Search results for: two phase flow
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3615

Search results for: two phase flow

105 Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

Authors: Mareli Hattingh, I. Jaco Van der Walt, Frans B. Waanders

Abstract:

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Keywords: Cyclone, design, plasma, renewable energy, solid separation, waste processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
104 A Paradigm Shift towards Personalized and Scalable Product Development and Lifecycle Management Systems in the Aerospace Industry

Authors: David E. Culler, Noah D. Anderson

Abstract:

Integrated systems for product design, manufacturing, and lifecycle management are difficult to implement and customize. Commercial software vendors, including CAD/CAM and third party PDM/PLM developers, create user interfaces and functionality that allow their products to be applied across many industries. The result is that systems become overloaded with functionality, difficult to navigate, and use terminology that is unfamiliar to engineers and production personnel. For example, manufacturers of automotive, aeronautical, electronics, and household products use similar but distinct methods and processes. Furthermore, each company tends to have their own preferred tools and programs for controlling work and information flow and that connect design, planning, and manufacturing processes to business applications. This paper presents a methodology and a case study that addresses these issues and suggests that in the future more companies will develop personalized applications that fit to the natural way that their business operates. A functioning system has been implemented at a highly competitive U.S. aerospace tooling and component supplier that works with many prominent airline manufacturers around the world including The Boeing Company, Airbus, Embraer, and Bombardier Aerospace. During the last three years, the program has produced significant benefits such as the automatic creation and management of component and assembly designs (parametric models and drawings), the extensive use of lightweight 3D data, and changes to the way projects are executed from beginning to end. CATIA (CAD/CAE/CAM) and a variety of programs developed in C#, VB.Net, HTML, and SQL make up the current system. The web-based platform is facilitating collaborative work across multiple sites around the world and improving communications with customers and suppliers. This work demonstrates that the creative use of Application Programming Interface (API) utilities, libraries, and methods is a key to automating many time-consuming tasks and linking applications together.

Keywords: CAD/CAM, CAPP, PDM, PLM, Scalable Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
103 Geochemistry of Natural Radionuclides Associated with Acid Mine Drainage (AMD) in a Coal Mining Area in Southern Brazil

Authors: Juliana A. Galhardi, Daniel M. Bonotto

Abstract:

Coal is an important non-renewable energy source of and can be associated with radioactive elements. In Figueira city, Paraná state, Brazil, it was recorded high uranium activity near the coal mine that supplies a local thermoelectric power plant. In this context, the radon activity (Rn-222, produced by the Ra-226 decay in the U-238 natural series) was evaluated in groundwater, river water and effluents produced from the acid mine drainage in the coal reject dumps. The samples were collected in August 2013 and in February 2014 and analyzed at LABIDRO (Laboratory of Isotope and Hydrochemistry), UNESP, Rio Claro city, Brazil, using an alpha spectrometer (AlphaGuard) adjusted to evaluate the mean radon activity concentration in five cycles of 10 minutes. No radon activity concentration above 100 Bq.L-1, which was a previous critic value established by the World Health Organization. The average radon activity concentration in groundwater was higher than in surface water and in effluent samples, possibly due to the accumulation of uranium and radium in the aquifer layers that favors the radon trapping. The lower value in the river waters can indicate dilution and the intermediate value in the effluents may indicate radon absorption in the coal particles of the reject dumps. The results also indicate that the radon activities in the effluents increase with the sample acidification, possibly due to the higher radium leaching and the subsequent radon transport to the drainage flow. The water samples of Laranjinha River and Ribeirão das Pedras stream, which, respectively, supply Figueira city and receive the mining effluent, exhibited higher pH values upstream the mine, reflecting the acid mine drainage discharge. The radionuclides transport indicates the importance of monitoring their activity concentration in natural waters due to the risks that the radioactivity can represent to human health.

Keywords: Radon, radium, acid mine drainage, coal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
102 Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery

Authors: S. V. Ukwungwu, A. J. Abbas, G. G. Nasr

Abstract:

The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability.

Keywords: Bacillus, biosurfactant, enhanced oil recovery, residual oil, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
101 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique

Authors: Antonio Vitale, Nicola Genito, Giovanni Cuciniello, Ferdinando Montemari

Abstract:

The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.

