distribution, BET area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1324
5564 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with fillervolume- based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: Thermal Stability, Silica-Reinforced, Epoxy Composite, Coefficient of Thermal Expansion, Empirical Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4805
5563 Matching Current Search with Future Postings

Authors: Kim Nee Goh, Viknesh Kumar Naleyah

Abstract:

Online trading is an alternative to conventional shopping method. People trade goods which are new or pre-owned before. However, there are times when a user is not able to search the items wanted online. This is because the items may not be posted as yet, thus ending the search. Conventional search mechanism only works by searching and matching search criteria (requirement) with data available in a particular database. This research aims to match current search requirements with future postings. This would involve the time factor in the conventional search method. A Car Matching Alert System (CMAS) prototype was developed to test the matching algorithm. When a buyer-s search returns no result, the system saves the search and the buyer will be alerted if there is a match found based on future postings. The algorithm developed is useful and as it can be applied in other search context.

Keywords: Matching algorithm, online trading, search, future postings, car matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
5562 Vibration Analysis of the Gas Turbine Considering Dependency of Stiffness and Damping on Frequency

Authors: Hamed Jamshidi, Pooya Djamshidi

Abstract:

In this paper the complete rotor system including elastic shaft with distributed mass, allowing for the effects of oil film in bearings. Also, flexibility of foundation is modeled. As a whole this article is a relatively complete research in modeling and vibration analysis of rotor considering gyroscopic effect, damping, dependency of stiffness and damping coefficients on frequency and solving the vibration equations including these parameters. On the basis of finite element method and utilizing four element types including element of shaft, disk, bearing and foundation and using MATLAB, a computer program is written. So the responses in several cases and considering different effects are obtained. Then the results are compared with each other, with exact solutions and results of other papers.

Keywords: Damping coefficients , Finite element method, Modeling , Rotor vibration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
5561 The Effects of Bolt Spacing on Composite Shear Wall Behavior

Authors: Amir Ayazi, Hamde Ahmadi, Soheil Shafaei

Abstract:

Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.

Keywords: Composite steel shear wall, bolt, buckling, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099
5560 Assessing the Impact of Contour Strips of Perennial Grass with Bio-fuel Potentials on Aquatic Environment

Authors: Roy R. Gu, Mahesh Sahu

Abstract:

The use of contour strips of perennial vegetation with bio-fuel potential can improve surface water quality by reducing NO3-N and sediment outflow from cropland to surface water-bodies. It also has economic benefits of producing ethanol. In this study, The Soil and Water Assessment Tool (SWAT) model was applied to a watershed in Iowa, USA to examine the effectiveness of contour strips of switch grass in reducing the NO3-N outflows from crop fields to rivers or lakes. Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size on NO3-N reduction under various meteorological conditions, i.e. dry, average and wet years. Useful information was obtained for the evaluation of economic feasibility of growing switch grass for bio-fuel in contour strips. The results can assist in cost-benefit analysis and decisionmaking in best management practices for environmental protection.

Keywords: ethanol, modeling, water quality, NO3-N, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
5559 Comparing Autoregressive Moving Average (ARMA) Coefficients Determination using Artificial Neural Networks with Other Techniques

Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb

Abstract:

Autoregressive Moving average (ARMA) is a parametric based method of signal representation. It is suitable for problems in which the signal can be modeled by explicit known source functions with a few adjustable parameters. Various methods have been suggested for the coefficients determination among which are Prony, Pade, Autocorrelation, Covariance and most recently, the use of Artificial Neural Network technique. In this paper, the method of using Artificial Neural network (ANN) technique is compared with some known and widely acceptable techniques. The comparisons is entirely based on the value of the coefficients obtained. Result obtained shows that the use of ANN also gives accurate in computing the coefficients of an ARMA system.

