Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2
Search results for: A. Derardja
2 Isotropic Stress Distribution in Cu/(001) Fe Two Sheets
Authors: A. Derardja, L. Baroura, M. Brioua
Abstract:
The nanotechnology based on epitaxial systems includes single or arranged misfit dislocations. In general, whatever is the type of dislocation or the geometry of the array formed by the dislocations; it is important for experimental studies to know exactly the stress distribution for which there is no analytical expression [1, 2]. This work, using a numerical analysis, deals with relaxation of epitaxial layers having at their interface a periodic network of edge misfit dislocations. The stress distribution is estimated by using isotropic elasticity. The results show that the thickness of the two sheets is a crucial parameter in the stress distributions and then in the profile of the two sheets. A comparative study between the case of single dislocation and the case of parallel network shows that the layers relaxed better when the interface is covered by a parallel arrangement of misfit. Consequently, a single dislocation at the interface produces an important stress field which can be reduced by inserting a parallel network of dislocations with suitable periodicity.Keywords: Parallel array of misfit, interface, isotropic elasticity, single crystalline substrates, coherent interface
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15721 Simulation of Thin Film Relaxation by Buried Misfit Networks
Authors: A. Derardja
Abstract:
The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.Keywords: Angular misfit, dislocation networks, plane interfaces, stacking faults.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494