Search results for: cellulosic-elastomeric material
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1933

Search results for: cellulosic-elastomeric material

1633 An Algorithm of Finite Capacity Material Requirement Planning System for Multi-stage Assembly Flow Shop

Authors: T. Wuttipornpun, U. Wangrakdiskul, W. Songserm

Abstract:

This paper aims to develop an algorithm of finite capacity material requirement planning (FCMRP) system for a multistage assembly flow shop. The developed FCMRP system has two main stages. The first stage is to allocate operations to the first and second priority work centers and also determine the sequence of the operations on each work center. The second stage is to determine the optimal start time of each operation by using a linear programming model. Real data from a factory is used to analyze and evaluate the effectiveness of the proposed FCMRP system and also to guarantee a practical solution to the user. There are five performance measures, namely, the total tardiness, the number of tardy orders, the total earliness, the number of early orders, and the average flow-time. The proposed FCMRP system offers an adjustable solution which is a compromised solution among the conflicting performance measures. The user can adjust the weight of each performance measure to obtain the desired performance. The result shows that the combination of FCMRP NP3 and EDD outperforms other combinations in term of overall performance index. The calculation time for the proposed FCMRP system is about 10 minutes which is practical for the planners of the factory.

Keywords: Material requirement planning, Finite capacity, Linear programming, Permutation, Application in industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
1632 Computer Aided Language Learning System for Arabic for Second Language Learners

Authors: Osama Abufanas

Abstract:

This paper aims to build an Arabic learning language tool using Flash CS4 professional software with action script 3.0 programming language, based on the Computer Aided Language Learning (CALL) material. An extra intention is to provide a primary tool and focus on learning Arabic as a second language to adults. It contains letters, words and sentences at the first stage. This includes interactive practices, which evaluates learners’ comprehension of the Arabic language. The system was examined and it was found that the language structure was correct and learners were satisfied regarding the system tools. The learners found the system tools efficient and simple to use. The paper's main conclusion illustrates that CALL can be applied without any hesitation to second language learners

Keywords: Arabic Language, Computer Aided Language Learning (CALL), Learner, Material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728
1631 Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure

Authors: Karam Y. Maalawi

Abstract:

This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.

Keywords: Buckling instability, structural optimization, functionally graded material, laminated cylindrical shells, externalhydrostatic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
1630 Value–based Group Decision on Support Bridge Selection

Authors: Christiono Utomo, Arazi Idrus

Abstract:

Value-based group decision is very complicated since many parties involved. There are different concern caused by differing preferences, experiences, and background. Therefore, a support system is required to enable each stakeholder to evaluate and rank the solution alternatives before engaging into negotiation with the other stakeholders. The support system is based on combination between value-based analysis, multi criteria group decision making based on satisfying options, and negotiation process based on coalition formation. This paper presents the group decision and negotiation on the selection of suitable material for a support bridge structure involving three decision makers, who are an estate manager, a project manager, and an engineer. There are three alternative solutions for the material of the support bridge structure, which are (a1) steel structure, (a2) reinforced concrete structure and (a3) wooden structure.

Keywords: Value-based, group decision, negotiation support, construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
1629 The Use of FBC Ash for Preparation of Types of Hydraulic Binders Similar to Portland Cement

Authors: Karel Dvořák, Karel Kulísek, Radek Magrla

Abstract:

The reduction of greenhouse gases emissions is highly discussed ecological theme at present. In addition to power industry also main production sectors of binders, i.e. cement, air and hydraulic lime are very sensitive to these questions. One of the possibilities how CO2 emissions can be reduced directly at clinker burnout is represented by partial substitution of lime with a material containing limy ions at absence of carbonate group. Fluidised fly ash is one of such potential raw materials where CaO can be found free and also bound in anhydrite, CaSO4. At application of FBC (fluidized bed combustion) fly ash with approximate 20% CaO content and its dosing ratio to high percent lime 1:2, corresponding stechiometrically to the preparation of raw material powder, approximately 0,37 t CO2 per 1 ton of one-component cement would be released at clinker burnout compared to 0,46 t CO2 when orthodox raw materials are used. The reduction of CO2 emissions thus could reach even 20%.