Keywords: Autoregressive moving average, coefficients, back propagation, model parameters, neural network, weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
5558 Isotropic Stress Distribution in Cu/(001) Fe Two Sheets

Authors: A. Derardja, L. Baroura, M. Brioua

Abstract:

The nanotechnology based on epitaxial systems includes single or arranged misfit dislocations. In general, whatever is the type of dislocation or the geometry of the array formed by the dislocations; it is important for experimental studies to know exactly the stress distribution for which there is no analytical expression [1, 2]. This work, using a numerical analysis, deals with relaxation of epitaxial layers having at their interface a periodic network of edge misfit dislocations. The stress distribution is estimated by using isotropic elasticity. The results show that the thickness of the two sheets is a crucial parameter in the stress distributions and then in the profile of the two sheets. A comparative study between the case of single dislocation and the case of parallel network shows that the layers relaxed better when the interface is covered by a parallel arrangement of misfit. Consequently, a single dislocation at the interface produces an important stress field which can be reduced by inserting a parallel network of dislocations with suitable periodicity.

Keywords: Parallel array of misfit, interface, isotropic elasticity, single crystalline substrates, coherent interface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
5557 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: Wind fragility, glass window, high rise apartment, Monte Carlo Simulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1198
5556 A Method for Modeling Multiple Antenna Channels

Authors: S. Rajabi, M. ArdebiliPoor, M. Shahabadi

Abstract:

In this paper we propose a method for modeling the correlation between the received signals by two or more antennas operating in a multipath environment. Considering the maximum excess delay in the channel being modeled, an elliptical region surrounding both transmitter and receiver antennas is produced. A number of scatterers are randomly distributed in this region and scatter the incoming waves. The amplitude and phase of incoming waves are computed and used to obtain statistical properties of the received signals. This model has the distinguishable advantage of being applicable for any configuration of antennas. Furthermore the common PDF (Probability Distribution Function) of received wave amplitudes for any pair of antennas can be calculated and used to produce statistical parameters of received signals.

Keywords: MIMO (Multiple Input Multiple Output), SIMO (Single Input Multiple Output), GBSBEM (Geometrically Based Single Bounce Elliptical Model).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
5555 Hydrodynamic Characteristics of a New Sewer Overflow Screening Device: CFD Modeling & Analytical Study

Authors: M. A. Aziz, M. A. Imteaz, J. Naser, D. I. Phillips

Abstract:

Some of the major concerns regarding sewer overflows to receiving water bodies include serious environmental, aesthetic and public health problems. A noble self-cleansing sewer overflow screening device having a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants has been investigated. Computational Fluid Dynamics (CFD) techniques are used to simulate the flow phenomena with two different inlet orientations; parallel and perpendicular to the weir direction. CFD simulation results are compared with analytical results. Numerical results show that the flow is not uniform (across the width of the inclined surface) near the top of the inclined surface. The flow becomes uniform near the bottom of the inclined surface, with significant increase of shear stress. The simulation results promises for an effective and efficient self-cleansing sewer overflow screening device by comparing hydrodynamic results.

Keywords: Hydrodynamic Characteristics, Ogee Spillway, Screening, Sewer Overflow Device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
5554 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
5553 Back Stepping Sliding Mode Control of Blood Glucose for Type I Diabetes

Authors: N. Tadrisi Parsa, A. R. Vali, R. Ghasemi

Abstract:

Diabetes is a growing health problem in worldwide. Especially, the patients with Type 1 diabetes need strict glycemic control because they have deficiency of insulin production. This paper attempts to control blood glucose based on body mathematical body model. The Bergman minimal mathematical model is used to develop the nonlinear controller. A novel back-stepping based sliding mode control (B-SMC) strategy is proposed as a solution that guarantees practical tracking of a desired glucose concentration. In order to show the performance of the proposed design, it is compared with conventional linear and fuzzy controllers which have been done in previous researches. The numerical simulation result shows the advantages of sliding mode back stepping controller design to linear and fuzzy controllers.

