Search results for: Reynold’s equation
795 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections
Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong
Abstract:
In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.
Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667794 Surface Flattening based on Linear-Elastic Finite Element Method
Authors: Wen-liang Chen, Peng Wei, Yidong Bao
Abstract:
This paper presents a linear-elastic finite element method based flattening algorithm for three dimensional triangular surfaces. First, an intrinsic characteristic preserving method is used to obtain the initial developing graph, which preserves the angles and length ratios between two adjacent edges. Then, an iterative equation is established based on linear-elastic finite element method and the flattening result with an equilibrium state of internal force is obtained by solving this iterative equation. The results show that complex surfaces can be dealt with this proposed method, which is an efficient tool for the applications in computer aided design, such as mould design.
Keywords: Triangular mesh, surface flattening, finite elementmethod, linear-elastic deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164793 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models
Authors: Jihye Jeon
Abstract:
This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.Keywords: Multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9254792 Applications of High-Order Compact Finite Difference Scheme to Nonlinear Goursat Problems
Authors: Mohd Agos Salim Nasir, Ahmad Izani Md. Ismail
Abstract:
Several numerical schemes utilizing central difference approximations have been developed to solve the Goursat problem. However, in a recent years compact discretization methods which leads to high-order finite difference schemes have been used since it is capable of achieving better accuracy as well as preserving certain features of the equation e.g. linearity. The basic idea of the new scheme is to find the compact approximations to the derivative terms by differentiating centrally the governing equations. Our primary interest is to study the performance of the new scheme when applied to two Goursat partial differential equations against the traditional finite difference scheme.Keywords: Goursat problem, partial differential equation, finite difference scheme, compact finite difference
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905791 The Study of the Discrete Risk Model with Random Income
Authors: Peichen Zhao
Abstract:
In this paper, we extend the compound binomial model to the case where the premium income process, based on a binomial process, is no longer a linear function. First, a mathematically recursive formula is derived for non ruin probability, and then, we examine the expected discounted penalty function, satisfy a defect renewal equation. Third, the asymptotic estimate for the expected discounted penalty function is then given. Finally, we give two examples of ruin quantities to illustrate applications of the recursive formula and the asymptotic estimate for penalty function.
Keywords: Discounted penalty function, compound binomial process, recursive formula, discrete renewal equation, asymptotic estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423790 A FEM Study of Explosive Welding of Double Layer Tubes
Authors: R. Alipour, F.Najarian
Abstract:
Explosive welding is a process which uses explosive detonation to move the flyer plate material into the base material to produce a solid state joint. Experimental tests have been carried out by other researchers; have been considered to explosively welded aluminium 7039 and steel 4340 tubes in one step. The tests have been done using various stand-off distances and explosive ratios. Various interface geometries have been obtained from these experiments. In this paper, all the experiments carried out were simulated using the finite element method. The flyer plate and collision velocities obtained from the analysis were validated by the pin-measurement experiments. The numerical results showed that very high localized plastic deformation produced at the bond interface. The Ls_dyna_971 FEM has been used for all simulation process.Keywords: Explosive Welding, Johnson-Cook Equation, Finite Element, JWL Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037789 Analytical Investigation of the Effects of a Standing Ocean Wave in a Wave-Power Device OWC
Authors: E.G. Bautista, F. Méndez, O. Bautista, J.C. Arcos
Abstract:
In this work we study analytically and numerically the performance of the mean heave motion of an OWC coupled with the governing equation of the spreading ocean waves due to the wide variation in an open parabolic channel with constant depth. This paper considers that the ocean wave propagation is under the assumption of a shallow flow condition. In order to verify the effect of the waves in the OWC firstly we establish the analytical model in a non-dimensional form based on the energy equation. The proposed wave-power system has to aims: one is to perturb the ocean waves as a consequence of the channel shape in order to concentrate the maximum ocean wave amplitude in the neighborhood of the OWC and the second is to determine the pressure and volume oscillation of air inside the compression chamber.Keywords: Oscillating water column, Shallow flow, Waveenergy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468788 Parametric Vibrations of Periodic Shells
Authors: B. Tomczyk, R. Mania
Abstract:
Thin linear-elastic cylindrical circular shells having a micro-periodic structure along two directions tangent to the shell midsurface (biperiodic shells) are object of considerations. The aim of this paper is twofold. First, we formulate an averaged nonasymptotic model for the analysis of parametric vibrations or dynamical stability of periodic shells under consideration, which has constant coefficients and takes into account the effect of a cell size on the overall shell behavior (a length-scale effect). This model is derived employing the tolerance modeling procedure. Second we apply the obtained model to derivation of frequency equation being a starting point in the analysis of parametric vibrations. The effect of the microstructure length oh this frequency equation is discussed.Keywords: Micro-periodic shells, mathematical modeling, length-scale effect, parametric vibrations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520787 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem
Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand
Abstract:
In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.
Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879786 A Special Algorithm to Approximate the Square Root of Positive Integer
Authors: Hsian Ming Goo
Abstract:
The paper concerns a special approximate algorithm of the square root of the specific positive integer, which is built by the use of the property of positive integer solution of the Pell’s equation, together with using some elementary theorems of matrices, and then takes it to compare with general used the Newton’s method and give a practical numerical example and error analysis; it is unexpected to find its special property: the significant figure of the approximation value of the square root of positive integer will increase one digit by one. It is well useful in some occasions.
Keywords: Special approximate algorithm, square root, Pell’s equation, Newton’s method, error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2805785 Analyzing of Noise inside a Simple Vehicle Cabin using Boundary Element Method
Authors: A. Soltani, M. Karimi Demneh
Abstract:
In this paper, modeling of an acoustic enclosed vehicle cabin has been carried out by using boundary element method. Also, the second purpose of this study is analyzing of linear wave equation in an acoustic field. The resultants of this modeling consist of natural frequencies that have been compared with resultants derived from finite element method. By using numerical method (boundary element method) and after solution of wave equation inside an acoustic enclosed cabin, this method has been progressed to simulate noise inside a simple vehicle cabin.Keywords: Boundary element method, natural frequency, noise, vehicle cabin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2549784 Genetic Algorithm for Solving Non-Convex Economic Dispatch Problem
Authors: Navid Javidtash, Abdolmohamad Davodi, Mojtaba Hakimzadeh, Abdolreza Roozbeh
Abstract:
Economic dispatch (ED) is considered to be one of the key functions in electric power system operation. This paper presents a new hybrid approach based genetic algorithm (GA) to economic dispatch problems. GA is most commonly used optimizing algorithm predicated on principal of natural evolution. Utilization of chaotic queue with GA generates several neighborhoods of near optimal solutions to keep solution variation. It could avoid the search process from becoming pre-mature. For the objective of chaotic queue generation, utilization of tent equation as opposed to logistic equation results in improvement of iterative speed. The results of the proposed approach were compared in terms of fuel cost, with existing differential evolution and other methods in literature.
Keywords: Economic Dispatch(ED), Optimization, Fuel Cost, Genetic Algorithm (GA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397783 Error Estimates for Calculated Glomerular Filtration Rates
Authors: Simon Brown
Abstract:
Glomerular filtration rate (GFR) is a measure of kidney function. It is usually estimated from serum concentrations of cystatin C or creatinine although there has been considerable debate in the literature about (i) the best equation to use and (ii) the variability in the correlation between the concentrations of creatinine and cystatin C. The equations for GFR can be written in a general form and from these I calculate the error of the GFR estimates associated with analyte measurement error. These show that the error of the GFR estimates is such that it is not possible to distinguish between the equations over much of the concentration range of either analyte. The general forms of the equations are also used to derive an expression for the concentration of cystatin C as a function of the concentration of creatinine. This equation shows that these analyte concentrations are not linearly related. Clinical reports of cystatin C and creatinine concentration are consistent with the expression derived.Keywords: creatinine, cystatin C, error analysis, glomerularfiltration rate, measurement error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520782 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory
Authors: Reza Mohammadi, Mahdieh Sahebi
Abstract:
We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.Keywords: Fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185781 A Study of Relationship between WBGT and Relative Humidity to Worker Performance
Authors: A.R. Ismail, M. R. A. Rani, Z. K. M. Makhbul, M. J. M. Nor, M. N. A. Rahman
Abstract:
The environmental factors such as temperature and relative humidity are very contribute to the effect of comfort, health, performance and worker productivity. To ensure an ergonomics work environment, it is possible to require a specific attention especially in industries. The aim of this study is to show the effect of temperature and relative humidity on worker productivity in automotive industry by taking a workstation in an automotive plant as the location to conduct the study. From the analysis of the data, there were relationship between temperature and relative humidity on worker productivity. Mathematical equation to represent the relationship between temperatures and relative humidity on the production rate is modelled. From the equation model, the production rate for the workstation can be predicted base on the value of temperature and relative humidity.Keywords: WBGT, Relative Humidity, Comfort, Productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458780 Application of Mapping and Superimposing Rule for Solution of Parabolic PDE in Porous Medium under Cyclic Loading