Keywords: Flapping Dynamics, Flight Dynamics, System Identification, Tilt-Rotor Modeling and Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
100 Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products

Authors: Jean-Jacques Randrianarimanana, Nassim Sebaibi, Mohamed Boutouil

Abstract:

In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.

Keywords: Hydraulic, pervious concrete, pollutant removal efficiency, seashell by-products, stormwater runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
99 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
98 Modeling Decentralized Source-Separation Systems for Urban Waste Management

Authors: Bernard J.H. Ng, Apostolos Giannis, Victor Chang, Rainer Stegmann, Jing-Yuan Wang

Abstract:

Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.

Keywords: Decentralization, ecological sanitation, material flow analysis, source-separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888
97 Some Studies on Temperature Distribution Modeling of Laser Butt Welding of AISI 304 Stainless Steel Sheets

Authors: N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy

Abstract:

In this research work, investigations are carried out on Continuous Wave (CW) Nd:YAG laser welding system after preliminary experimentation to understand the influencing parameters associated with laser welding of AISI 304. The experimental procedure involves a series of laser welding trials on AISI 304 stainless steel sheets with various combinations of process parameters like beam power, beam incident angle and beam incident angle. An industrial 2 kW CW Nd:YAG laser system, available at Welding Research Institute (WRI), BHEL Tiruchirappalli, is used for conducting the welding trials for this research. After proper tuning of laser beam, laser welding experiments are conducted on AISI 304 grade sheets to evaluate the influence of various input parameters on weld bead geometry i.e. bead width (BW) and depth of penetration (DOP). From the laser welding results, it is noticed that the beam power and welding speed are the two influencing parameters on depth and width of the bead. Three dimensional finite element simulation of high density heat source have been performed for laser welding technique using finite element code ANSYS for predicting the temperature profile of laser beam heat source on AISI 304 stainless steel sheets. The temperature dependent material properties for AISI 304 stainless steel are taken into account in the simulation, which has a great influence in computing the temperature profiles. The latent heat of fusion is considered by the thermal enthalpy of material for calculation of phase transition problem. A Gaussian distribution of heat flux using a moving heat source with a conical shape is used for analyzing the temperature profiles. Experimental and simulated values for weld bead profiles are analyzed for stainless steel material for different beam power, welding speed and beam incident angle. The results obtained from the simulation are compared with those from the experimental data and it is observed that the results of numerical analysis (FEM) are in good agreement with experimental results, with an overall percentage of error estimated to be within ±6%.

Keywords: Laser welding, Butt weld, 304 SS, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4956
96 Sustainable Water Utilization in Arid Region of Iran by Qanats

Authors: F. Boustani

Abstract:

To make use of the limited amounts of water in arid region, the Iranians developed man-made underground water channels called qanats (kanats) .In fact, qanats may be considered as the first long-distance water transfer system. Qanats are an ancient water transfer system found in arid regions wherein groundwater from mountainous areas, aquifers and sometimes from rivers, was brought to points of re-emergence such as an oasis, through one or more underground tunnels. The tunnels, many of which were kilometers in length, had designed for slopes to provide gravitational flow. The tunnels allowed water to drain out to the surface by gravity to supply water to lower and flatter agricultural land. Qanats have been an ancient, sustainable system facilitating the harvesting of water for centuries in Iran, and more than 35 additional countries of the world such as India, Arabia, Egypt, North Africa, Spain and even to New world. There are about 22000 qanats in Iran with 274000 kilometers of underground conduits all built by manual labor. The amount of water of the usable qanats of Iran produce is altogether 750 to 1000 cubic meter per second. The longest chain of qanat is situated in Gonabad region in Khorasan province. It is 70 kilometers long. Qanats are renewable water supply systems that have sustained agricultural settlement on the Iranian plateau for millennia. The great advantages of Qanats are no evaporation during transit, little seepage , no raising of the water- table and no pollution in the area surrounding the conduits. Qanat systems have a profound influence on the lives of the water users in Iran, and conform to Iran-s climate. Qanat allows those living in a desert environment adjacent to a mountain watershed to create a large oasis in an otherwise stark environment. This paper explains qanats structure designs, their history, objectives causing their creation, construction materials, locations and their importance in different times, as well as their present sustainable role in Iran.