Keywords: Back stepping, Bergman Model, Nonlinear control, Sliding mode control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3523
5552 An Attempt to Predict the Performances of a Rocket Thrust Chamber

Authors: A. Benarous, D. Karmed, R. Haoui, A. Liazid

Abstract:

The process for predicting the ballistic properties of a liquid rocket engine is based on the quantitative estimation of idealized performance deviations. In this aim, an equilibrium chemistry procedure is firstly developed and implemented in a Fortran routine. The thermodynamic formulation allows for the calculation of the theoretical performances of a rocket thrust chamber. In a second step, a computational fluid dynamic analysis of the turbulent reactive flow within the chamber is performed using a finite volume approach. The obtained values for the “quasi-real" performances account for both turbulent mixing and chemistryturbulence coupling. In the present work, emphasis is made on the combustion efficiency performance for which deviation is mainly due to radial gradients of static temperature and mixture ratio. Numerical values of the characteristic velocity are successfully compared with results from an industry-used code. The results are also confronted with the experimental data of a laboratory-scale rocket engine.

Keywords: JANAF methodology, Liquid rocket engine, Mascotte test-rig, Theoretical performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
5551 Anti-microbial Activity of Aristolochic Acid from Root of Aristolochia bracteata Retz

Authors: S. Angalaparameswari, T.S. Mohamed Saleem, M. Alagusundaram, S. Ramkanth, V.S. Thiruvengadarajan, K. Gnanaprakash, C. Madhusudhana Chetty, G. Pratheesh

Abstract:

The present research was designed to investigate the anti-microbial activity of aristolochic acid from the root of Aristolochia bracteata. From the methanolic & ethyl extract extracts of Aristolochia bracteata aristolochic acid I was isolated and conformed through IR, NMR & MS. The percentage purity of aristolochic acid I was determined by UV & HPLC method. Antibacterial activity of extracts of Aristolochia bracteata and the isolated compound was determined by disc diffusion method. The results reveled that the isolated aristolochic acid from methanolic extract was more pure than the compound from ethyl acetate extract. The various extracts (500μg/disc) of Aristolochia bracteata showed moderate antibacterial activity with the average zone of inhibition of 7-18 mm by disc diffusion method. Among the extracts, ethyl acetate & methanol extracts were shown good anti-microbial activity and the growth of E.coli (18 mm) was strongly inhibited. Microbial assay of isolated compound (Aristolochic acid I) from ethyl acetate & methanol extracts were shown good antimicrobial activity and the zone of inhibition of both at higher concentration 50 μg/ml was similar with the standard aristolochic acid. It may be concluded that the isolated compound of aristolochic acid I has good anti-bacterial activity.

Keywords: Aristolochic acid I, Anti-microbial activity, Aristolochia bracteata, Bacillus subtilis, E.coli

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
5550 Numerical Investigation on Load Bearing Capacity of Pervious Concrete Piles as an Alternative to Granular Columns

Authors: Ashkan Shafee, Masoud Ghodrati, Ahmad Fahimifar

Abstract:

Pervious concrete combines considerable permeability with adequate strength, which makes it very beneficial in pavement construction and also in ground improvement projects. In this paper, a single pervious concrete pile subjected to vertical and lateral loading is analysed using a verified three dimensional finite element code. A parametric study was carried out in order to investigate load bearing capacity of a single unreinforced pervious concrete pile in saturated soft soil and also gain insight into the failure mechanism of this rather new soil improvement technique. The results show that concrete damaged plasticity constitutive model can perfectly simulate the highly brittle nature of the pervious concrete material and considering the computed vertical and horizontal load bearing capacities, some suggestions have been made for ground improvement projects.

Keywords: Concrete damaged plasticity, ground improvement, load bearing capacity, pervious concrete pile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
5549 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
5548 The Survey of the Buckling Effect of Laminated Plate under the Thermal Load using Complex Finite Strip Method

Authors: A.R.Nezamabadi, M.Mansouri Gavari, S.Mansouri, M.Mansouri Gavari

Abstract:

This article considers the positional buckling of composite thick plates under thermal loading . For this purpose , the complex finite strip method is used . In analysis of complex finite strip, harmonic complex function in longitudinal direction , cubic functions in transversal direction and parabola distribution of transverse shear strain in thickness of thick plate based on higherorder shear deformation theory are used . In given examples , the effect of angles of stratification , number of layers , dimensions ratio and length – to – thick ratio across critical temperature are considered.