Authors: Mohammad M. Toufigh, Ahad Ouria
Abstract:
This paper presents an analytical method to solve governing consolidation parabolic partial differential equation (PDE) for inelastic porous Medium (soil) with consideration of variation of equation coefficient under cyclic loading. Since under cyclic loads, soil skeleton parameters change, this would introduce variable coefficient of parabolic PDE. Classical theory would not rationalize consolidation phenomenon in such condition. In this research, a method based on time space mapping to a virtual time space along with superimposing rule is employed to solve consolidation of inelastic soils in cyclic condition. Changes of consolidation coefficient applied in solution by modification of loading and unloading duration by introducing virtual time. Mapping function is calculated based on consolidation partial differential equation results. Based on superimposing rule a set of continuous static loads in specified times used instead of cyclic load. A set of laboratory consolidation tests under cyclic load along with numerical calculations were performed in order to verify the presented method. Numerical solution and laboratory tests results showed accuracy of presented method.Keywords: Mapping, Consolidation, Inelastic porous medium, Cyclic loading, Superimposing rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780779 Mechanical Quadrature Methods and Their Extrapolations for Solving First Kind Boundary Integral Equations of Anisotropic Darcy-s Equation
Authors: Xin Luo, Jin Huang, Chuan-Long Wang
Abstract:
The mechanical quadrature methods for solving the boundary integral equations of the anisotropic Darcy-s equations with Dirichlet conditions in smooth domains are presented. By applying the collectively compact theory, we prove the convergence and stability of approximate solutions. The asymptotic expansions for the error show that the methods converge with the order O (h3), where h is the mesh size. Based on these analysis, extrapolation methods can be introduced to achieve a higher convergence rate O (h5). An a posterior asymptotic error representation is derived in order to construct self-adaptive algorithms. Finally, the numerical experiments show the efficiency of our methods.
Keywords: Darcy's equation, anisotropic, mechanical quadrature methods, extrapolation methods, a posteriori error estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566778 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.
Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671777 Comparison of Three Versions of Conjugate Gradient Method in Predicting an Unknown Irregular Boundary Profile
Authors: V. Ghadamyari, F. Samadi, F. Kowsary
Abstract:
An inverse geometry problem is solved to predict an unknown irregular boundary profile. The aim is to minimize the objective function, which is the difference between real and computed temperatures, using three different versions of Conjugate Gradient Method. The gradient of the objective function, considered necessary in this method, obtained as a result of solving the adjoint equation. The abilities of three versions of Conjugate Gradient Method in predicting the boundary profile are compared using a numerical algorithm based on the method. The predicted shapes show that due to its convergence rate and accuracy of predicted values, the Powell-Beale version of the method is more effective than the Fletcher-Reeves and Polak –Ribiere versions.Keywords: Boundary elements, Conjugate Gradient Method, Inverse Geometry Problem, Sensitivity equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836776 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition
Authors: M. Akbari, S. Sadodin
Abstract:
In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982775 A Projection Method Based on Extended Krylov Subspaces for Solving Sylvester Equations
Authors: Yiqin Lin, Liang Bao, Yimin Wei
Abstract:
In this paper we study numerical methods for solving Sylvester matrix equations of the form AX +XBT +CDT = 0. A new projection method is proposed. The union of Krylov subspaces in A and its inverse and the union of Krylov subspaces in B and its inverse are used as the right and left projection subspaces, respectively. The Arnoldi-like process for constructing the orthonormal basis of the projection subspaces is outlined. We show that the approximate solution is an exact solution of a perturbed Sylvester matrix equation. Moreover, exact expression for the norm of residual is derived and results on finite termination and convergence are presented. Some numerical examples are presented to illustrate the effectiveness of the proposed method.