Keywords: FBC ash, cement, hydraulic binders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
1628 Repair of Concrete Structures with SCC

Authors: F. Kharchi, M. Benhadji, O. Bouksani

Abstract:

The objective of this work is to study the influence of the properties of the substrate on the retrofit (thin repair) of damaged concrete elements, with the SCC. Fluidity, principal characteristic of the SCC, would enable it to cover and adhere to the concrete to be repaired. Two aspects of repair are considered, the bond (Adhesion) and the tensile strength and the cracking. The investigation is experimental; It was conducted over test specimens made up of ordinary concrete prepared and hardened in advance (the material to be repaired) over which a self compacting concrete layer is cast. Three alternatives of SC concrete and one ordinary concrete (comparison) were tested. It appears that the self-compacting concrete constitutes a good material for repairing. It follows perfectly the surfaces- forms to be repaired and allows a perfect bond. Fracture tests made on specimens of self-compacting concrete show a brittle behaviour. However when a small percentage of fibres is added, the resistance to cracking is very much improve.

Keywords: Adhesion, concrete, experimental, repair, self-compacting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1627 Computer Simulation of Low Volume Roads Made from Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Low volume roads are widely used all over the world. To improve their quality the computer simulation of their behavior is proposed. The FEM model enables to determine stress and displacement conditions in the pavement and/or also in the particular material layers. Different variants of pavement layers, material used, humidity as well as loading conditions can be studied. Among others, the input information about material properties of individual layers made from recycled materials is crucial for obtaining results as exact as possible. For this purpose the cyclic-load triaxial test machine testing of cyclic-load performance of materials is a promising test method. The test is able to simulate the real traffic loading on particular materials taking into account the changes in the horizontal stress conditions produced in particular layers by crossings of vehicles. Also the test specimen can be prepared with different amount of water. Thus modulus of elasticity (Young modulus) of different materials including recycled ones can be measured under the different conditions of horizontal and vertical stresses as well as under the different humidity conditions. Using the proposed testing procedure the modulus of elasticity of recycled materials used in the newly built low volume road is obtained under different stress and humidity conditions set to standard, dry and fully saturated level. Obtained values of modulus of elasticity are used in FEA.

Keywords: FEA, FEM, geotechnical materials, low volume roads, pavement, triaxial test, Young modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1626 Aplication`s Aspects Of Public Relations By Nonprofit Organizations. Case Study Albania

Authors: Xhiliola Agaraj(Shehu), Merita Murati, Valbona Gjini

Abstract:

The traditional public relations manager is usually responsible for maintaining and enhancing the reputation of the organization among key publics. While the principal focus of this effort is on support publics, it is quite clearly recognized that an organization's image has important effects on its own employees, its donors and volunteers, and its clients. The aim of paper is to define application`s aspects of public relations media and tools by nonprofit organizations in Albanian reality. Actually does used public relations media and tools, like written material, audiovisual material, organizational identity media, news, interviews and speeches, events, web sites by nonprofit organizations to attract donors? If, public relations media and tools are used, does exists a relation between public relation media and fundraising?

Keywords: Donors, Fundraising, Nonprofit Organizations, Public Relations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
1625 Penetration Analysis for Composites Applicable to Military Vehicle Armors, Aircraft Engines and Nuclear Power Plant Structures

Authors: Dong Wook Lee

Abstract:

This paper describes a method for analyzing penetration for composite material using an explicit nonlinear Finite Element Analysis (FEA). This method may be used in the early stage of design for the protection of military vehicles, aircraft engines and nuclear power plant structures made of composite materials. This paper deals with simple ballistic penetration tests for composite materials and the FEA modeling method and results. The FEA was performed to interpret the ballistic field test phenomenon regarding the damage propagation in the structure subjected to local foreign object impact.

Keywords: Computer Aided Engineering, CAE, Finite Element Analysis, FEA, impact analysis, penetration analysis, composite material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
1624 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles

Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh

Abstract:

Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.

Keywords: Low temperature luminescence spectroscopy, Material Identification, Strontium aluminates phosphor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
1623 Mitigation of Nitrate Pollution in Wastewater: A Case Study of the Treatment of Cassava Processing Effluent Using Cassava Peel Carbon Material

Authors: Olayinka Omotosho

Abstract:

The study investigated efficiency cassava peel carbon and Zinc Chloride activated cassava peel carbon at 1:3, 2:3 and 1:1 activation levels in the removal of nitrates from oxidized cassava processing wastewater. Results showed that the CPC and CPAC were effective in adsorption of nitrates. A summary of results from the study revealed that CPAC at 1:3 exhibited the highest initial decontamination (69.5% after 2 hrs) while CPAC at 1:1 activation ratio showed a slower initial decontamination rate. The CPC & CPAC exhibited Langmuir Rα values of 0.15, 0.11, 0.09, and 0.07 for the 0:1, 1:3, 2:3 and 1:1 confirming its suitability as adsorption material.