Keywords: Thermal buckling , Thick plate , Complex finite strip , Higher – order shear deformation theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
5547 Segmentation of Cardiac Images by the Force Field Driven Speed Term

Authors: Renato Dedic, Madjid Allili, Roger Lecomte, Adbelhamid Benchakroun

Abstract:

The class of geometric deformable models, so-called level sets, has brought tremendous impact to medical imagery. In this paper we present yet another application of level sets to medical imaging. The method we give here will in a way modify the speed term in the standard level sets equation of motion. To do so we build a potential based on the distance and the gradient of the image we study. In turn the potential gives rise to the force field: F~F(x, y) = P ∀(p,q)∈I ((x, y) - (p, q)) |ÔêçI(p,q)| |(x,y)-(p,q)| 2 . The direction and intensity of the force field at each point will determine the direction of the contour-s evolution. The images we used to test our method were produced by the Univesit'e de Sherbrooke-s PET scanners.

Keywords: PET, Cardiac, Heart, Mouse, Geodesic, Geometric, Level Sets, Deformable Models, Edge Detection, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
5546 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602
5545 Residence Time Distribution in a Two Impinging Streams Cyclone Reactor: CFD Prediction and Experimental Validation

Authors: Nahid Ghasemi, Morteza Sohrabi, Yasan Soleymani

Abstract:

The quantified residence time distribution (RTD) provides a numerical characterization of mixing in a reactor, thus allowing the process engineer to better understand mixing performance of the reactor.This paper discusses computational studies to investigate flow patterns in a two impinging streams cyclone reactor(TISCR) . Flow in the reactor was modeled with computational fluid dynamics (CFD). Utilizing the Eulerian- Lagrangian approach, implemented in FLUENT (V6.3.22), particle trajectories were obtained by solving the particle force balance equations. From simulation results obtained at different Δts, the mean residence time (tm) and the mean square deviation (σ2) were calculated. a good agreement can be observed between predicted and experimental data. Simulation results indicate that the behavior of complex reactor systems can be predicted using the CFD technique with minimum data requirement for validation.

Keywords: Impinging streams reactor, Residence timedistribution, CFD, Eulerian-Lagrangian approach

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2348
5544 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

Authors: Ashutosh Kumar Singh, Anand Mohan

Abstract:

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
5543 A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation

Authors: Khaled M. EL-Naggar

Abstract:

This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.

Keywords: Digital Filtering, Estimation, Impulse wave, Stochastic filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
5542 Region Based Hidden Markov Random Field Model for Brain MR Image Segmentation

Authors: Terrence Chen, Thomas S. Huang

Abstract:

In this paper, we present the region based hidden Markov random field model (RBHMRF), which encodes the characteristics of different brain regions into a probabilistic framework for brain MR image segmentation. The recently proposed TV+L1 model is used for region extraction. By utilizing different spatial characteristics in different brain regions, the RMHMRF model performs beyond the current state-of-the-art method, the hidden Markov random field model (HMRF), which uses identical spatial information throughout the whole brain. Experiments on both real and synthetic 3D MR images show that the segmentation result of the proposed method has higher accuracy compared to existing algorithms.

Keywords: Finite Gaussian mixture model, Hidden Markov random field model, image segmentation, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
5541 Structural Cost of Optimized Reinforced Concrete Isolated Footing

Authors: Mohammed S. Al-Ansari

Abstract:

This paper presents an analytical model to estimate the cost of an optimized design of reinforced concrete isolated footing base on structural safety. Flexural and optimized formulas for square and rectangular footingare derived base on ACI building code of design, material cost and optimization. The optimization constraints consist of upper and lower limits of depth and area of steel. Footing depth and area of reinforcing steel are to be minimized to yield the optimal footing dimensions. Optimized footing materials cost of concrete, reinforcing steel and formwork of the designed sections are computed. Total cost factor TCF and other cost factors are developed to generalize and simplify the calculations of footing material cost. Numerical examples are presented to illustrate the model capability of estimating the material cost of the footing for a desired axial load.

