Search results for: Serial Servo Controller
577 Application of Wireless Visual Sensor for Semi- Autonomous Mine Navigation System
Authors: Vinay Kumar Pilania, Debashish Chakravarty
Abstract:
The present paper represent the efforts undertaken for the development of an semi-automatic robot that may be used for various post-disaster rescue operation planning and their subsequent execution using one-way communication of video and data from the robot to the controller and controller to the robot respectively. Wireless communication has been used for the purpose so that the robot may access the unapproachable places easily without any difficulties. It is expected that the information obtained from the robot would be of definite help to the rescue team for better planning and execution of their operations.Keywords: Mine environment, mine navigation, mine rescue robot, video data transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731576 Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter
Authors: Dipen A. Mistry, Bhupelly Dheeraj, Ravit Gautam, Manmohan Singh Meena, Suresh Mikkili
Abstract:
In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.
Keywords: DC link voltage, Fuzzy logic controller, Harmonics, PI controller, Shunt Active Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5162575 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network
Authors: A.V.Naresh Babu, S.Sivanagaraju
Abstract:
A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196574 A Robust Implementation of a Building Resources Access Rights Management System
Authors: E. Neagoe, V. Balanica
Abstract:
A Smart Building Controller (SBC) is a server software that offers secured access to a pool of building specific resources, executes monitoring tasks and performs automatic administration of a building, thus optimizing the exploitation cost and maximizing comfort. This paper brings to discussion the issues that arise with the secure exploitation of the SBC administered resources and proposes a technical solution to implement a robust secure access system based on roles, individual rights and privileges (special rights).
Keywords: Access authorization, smart building controller, software security, access rights.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907573 Distribution Voltage Regulation Under Three- Phase Fault by Using D-STATCOM
Authors: Chaiyut Sumpavakup, Thanatchai Kulworawanichpong
Abstract:
This paper presents the voltage regulation scheme of D-STATCOM under three-phase faults. It consists of the voltage detection and voltage regulation schemes in the 0dq reference. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. To verify its use, a simplified 4-bus test system is situated by assuming a three-phase fault at bus 4. As a result, the DSTATCOM can resume the load voltage to the desired level within 1.8 ms. This confirms that the proposed voltage regulation scheme performs well under three-phase fault events.Keywords: D-STATCOM, proportional controller, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789572 Development of a Portable Welding Robot with EtherCAT Interface
Authors: Juyi Park, Sang-Bum Lee, Jin-Wook Kim, Ji-Yoon Kim, Jung-Min Kim, Hee-Hwan Park, Jae-Won Seo, Gye-Hyung Kang, Soo-Ho Kim
Abstract:
This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.Keywords: Portable welding robot, Shipbuilding, EtherCAT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963571 Comparison of Evolutionary Algorithms and their Hybrids Applied to MarioAI
Authors: Hidehiko Okada, Yuki Fujii
Abstract:
Researchers have been applying artificial/ computational intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In thispaper, we report our experimental result on the comparison of evolution strategy, genetic algorithm and their hybrids, applied to evolving controller agents for MarioAI. GA revealed its advantage in our experiment, whereas the expected ability of ES in exploiting (fine-tuning) solutions was not clearly observed. The blend crossover operator and the mutation operator of GA might contribute well to explore the vast search space.
Keywords: Evolutionary algorithm, autonomous game controller agent, neuroevolutions, MarioAI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723570 Modelling the Photovoltaic Pump Output Using Empirical Data from Local Conditions in the Vhembe District
Authors: C. Matasane, C. Dwarika, R. Naidoo
Abstract:
The mathematical analysis on radiation obtained and the development of the solar photovoltaic (PV) array groundwater pumping is needed in the rural areas of Thohoyandou for sizing and power performance subject to the climate conditions within the area. A simple methodology approach is developed for the directed coupled solar, controller and submersible ground water pump system. The system consists of a PV array, pump controller and submerged pump, battery backup and charger controller. For this reason, the theoretical solar radiation is obtained for optimal predictions and system performance in order to achieve different design and operating parameters. Here the examination of the PV schematic module in a Direct Current (DC) application is used for obtainable maximum solar power energy for water pumping. In this paper, a simple efficient photovoltaic water pumping system is presented with its theoretical studies and mathematical modeling of photovoltaics (PV) system.