Keywords: Adsorption, Cassava, Activated Carbon, Nitrate, Isotherm, Langmuir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
1622 Effect of Crude Extract from Bacillus Subtilis LB5 Cultivated Broth on Conidial Germination of Colletotrichum Gloeosporioides

Authors: Onuma Ruangwong, Wen-Jinn Liang

Abstract:

Bacillus subtilis strain LB5 produced lipopeptide antibiotic iturin A-2 in liquid medium. Crude extract from cell-free supernatant of B. subtilis cultivated broth extracted with n-butanol showed antifungal activity to conidial germination of Colletotrichum gloeosporioides. The germination of conidia was completely inhibited by crude extract. The ultrastructure of conidia after treated with crude extract was found an accumulation of vesiclelike material between cell wall and plasma membrane while this accumulation was not observed in untreated and germinated conidia. Besides, the cell wall was not affected by crude extract.

Keywords: Bacillus subtilis strain LB5, iturin A-2, Colletotrichum gloeosporioides, TEM, vesicle-like material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
1621 Environmental Friendly Polyurethane Coatings Based On Hyperbranched Resin

Authors: Ashraf M. Elsaid, Magd M. Badr, Mohamed S. Selim

Abstract:

Water borne polyurethane (PU) based on newly prepared hyperbranched poly (amine-ester) (HBPAE) was applied and evaluated as organic coating material. HBPAE was prepared through one-pot synthesis between trimethylol propane as a core and AB2 branched monomer which was obtained via Michal addition of methyl methacrylate (MMA) and diethanol amine (DEA). PU was prepared from HBPAE using different ratios of toluene diisocyanate (TDI) to form cured coating film. The prepared HBPAE was characterized using; GPC, FT-IR and 1H-NMR. The mechanical properties (impact, hardness, adhesion, and flexibility), thermal properties (DSC and TGA) and chemical resistance of the applied film were estimated. The results indicated 50% of TDI is the selected ratio. This formulation represents a promising candidate to be used as coating material.

Keywords: Curing, Hyperbranched polymer, Polyurethane, Urethane-acrylates, water borne Coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3295
1620 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.

Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
1619 Innovation and Analysis of Vibrating Fork Level Switch

Authors: Kuen-Ming Shu, Cheng-Yu Chen

Abstract:

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Keywords: Vibrating fork, piezoelectric ceramics, sound wave, ANSYS, Taguchi method, modal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
1618 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, V. Brinzari, B. K. Cho

Abstract:

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: Energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
1617 Experimental Determination of Shear Strength Properties of Lightweight Expanded Clay Aggregates Using Direct Shear and Triaxial Tests

Authors: Mahsa Shafaei Bajestani, Mahmoud Yazdani, Aliakbar Golshani

Abstract:

Artificial lightweight aggregates have a wide range of applications in industry and engineering. Nowadays, the usage of this material in geotechnical activities, especially as backfill in retaining walls has been growing due to the specific characteristics which make it a competent alternative to the conventional geotechnical materials. In practice, a material with lower weight but higher shear strength parameters would be ideal as backfill behind retaining walls because of the important roles that these parameters play in decreasing the overall active lateral earth pressure. In this study, two types of Light Expanded Clay Aggregates (LECA) produced in the Leca factory are investigated. LECA is made in a rotary kiln by heating natural clay at different temperatures up to 1200 °C making quasi-spherical aggregates with different sizes ranged from 0 to 25 mm. The loose bulk density of these aggregates is between 300 and 700 kN/m3. The purpose of this research is to determine the stress-strain behavior, shear strength parameters, and the energy absorption of LECA materials. Direct shear tests were conducted at five normal stresses of 25, 50, 75, 100, and 200 kPa. In addition, conventional triaxial compression tests were operated at confining pressures of 50, 100, and 200 kPa to examine stress-strain behavior. The experimental results show a high internal angle of friction and even a considerable amount of nominal cohesion despite the granular structure of LECA. These desirable properties along with the intrinsic low density of these aggregates make LECA as a very proper material in geotechnical applications. Furthermore, the results demonstrate that lightweight aggregates may have high energy absorption that is excellent alternative material in seismic isolations.