Keywords: Iran, qanat, Sustainable water utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518
95 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination

Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo

Abstract:

In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.

Keywords: Generalized matrix approach, linear analysis, renewable applications, switched reluctance generator, SRG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
94 Failure Analysis of Pipe System at a Hydroelectric Power Plant

Authors: Ali Göksenli, Barlas Eryürek

Abstract:

In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factor.

Keywords: Failure analysis, hydroelectric plant, water-hammer, crack, welding seam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699
93 Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Western Intake Structure in Dez Diversion Weir in Dezful, Iran

Authors: A.H. Sajedipoor, N. Hedayat, M. Mashal

Abstract:

Sedimentation is a hydraulic phenomenon that is emerging as a serious challenge in river engineering. When the flow reaches a certain state that gather potential energy, it shifts the sediment load along channel bed. The transport of such materials can be in the form of suspended and bed loads. The movement of these along the river course and channels and the ways in which this could influence the water intakes is considered as the major challenges for sustainable O&M of hydraulic structures. This could be very serious in arid and semi-arid regions like Iran, where inappropriate watershed management could lead to shifting a great deal of sediments into the reservoirs and irrigation systems. This paper aims to investigate sedimentation in the Western Canal of Dez Diversion Weir in Iran, identifying factors which influence the process and provide ways in which to mitigate its detrimental effects by using the SHARC Software. For the purpose of this paper, data from the Dezful water authority and Dezful Hydrometric Station pertinent to a river course of about 6 Km were used. Results estimated sand and silt bed loads concentrations to be 193 ppm and 827ppm respectively. Given the available data on average annual bed loads and average suspended sediment loads of 165ppm and 837ppm, there was a significant statistical difference (16%) between the sand grains, whereas no significant difference (1.2%) was find in the silt grain sizes. One explanation for such finding being that along the 6 Km river course there was considerable meandering effects which explains recent shift in the hydraulic behavior along the stream course under investigation. The sand concentration in downstream relative to present state of the canal showed a steep descending curve. Sediment trapping on the other hand indicated a steep ascending curve. These occurred because the diversion weir was not considered in the simulation model.

Keywords: SHARC model, sedimentation, Western canal, Dezdiversion weir

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
92 Is HR in a State of Transition? An International Comparative Study on the Development of HR Competencies

Authors: Barbara Covarrubias Venegas, Sabine Groblschegg, Bernhard Klaus, Julia Domnanovich

Abstract:

Research Objectives: The roles and activities of Human Resource Management (HRM) have changed a lot in the past years. Driven by a changing environment and therefore new business requirements, the scope of human resource (HR) activities has widened. The extent to which these activities should focus on strategic issues to support the long term success of a company has been discussed in science for many years. As many economies of Central and Eastern Europe (CEE) experienced a phase of transition after the socialist era and are now recovering from the 2008 global crisis it is needed to examine the current state of HR positioning. Furthermore a trend in HR work developing from rather administrative units to being strategic partners of management can be noticed. This leads to the question of better understanding the underlying competencies which are necessary to support organisations. This topic was addressed by the international study “HR Competencies in international comparison”. The quantitative survey was conducted by the Institute for Human Resources & Organisation of FHWien University of Applied Science of WKW (A) in cooperation with partner universities in the countries Bosnia- Herzegovina, Croatia, Serbia and Slovenia. Methodology: Using the questionnaire developed by Dave Ulrich we tested whether the HR Competency model can be used for Austria, Bosnia and Herzegovina, Croatia, Serbia and Slovenia. After performing confirmatory and exploratory factor analysis for the whole data set containing all five countries we could clearly distinguish between four competencies. In a further step our analysis focused on median and average comparisons between the HR competency dimensions. Conclusion: Our literature review, in alignment with other studies, shows a relatively rapid pace of development of HR Roles and HR Competencies in BCSS in the past decades. Comparing data from BCSS and Austria we still can notice that regards strategic orientation there is a lack in BCSS countries, thus competencies are not as developed as in Austria. This leads us to the tentative conclusion that HR has undergone a rapid change but is still in a State of Transition from being a rather administrative unit to performing the role of a strategic partner.