Keywords: Renewable energy sources, solar groundwater pumping, theoretical and mathematical analysis of photovoltaic (PV) system, theoretical solar radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519569 Combined Model Predictive Controller Technique for Enhancing NAO Gait Stabilization
Authors: Brahim Brahmi, Mohammed Hamza Laraki, Mohammad Habibur Rahman, Islam M. Rasedul, M. Assad Uz-Zaman
Abstract:
The humanoid robot, specifically the NAO robot must be able to provide a highly dynamic performance on the soccer field. Maintaining the balance of the humanoid robot during the required motion is considered as one of a challenging problems especially when the robot is subject to external disturbances, as contact with other robots. In this paper, a dynamic controller is proposed in order to ensure a robust walking (stabilization) and to improve the dynamic balance of the robot during its contact with the environment (external disturbances). The generation of the trajectory of the center of mass (CoM) is done by a model predictive controller (MPC) conjoined with zero moment point (ZMP) technique. Taking into account the properties of the rotational dynamics of the whole-body system, a modified previous control mixed with feedback control is employed to manage the angular momentum and the CoM’s acceleration, respectively. This latter is dedicated to provide a robust gait of the robot in the presence of the external disturbances. Simulation results are presented to show the feasibility of the proposed strategy.Keywords: Preview control, walking, stabilization, humanoid robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591568 Fuzzy Logic Based Maximum Power Point Tracking Designed for 10kW Solar Photovoltaic System with Different Membership Functions
Authors: S. Karthika, K. Velayutham, P. Rathika, D. Devaraj
Abstract:
The electric power supplied by a photovoltaic power generation systems depends on the solar irradiation and temperature. The PV system can supply the maximum power to the load at a particular operating point which is generally called as maximum power point (MPP), at which the entire PV system operates with maximum efficiency and produces its maximum power. Hence, a Maximum power point tracking (MPPT) methods are used to maximize the PV array output power by tracking continuously the maximum power point. The proposed MPPT controller is designed for 10kW solar PV system installed at Cape Institute of Technology. This paper presents the fuzzy logic based MPPT algorithm. However, instead of one type of membership function, different structures of fuzzy membership functions are used in the FLC design. The proposed controller is combined with the system and the results are obtained for each membership functions in Matlab/Simulink environment. Simulation results are decided that which membership function is more suitable for this system.
Keywords: MPPT, DC-DC Converter, Fuzzy logic controller, Photovoltaic (PV) system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4258567 Speed Regulation of a Small BLDC Motor Using Genetic-Based Proportional Control
Authors: S. Poonsawat, T. Kulworawanichpong
Abstract:
This paper presents the speed regulation scheme of a small brushless dc motor (BLDC motor) with trapezoidal back-emf consideration. The proposed control strategy uses the proportional controller in which the proportional gain, kp, is appropriately adjusted by using genetic algorithms. As a result, the proportional control can perform well in order to compensate the BLDC motor with load disturbance. This confirms that the proposed speed regulation scheme gives satisfactory results.
Keywords: BLDC motor, proportional controller, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095566 Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization
Authors: Yeong-Hwa Chang, Chia-Wen Chang, Hung-Wei Lin, C.W. Tao
Abstract:
In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and experimental results indicate that better performance can be achieved compared to the conventional ACO algorithms in the aspect of convergence speed and accuracy.Keywords: Ant colony algorithm, Fuzzy control, ball and beamsystem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195565 Automated Separation of Organic Liquids through Their Boiling Points
Authors: Muhammad Tahir Qadri, Syed Shafi-Uddin Qadri, Faizan Farid, Nabeel Abid
Abstract:
This paper discuss the separation of the miscible liquids by means of fractional distillation. For complete separation of liquids, the process of heating, condensation, separation and storage is done automatically to achieve the objective. PIC micro-controller has been used to control each and every process of the work. The controller also controls the storage process by activating and deactivating the conveyors. The liquids are heated which on reaching their respective boiling points evaporate and enter the condensation chamber where they convert into liquid. The liquids are then directed to their respective tanks by means of stepper motor which moves in three directions, each movement into different tank. The tank on filling sends the signal to controller which then opens the solenoid valves. The tank is emptied into the beakers below the nozzle. As the beaker filled, the nozzle closes and the conveyors come into operation. The filled beaker is replaced by an empty beaker from behind. The work can be used in oil industries, chemical industries and paint industries.Keywords: Miscible Liquid Separation Unit, Distillation, Waste Water Treatment, Organic Liquids Collection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742564 T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process
Authors: Tianchai Suksri, U-thai Sritheeravirojana, Arjin Numsomran, Viriya Kongrattana, Thongchai Werataweemart
Abstract:
A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.Keywords: CRA, Quadruple-Tank.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584563 Broadcasting Stabilization for Dynamical Multi-Agent Systems
Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
This paper deals with a stabilization problem for multi-agent systems, when all agents in a multi-agent system receive the same broadcasting control signal and the controller can measure not each agent output but the sum of all agent outputs. It is analytically shown that when the sum of all agent outputs is bounded with a certain broadcasting controller for a given reference, each agent output is separately bounded: stabilization of the sum of agent outputs always results in the stability of every agent output. A numerical example is presented to illustrate our theoretic findings in this paper.