Keywords: Expanded clay, direct shear test, triaxial test, shear properties, energy absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
1616 Energy Saving Stove for Stew Coconut Sugar

Authors: Ruedee Niyomrath

Abstract:

The purposes of this research is aim to build the energy saving stove for stew coconut sugar. The research started from explores ceramic raw materials in local area, create the appropriate mixture of ceramic raw materials for construction material of stove, and make it by ceramic process. It includes design and build the energy saving stove, experiment the efficiency of energy saving stove as to thermal efficiency, energy saving, performance of time, and energy cost efficiency, transfer the knowledge for community, stove manufacturers, and technicians. The findings must be useful to the coconut sugar enterprises producing, to reduce the cost of production, preserve natural resources, and environments.

Keywords: Ceramic raw material, Energy saving stove, Stove design, Performance of stove, Stove for stew coconut sugar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1615 Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology

Authors: L. Novakova-Marcincinova, J. Novak-Marcincin

Abstract:

Paper presents knowledge about types of test in area of materials properties of selected methods of rapid prototyping technologies. In today used rapid prototyping technologies for production of models and final parts are used materials in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In Fused Deposition Modeling (FDM) rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.

Keywords: Rapid prototyping, materials, testing of materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4434
1614 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads

Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin

Abstract:

Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.

Keywords: FEM, human soft tissue, indentation, properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
1613 Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites

Authors: E. Hajizadeh, H. Garmabi

Abstract:

Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.

Keywords: Hybrid nanocomposites, PA6, SEBS rubber, toughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
1612 Piping Fragility Composed of Different Materials by Using OpenSees Software

Authors: Woo Young Jung, Min Ho Kwon, Bu Seog Ju

Abstract:

A failure of the non-structural component can cause  significant damages in critical facilities such as nuclear power plants  and hospitals. Historically, it was reported that the damage from the  leakage of sprinkler systems, resulted in the shutdown of hospitals for  several weeks by the 1971 San Fernando and 1994 North Ridge  earthquakes. In most cases, water leakages were observed at the cross  joints, sprinkler heads, and T-joint connections in piping systems  during and after the seismic events. Hence, the primary objective of  this study was to understand the seismic performance of T-joint  connections and to develop an analytical Finite Element (FE) model  for the T-joint systems of 2-inch fire protection piping system in  hospitals subjected to seismic ground motions. In order to evaluate the  FE models of the piping systems using OpenSees, two types of  materials were used: 1) Steel02 materials and 2) Pinching4 materials.  Results of the current study revealed that the nonlinear  moment-rotation FE models for the threaded T-joint reconciled well  with the experimental results in both FE material models. However,  the system-level fragility determined from multiple nonlinear time  history analyses at the threaded T-joint was slightly different. The  system-level fragility at the T-joint, determined by Pinching4 material  was more conservative than that of using Steel02 material in the piping  system.

Keywords: Fragility, T-joint, Piping, Leakage, Sprinkler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895
1611 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
1610 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
1609 Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer

Authors: Fouzieh Rouzmehr, Mehdi Mousavi

Abstract:

Hot mix asphalt concrete is a viscoelastic material, and its stress-strain relationship depends on the loading duration and the strain rate. To investigate the effect of elastic and viscoelastic modeling under traffic load, asphalt concrete pavement is modeled with both elastic and viscoelastic properties and the pavement performance is predicted. The differences of these two models are investigated on fatigue cracking and rutting problem which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives the acceptable results.

Keywords: Flexible pavement, asphalt, FEM modeling, viscoelastic, elastic, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
1608 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
1607 Considering Aerosol Processes in Nuclear Transport Package Containment Safety Cases

Authors: Andrew Cummings, Rhianne Boag, Sarah Bryson, Gordon Turner

Abstract:

Packages designed for transport of radioactive material must satisfy rigorous safety regulations specified by the International Atomic Energy Agency (IAEA). Higher Activity Waste (HAW) transport packages have to maintain containment of their contents during normal and accident conditions of transport (NCT and ACT). To ensure containment criteria is satisfied these packages are required to be leak-tight in all transport conditions to meet allowable activity release rates. Package design safety reports are the safety cases that provide the claims, evidence and arguments to demonstrate that packages meet the regulations and once approved by the competent authority (in the UK this is the Office for Nuclear Regulation) a licence to transport radioactive material is issued for the package(s). The standard approach to demonstrating containment in the RWM transport safety case is set out in BS EN ISO 12807. In this document a method for measuring a leak rate from the package is explained by way of a small interspace test volume situated between two O-ring seals on the underside of the package lid. The interspace volume is pressurised and a pressure drop measured. A small interspace test volume makes the method more sensitive enabling the measurement of smaller leak rates. By ascertaining the activity of the contents, identifying a releasable fraction of material and by treating that fraction of material as a gas, allowable leak rates for NCT and ACT are calculated. The adherence to basic safety principles in ISO12807 is very pessimistic and current practice in the demonstration of transport safety, which is accepted by the UK regulator. It is UK government policy that management of HAW will be through geological disposal. It is proposed that the intermediate level waste be transported to the geological disposal facility (GDF) in large cuboid packages. This poses a challenge for containment demonstration because such packages will have long seals and therefore large interspace test volumes. There is also uncertainty on the releasable fraction of material within the package ullage space. This is because the waste may be in many different forms which makes it difficult to define the fraction of material released by the waste package. Additionally because of the large interspace test volume, measuring the calculated leak rates may not be achievable. For this reason a justification for a lower releasable fraction of material is sought. This paper considers the use of aerosol processes to reduce the releasable fraction for both NCT and ACT. It reviews the basic coagulation and removal processes and applies the dynamic aerosol balance equation. The proposed solution includes only the most well understood physical processes namely; Brownian coagulation and gravitational settling. Other processes have been eliminated either on the basis that they would serve to reduce the release to the environment further (pessimistically in keeping with the essence of nuclear transport safety cases) or that they are not credible in the conditions of transport considered.

Keywords: Aerosol processes, Brownian coagulation, gravitational settling, transport regulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
1606 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels

Authors: S. Ansari Sadrabadi, G. H. Rahimi

Abstract:

In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.

Keywords: FGM, Cylindrical pressure tubes, Small deformation theory, Yield onset, Thermal loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
1605 Two Lessons Learnt in Defining Intersections and Interfaces in Numerical Modeling with Plaxis

Authors: Mahdi Sadeghian, Somaye Sadeghian, Reza Dinarvand

Abstract:

This paper is going to discuss two issues encountered in using PLAXIS. Both issues were monitored during application of PLAXIS to estimate the excavation-induced displacement. Column Soil Mixing (CSM) was applied to stabilise the excavation. It was understood that the estimated excavation induced deformation at the top of the CSM blocks highly depends on the material type defining pavement material adjacent to the CSM blocks. Cohesive material for pavement will result in the unrealistic connection between pavement and CSM even by defining an interface element. To find the most realistic approach, the interface defined in three different manners (1) no interface elements were applied (2) a non-cohesive soil layer was defined between pavement and CSM block to represent the friction between these materials (3) built-in interface elements in PLAXIS was used to define the boundary between the pavement and the CSM block. The result showed that the option 2 would result in more realistic results. The second issue was in the modelling of the contact line between the CSM block and an inclined layer underneath. The analysis result showed that the excavation-induced deformation highly depends on how the PLAXIS user defines the contact area. It was understood that if the contact area had defined as a point in which CSM block had intersected the layer underneath the estimated lateral displacement of CSM block would be unrealistically lower than the model in which the contact area was defined as a line.

Keywords: PLAXIS, FEM, CSM, excavation-induced deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636
1604 Thermal Buckling of Rectangular FGM Plate with Variation Thickness

Authors: Mostafa Raki, Mahdi Hamzehei

Abstract:

Equilibrium and stability equations of a thin rectangular plate with length a, width b, and thickness h(x)=C1x+C2, made of functionally graded materials under thermal loads are derived based on the first order shear deformation theory. It is assumed that the material properties vary as a power form of thickness coordinate variable z. The derived equilibrium and buckling equations are then solved analytically for a plate with simply supported boundary conditions. One type of thermal loading, uniform temperature rise and gradient through the thickness are considered, and the buckling temperatures are derived. The influences of the plate aspect ratio, the relative thickness, the gradient index and the transverse shear on buckling temperature difference are all discussed.

Keywords: Stability of plate, thermal buckling, rectangularplate, functionally graded material, first order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097