Keywords: Footing, Depth, Concrete, Steel, Formwork, Optimization, Material cost, Cost Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4683
5540 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: Knowledge based engineering, biologically inspired design, knowledge cell, knowledge clustering, knowledge acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
5539 Optimal Image Compression Based on Sign and Magnitude Coding of Wavelet Coefficients

Authors: Mbainaibeye Jérôme, Noureddine Ellouze

Abstract:

Wavelet transforms is a very powerful tools for image compression. One of its advantage is the provision of both spatial and frequency localization of image energy. However, wavelet transform coefficients are defined by both a magnitude and sign. While algorithms exist for efficiently coding the magnitude of the transform coefficients, they are not efficient for the coding of their sign. It is generally assumed that there is no compression gain to be obtained from the coding of the sign. Only recently have some authors begun to investigate the sign of wavelet coefficients in image coding. Some authors have assumed that the sign information bit of wavelet coefficients may be encoded with the estimated probability of 0.5; the same assumption concerns the refinement information bit. In this paper, we propose a new method for Separate Sign Coding (SSC) of wavelet image coefficients. The sign and the magnitude of wavelet image coefficients are examined to obtain their online probabilities. We use the scalar quantization in which the information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also examined. We show that the sign information and the refinement information may be encoded by the probability of approximately 0.5 only after about five bit planes. Two maps are separately entropy encoded: the sign map and the magnitude map. The refinement information of the wavelet coefficient to belong to the lower or to the upper sub-interval in the uncertainly interval is also entropy encoded. An algorithm is developed and simulations are performed on three standard images in grey scale: Lena, Barbara and Cameraman. Five scales are performed using the biorthogonal wavelet transform 9/7 filter bank. The obtained results are compared to JPEG2000 standard in terms of peak signal to noise ration (PSNR) for the three images and in terms of subjective quality (visual quality). It is shown that the proposed method outperforms the JPEG2000. The proposed method is also compared to other codec in the literature. It is shown that the proposed method is very successful and shows its performance in term of PSNR.

Keywords: Image compression, wavelet transform, sign coding, magnitude coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
5538 Stress Variation of Underground Building Structure during Top-Down Construction

Authors: Soo-yeon Seo, Seol-ki Kim, Su-jin Jung

Abstract:

In the construction of a building, it is necessary to minimize construction period and secure enough work space for stacking of materials during the construction especially in city area. In this manner, various top-down construction methods have been developed and widely used in Korea. This paper investigates the stress variation of underground structure of a building constructed by using SPS (Strut as Permanent System) known as a top-down method in Korea through an analytical approach. Various types of earth pressure distribution related to ground condition were considered in the structural analysis of an example structure at each step of the excavation. From the analysis, the most high member force acting on beams was found when the ground type was medium sandy soil and a stress concentration was found in corner area.

Keywords: Construction of building, top-down construction method, earth pressure distribution, member force, stress concentration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
5537 Institutional Efficiency of Commonhold Industrial Parks Using a Polynomial Regression Model

Authors: Jeng-Wen Lin, Simon Chien-Yuan Chen

Abstract:

Based on assumptions of neo-classical economics and rational choice / public choice theory, this paper investigates the regulation of industrial land use in Taiwan by homeowners associations (HOAs) as opposed to traditional government administration. The comparison, which applies the transaction cost theory and a polynomial regression analysis, manifested that HOAs are superior to conventional government administration in terms of transaction costs and overall efficiency. A case study that compares Taiwan-s commonhold industrial park, NangKang Software Park, to traditional government counterparts using limited data on the costs and returns was analyzed. This empirical study on the relative efficiency of governmental and private institutions justified the important theoretical proposition. Numerical results prove the efficiency of the established model.

Keywords: Homeowners Associations, Institutional Efficiency, Polynomial Regression, Transaction Cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564