Keywords: Broadcasting Control, Multi-agent System, Transfer Function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840562 Robust Control for Discrete-Time Sector Bounded Systems with Time-Varying Delay
Authors: Ju H. Park, S.M. Lee
Abstract:
In this paper, we propose a robust controller design method for discrete-time systems with sector-bounded nonlinearities and time-varying delay. Based on the Lyapunov theory, delaydependent stabilization criteria are obtained in terms of linear matrix inequalities (LMIs) by constructing the new Lyapunov-Krasovskii functional and using some inequalities. A robust state feedback controller is designed by LMI framework and a reciprocally convex combination technique. The effectiveness of the proposed method is verified throughout a numerical example.
Keywords: Lur'e systems, Time-delay, Stabilization, LMIs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686561 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation
Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu
Abstract:
This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.
Keywords: machine learning, neural network, pressurized water reactor, supervisory controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514560 Stability Analysis and Controller Design of Further Development of MIMOS II for Space Applications with Focus on the Extended Lyapunov Method: Part I
Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz
Abstract:
In the context of planetary exploration, the MIMOS II (miniaturized M¨ossbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the M¨ossbauer spectroscopy is further developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, an additional method for analysing the stability of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.
Keywords: Controller design for MIMOS II, stability analysis, M¨ossbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, transimpedance amplifier, extended Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49559 Design of a Reduced Order Robust Convex Controller for Flight Control System
Authors: S. Swain, P. S. Khuntia
Abstract:
In this paper an optimal convex controller is designed to control the angle of attack of a FOXTROT aircraft. Then the order of the system model is reduced to a low-dimensional state space by using Balanced Truncation Model Reduction Technique and finally the robust stability of the reduced model of the system is tested graphically by using Kharitonov rectangle and Zero Exclusion Principle for a particular range of perturbation value. The same robust stability is tested theoretically by using Frequency Sweeping Function for robust stability.
Keywords: Convex Optimization, Kharitonov Stability Criterion, Model Reduction, Robust Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720558 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4934557 Stabilization of the Lorenz Chaotic Equations by Fuzzy Controller
Authors: Behrooz Rezaie, Zahra Rahmani Cherati, Mohammad Reza Jahed Motlagh, Mohammad Farrokhi
Abstract:
In this paper, a fuzzy controller is designed for stabilization of the Lorenz chaotic equations. A simple Mamdani inference method is used for this purpose. This method is very simple and applicable for complex chaotic systems and it can be implemented easily. The stability of close loop system is investigated by the Lyapunov stabilization criterion. A Lyapunov function is introduced and the global stability is proven. Finally, the effectiveness of this method is illustrated by simulation results and it is shown that the performance of the system is improved.Keywords: Chaotic system, Fuzzy control, Lorenz equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028556 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry
Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri
Abstract:
This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.
Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931555 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method
Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen
Abstract:
In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.
Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920554 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481553 Fuzzy Logic PID Control of Automatic Voltage Regulator System
Authors: Aye Aye Mon
Abstract:
The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.Keywords: Fuzzy logic system, PID Controller, control systems, controlled A V R
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893552 Model Predictive 2DOF PID Slip Suppression Control of Electric Vehicle under Braking
Authors: Tohru Kawabe
Abstract:
In this paper, a 2DOF (two degrees of freedom) PID (Proportional-Integral-Derivative) controller based on MPC (Model predictive control) algorithm fo slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method aims to improve the safety and the stability of EVs under braking by controlling the wheel slip ration. There also include numerical simulation results to demonstrate the effectiveness of the method.
Keywords: Model predictive control, PID controller, Two degrees of freedom, Electric Vehicle, Slip suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846551 Control Configuration Selection and Controller Design for Multivariable Processes Using Normalized Gain
Authors: R. Hanuma Naik, D. V. Ashok Kumar, K. S. R. Anjaneyulu
Abstract:
Several of the practical industrial control processes are multivariable processes. Due to the relation amid the variables (interaction), delay in the loops, it is very intricate to design a controller directly for these processes. So first, the interaction of the variables is analyzed using Relative Normalized Gain Array (RNGA), which considers the time constant, static gain and delay time of the processes. Based on the effect of RNGA, relative gain array (RGA) and NI, the pair (control configuration) of variables to be controlled by decentralized control is selected. The equivalent transfer function (ETF) of the process model is estimated as first order process with delay using the corresponding elements in the Relative gain array and Relative average residence time array (RARTA) of the processes. Secondly, a decentralized Proportional- Integral (PI) controller is designed for each ETF simply using frequency response specifications. Finally, the performance and robustness of the algorithm is comparing with existing related approaches to validate the effectiveness of the projected algorithm.
Keywords: Decentralized control, interaction, Multivariable processes, relative normalized gain array, relative average residence time array, steady state gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318550 General Purpose Pulse Width Modulation Based Sliding Mode Controller for Buck DC-DC
Authors: M.Bensaada , A.Boudghene Stambouli , M.Bekhti, A. Bellar, L. Boukhris
Abstract:
This paper is a simple and systematic approaches to the design and analysis a pulse width modulation (PWM) based sliding mode controller for buck DC-DC Converters. Various aspects of the design, including the practical problems and the proposed solutions, are detailed. However, these control strategies can't compensate for large load current and input voltage variations. In this paper, a new control strategy by compromising both schemes advantages and avoiding their drawbacks is proposed, analyzed and simulated.
Keywords: Buck, DC/DC converters, sliding mode control, pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683549 Adaptive Control Strategy of Robot Polishing Force Based on Position Impedance
Authors: Wang Zhan-Xi, Zhang Yi-Ming, Chen Hang, Wang Gang
Abstract:
Manual polishing has problems such as high labor intensity, low production efficiency and difficulty in guaranteeing the consistency of polishing quality. The use of robot polishing instead of manual polishing can effectively avoid these problems. Polishing force directly affects the quality of polishing, so accurate tracking and control of polishing force is one of the most important conditions for improving the accuracy of robot polishing. The traditional force control strategy is difficult to adapt to the strong coupling of force control and position control during the robot polishing process. Therefore, based on the analysis of force-based impedance control and position-based impedance control, this paper proposed a type of adaptive controller. Based on force feedback control of active compliance control, the controller can adaptively estimate the stiffness and position of the external environment and eliminate the steady-state force error produced by traditional impedance control. The simulation results of the model show that the adaptive controller has good adaptability to changing environmental positions and environmental stiffness, and can accurately track and control polishing force.
Keywords: robot polishing, force feedback, impedance control, adaptive control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615548 A Quadcopter Stability Analysis: A Case Study Using Simulation
Authors: C. S. Bianca Sabrina, N. Egidio Raimundo, L. Alexandre Baratella, C. H. João Paulo
Abstract:
This paper aims to present a study, with the theoretical concepts and applications of the Quadcopter, using the MATLAB simulator. In order to use this tool, the study of the stability of the drone through a Proportional - Integral - Derivative (PID) controller will be presented. After the stability study, some tests are done on the simulator and its results will be presented. From the mathematical model, it is possible to find the Newton-Euler angles, so that it is possible to stabilize the quadcopter in a certain position in the air, starting from the ground. In order to understand the impact of the controllers gain values on the stabilization of the Euler-Newton angles, three conditions will be tested with different controller gain values.
Keywords: Controllers, drones, quadcopter, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064