Keywords: Comparative study, HR competencies, HRM, HR Roles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
91 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.

Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 382
90 64 bit Computer Architectures for Space Applications – A study

Authors: Niveditha Domse, Kris Kumar, K. N. Balasubramanya Murthy

Abstract:

The more recent satellite projects/programs makes extensive usage of real – time embedded systems. 16 bit processors which meet the Mil-Std-1750 standard architecture have been used in on-board systems. Most of the Space Applications have been written in ADA. From a futuristic point of view, 32 bit/ 64 bit processors are needed in the area of spacecraft computing and therefore an effort is desirable in the study and survey of 64 bit architectures for space applications. This will also result in significant technology development in terms of VLSI and software tools for ADA (as the legacy code is in ADA). There are several basic requirements for a special processor for this purpose. They include Radiation Hardened (RadHard) devices, very low power dissipation, compatibility with existing operational systems, scalable architectures for higher computational needs, reliability, higher memory and I/O bandwidth, predictability, realtime operating system and manufacturability of such processors. Further on, these may include selection of FPGA devices, selection of EDA tool chains, design flow, partitioning of the design, pin count, performance evaluation, timing analysis etc. This project deals with a brief study of 32 and 64 bit processors readily available in the market and designing/ fabricating a 64 bit RISC processor named RISC MicroProcessor with added functionalities of an extended double precision floating point unit and a 32 bit signal processing unit acting as co-processors. In this paper, we emphasize the ease and importance of using Open Core (OpenSparc T1 Verilog RTL) and Open “Source" EDA tools such as Icarus to develop FPGA based prototypes quickly. Commercial tools such as Xilinx ISE for Synthesis are also used when appropriate.

Keywords: RISC MicroProcessor, RPC – RISC Processor Core, PBX – Processor to Block Interface part of the Interconnection Network, BPX – Block to Processor Interface part of the Interconnection Network, FPU – Floating Point Unit, SPU – Signal Processing Unit, WB – Wishbone Interface, CTU – Clock and Test Unit

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
89 Study of the Energy Efficiency of Buildings under Tropical Climate with a View to Sustainable Development: Choice of Material Adapted to the Protection of the Environment

Authors: Guarry Montrose, Ted Soubdhan

Abstract:

In the context of sustainable development and climate change, the adaptation of buildings to the climatic context in hot climates is a necessity if we want to improve living conditions in housing and reduce the risks to the health and productivity of occupants due to thermal discomfort in buildings. One can find a wide variety of efficient solutions but with high costs. In developing countries, especially tropical countries, we need to appreciate a technology with a very limited cost that is affordable for everyone, energy efficient and protects the environment. Biosourced insulation is a product based on plant fibers, animal products or products from recyclable paper or clothing. Their development meets the objectives of maintaining biodiversity, reducing waste and protecting the environment. In tropical or hot countries, the aim is to protect the building from solar thermal radiation, a source of discomfort. The aim of this work is in line with the logic of energy control and environmental protection, the approach is to make the occupants of buildings comfortable, reduce their carbon dioxide emissions (CO2) and decrease their energy consumption (energy efficiency). We have chosen to study the thermo-physical properties of banana leaves and sawdust, especially their thermal conductivities, direct measurements were made using the flash method and the hot plate method. We also measured the heat flow on both sides of each sample by the hot box method. The results from these different experiences show that these materials are very efficient used as insulation. We have also conducted a building thermal simulation using banana leaves as one of the materials under Design Builder software. Air-conditioning load as well as CO2 release was used as performance indicator. When the air-conditioned building cell is protected on the roof by banana leaves and integrated into the walls with solar protection of the glazing, it saves up to 64.3% of energy and avoids 57% of CO2 emissions.

Keywords: Plant fibers, tropical climates, sustainable development, waste reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484
88 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: Emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1192
87 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing

Authors: Fazl Ullah, Rahmat Ullah

Abstract:

This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.

Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93
86 Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

Authors: Mohd.F.Shabir, P. Tamilporai, B. Rajendra Prasath

Abstract:

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Keywords: Low Heat Rejection, Miller cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
85 Influence of the Moisture Content on the Flowability of Fine-Grained Iron Ore Concentrate

Authors: C. Lanzerstorfer, M. Hinterberger

Abstract:

The iron content of the ore used is crucial for the productivity and coke consumption rate in blast furnace pig iron production. Therefore, most iron ore deposits are processed in beneficiation plants to increase the iron content and remove impurities. In several comminution stages, the particle size of the ore is reduced to ensure that the iron oxides are physically liberated from the gangue. Subsequently, physical separation processes are applied to concentrate the iron ore. The fine-grained ore concentrates produced need to be transported, stored, and processed. For smooth operation of these processes, the flow properties of the material are crucial. The flowability of powders depends on several properties of the material: grain size, grain size distribution, grain shape, and moisture content of the material. The flowability of powders can be measured using ring shear testers. In this study, the influence of the moisture content on the flowability for the Krivoy Rog magnetite iron ore concentrate was investigated. Dry iron ore concentrate was mixed with varying amounts of water to produce samples with a moisture content in the range of 0.2 to 12.2%. The flowability of the samples was investigated using a Schulze ring shear tester. At all measured values of the normal stress (1.0 kPa – 20 kPa), the flowability decreased significantly from dry ore to a moisture content of approximately 3-5%. At higher moisture contents, the flowability was nearly constant, while at the maximum moisture content the flowability improved for high values of the normal stress only. The results also showed an improving flowability with increasing consolidation stress for all moisture content levels investigated. The wall friction angle of the dust with carbon steel (S235JR), and an ultra-high molecule low-pressure polyethylene (Robalon) was also investigated. The wall friction angle increased significantly from dry ore to a moisture content of approximately 3%. For higher moisture content levels, the wall friction angles were nearly constant. Generally, the wall friction angle was approximately 4° lower at the higher wall normal stress.

Keywords: Iron ore concentrate, flowability, moisture content, wall friction angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
84 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand

Authors: W. Thongwat, B. Terakulsatit

Abstract:

The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.

Keywords: Environmental geology, soil salinity, geochemistry, groundwater hydrology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
83 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti

Abstract:

Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: Compost, home compost, reducing waste, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
82 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study

Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho

Abstract:

The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.

Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
81 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations

Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta

Abstract:

The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).

Keywords: Absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
80 Selection of Strategic Suppliers for Partnership: A Model with Two Stages Approach

Authors: Safak Isik, Ozalp Vayvay

Abstract:

Strategic partnerships with suppliers play a vital role for the long-term value-based supply chain. This strategic collaboration keeps still being one of the top priority of many business organizations in order to create more additional value; benefiting mainly from supplier’s specialization, capacity and innovative power, securing supply and better managing costs and quality. However, many organizations encounter difficulties in initiating, developing and managing those partnerships and many attempts result in failures. One of the reasons for such failure is the incompatibility of members of this partnership or in other words wrong supplier selection which emphasize the significance of the selection process since it is the beginning stage. An effective selection process of strategic suppliers is critical to the success of the partnership. Although there are several research studies to select the suppliers in literature, only a few of them is related to strategic supplier selection for long-term partnership. The purpose of this study is to propose a conceptual model for the selection of strategic partnership suppliers. A two-stage approach has been used in proposed model incorporating first segmentation and second selection. In the first stage; considering the fact that not all suppliers are strategically equal and instead of a long list of potential suppliers, Kraljic’s purchasing portfolio matrix can be used for segmentation. This supplier segmentation is the process of categorizing suppliers based on a defined set of criteria in order to identify types of suppliers and determine potential suppliers for strategic partnership. In the second stage, from a pool of potential suppliers defined at first phase, a comprehensive evaluation and selection can be performed to finally define strategic suppliers considering various tangible and intangible criteria. Since a long-term relationship with strategic suppliers is anticipated, criteria should consider both current and future status of the supplier. Based on an extensive literature review; strategical, operational and organizational criteria have been determined and elaborated. The result of the selection can also be used to determine suppliers who are not ready for a partnership but to be developed for strategic partnership. Since the model is based on multiple criteria for both stages, it provides a framework for further utilization of Multi-Criteria Decision Making (MCDM) techniques. The model may also be applied to a wide range of industries and involve managerial features in business organizations.