Keywords: Arnoldi process, Krylov subspace, Iterative method, Sylvester equation, Dissipative matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998774 Action Functional of the Electomagnetic Field: Effect of Gravitation
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
The scalar wave equation for a potential in a curved space time, i.e., the Laplace-Beltrami equation has been studied in this work. An action principle is used to derive a finite element algorithm for determining the modes of propagation inside a waveguide of arbitrary shape. Generalizing this idea, the Maxwell theory in a curved space time determines a set of linear partial differential equations for the four electromagnetic potentials given by the metric of space-time. Similar to the Einstein-s formulation of the field equations of gravitation, these equations are also derived from an action principle. In this paper, the expressions for the action functional of the electromagnetic field have been derived in the presence of gravitational field.
Keywords: General theory of relativity, electromagnetism, metric tensor, Maxwells equations, test functions, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662773 Effect of Pre-Plasma Potential on Laser Ion Acceleration
Authors: Djemai Bara, Mohamed Faouzi Mahboub, Djamila Bennaceur-Doumaz
Abstract:
In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave.Keywords: Cairns-Gurevich Equation, ion acceleration, plasma expansion, pre-plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714772 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation
Authors: Tan K. B., Norhashidah Hj. M. Ali
Abstract:
In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.
Keywords: Standard point Crank-Nicolson (CN), Rotated point Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled Group (EDG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605771 Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation
Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang
Abstract:
In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.
Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586770 CO-OFDM DSP Channel Estimation
Authors: Pranav Ravikumar, Arunabha Bera, Vijay K. Mehra, Anand Kumar
Abstract:
This paper solves the Non Linear Schrodinger Equation using the Split Step Fourier method for modeling an optical fiber. The model generates a complex wave of optical pulses and using the results obtained two graphs namely Loss versus Wavelength and Dispersion versus Wavelength are generated. Taking Chromatic Dispersion and Polarization Mode Dispersion losses into account, the graphs generated are compared with the graphs formulated by JDS Uniphase Corporation which uses standard values of dispersion for optical fibers. The graphs generated when compared with the JDS Uniphase Corporation plots were found to be more or less similar thus verifying that the model proposed is right. MATLAB software was used for doing the modeling.Keywords: Modulation, Non Linear Schrodinger Equation, Optical fiber, Split Step Fourier Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789769 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants
Authors: Punit Kumar, Niraj Kumar
Abstract:
The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.
Keywords: EHL, Carreau, Shear-thinning, Surface Roughness, Amplitude, Wavelength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2335768 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs
Authors: Chien-Hua Lee, Cheng-Yi Chen
Abstract:
The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.
Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610767 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Itô chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition method using the Wiener-Itô chaos expansion. Once the approximation of the solution is performed using the finite element method for example, the statistics of the numerical solution can be easily evaluated.
Keywords: Eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Itô chaos expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020766 The Boundary Element Method in Excel for Teaching Vector Calculus and Simulation
Authors: Stephen Kirkup
Abstract:
This paper discusses the implementation of the boundary element method (BEM) on an Excel spreadsheet and how it can be used in teaching vector calculus and simulation. There are two separate spreadheets, within which Laplace equation is solved by the BEM in two dimensions (LIBEM2) and axisymmetric three dimensions (LBEMA). The main algorithms are implemented in the associated programming language within Excel, Visual Basic for Applications (VBA). The BEM only requires a boundary mesh and hence it is a relatively accessible method. The BEM in the open spreadsheet environment is demonstrated as being useful as an aid to teaching and learning. The application of the BEM implemented on a spreadsheet for educational purposes in introductory vector calculus and simulation is explored. The development of assignment work is discussed, and sample results from student work are given. The spreadsheets were found to be useful tools in developing the students’ understanding of vector calculus and in simulating heat conduction.Keywords: Boundary element method, laplace equation, vector calculus, simulation, education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000