Keywords: Kraljic’s matrix, purchasing portfolio, strategic supplier selection, supplier collaboration, supplier partnership, supplier segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
79 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes

Authors: Anubha Kaushik, Raman Preet

Abstract:

Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.

Keywords: Distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 901
78 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: Aerodynamic interaction, drag cycle, drag force, frontal area, speed skating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
77 Management Challenges and Product Quality of Fish Farms in Greece

Authors: S. Anastasiou, C. Nathanailides, P. Logothetis, G. Kanlis

Abstract:

The purpose of the present work is to review some data for the management challenges that the aquaculture industry in Greece is currently facing. The results indicate that Greek aquaculture fish farms apply Human Resources Management (HRM) practices which can increase motivation, commitment and job satisfaction of their personnel. In turn, these practices can increase the productivity of the business. The Greek fish farms appear to invest in research and technological innovation with a good record in research activities and the generation of patents. Interestingly, the results of the present work were carried out during the period of the recent economic crisis in Greece. Several sectors of the Greek economy were severely affected by the financial problems of the Greek government and the Greek banks. Under the adverse economical conditions created by the Greek economic crisis, even the Greek aquaculture industry, which historically is considered as a thriving national exporting business sector, experienced harsh economic and market conditions. As a result of the global, European and national economic crisis, consumption of fish dropped while companies had to hold most of their stocked fish in order to regulated the flow to the market and the price. This occurred at a time where Banks in Greece had their own financial crisis – banking crisis - which resulted in limited access to lending for the all business sectors of the national economy including the Greek aquaculture industry. In spite of these economic conditions, the Greek aquaculture industry, after a series of mergers and acquisitions, has now stabilized production and exhibits very good prospects for future growth. Evidently, the firms had to cut salaries and on some occasions even pay their staff in arrears. Nevertheless, the results presented in this paper indicate that during the economic crisis, the surveyed fish farms maintained their HRM practices, investing in their human capital and technological input. In fact, human capital and technological input are the ticket for future success of companies in any business sector.

Keywords: Aquaculture, Human Resources Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803
76 Some Issues of Measurement of Impairment of Non-Financial Assets in the Public Sector

Authors: Mariam Vardiashvili

Abstract:

The economic value of the asset impairment process is quite large. Impairment reflects the reduction of future economic benefits or service potentials itemized in the asset. The assets owned by public sector entities bring economic benefits or are used for delivery of the free-of-charge services. Consequently, they are classified as cash-generating and non-cash-generating assets. IPSAS 21 - Impairment of non-cash-generating assets, and IPSAS 26 - Impairment of cash-generating assets, have been designed considering this specificity.  When measuring impairment of assets, it is important to select the relevant methods. For measurement of the impaired Non-Cash-Generating Assets, IPSAS 21 recommends three methods: Depreciated Replacement Cost Approach, Restoration Cost Approach, and  Service Units Approach. Impairment of Value in Use of Cash-Generating Assets (according to IPSAS 26) is measured by discounted value of the money sources to be received in future. Value in use of the cash-generating asserts (as per IPSAS 26) is measured by the discounted value of the money sources to be received in the future. The article provides classification of the assets in the public sector  as non-cash-generating assets and cash-generating assets and, deals also with the factors which should be considered when evaluating  impairment of assets. An essence of impairment of the non-financial assets and the methods of measurement thereof evaluation are formulated according to IPSAS 21 and IPSAS 26. The main emphasis is put on different methods of measurement of the value in use of the impaired Cash-Generating Assets and Non-Cash-Generation Assets and the methods of their selection. The traditional and the expected cash flow approaches for calculation of the discounted value are reviewed. The article also discusses the issues of recognition of impairment loss and its reflection in the financial reporting. The article concludes that despite a functional purpose of the impaired asset, whichever method is used for measuring the asset, presentation of realistic information regarding the value of the assets should be ensured in the financial reporting. In the theoretical development of the issue, the methods of scientific abstraction, analysis and synthesis were used. The research was carried out with a systemic approach. The research process uses international standards of accounting, theoretical researches and publications of Georgian and foreign scientists.

Keywords: Non-cash-generating assets, cash-generating assets, recoverable value, recoverable service amount, value in use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655