Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Error Estimates for Calculated Glomerular Filtration Rates
Authors: Simon Brown
Abstract:
Glomerular filtration rate (GFR) is a measure of kidney function. It is usually estimated from serum concentrations of cystatin C or creatinine although there has been considerable debate in the literature about (i) the best equation to use and (ii) the variability in the correlation between the concentrations of creatinine and cystatin C. The equations for GFR can be written in a general form and from these I calculate the error of the GFR estimates associated with analyte measurement error. These show that the error of the GFR estimates is such that it is not possible to distinguish between the equations over much of the concentration range of either analyte. The general forms of the equations are also used to derive an expression for the concentration of cystatin C as a function of the concentration of creatinine. This equation shows that these analyte concentrations are not linearly related. Clinical reports of cystatin C and creatinine concentration are consistent with the expression derived.Keywords: creatinine, cystatin C, error analysis, glomerularfiltration rate, measurement error.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1333788
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517References:
[1] D. W. Cockcroft and M. H. Gault, "Prediction of creatinine clearance from serum creatinine," Nephron, vol. 16, pp. 31-41, 1976.
[2] G. Filler and N. Lepage, "Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula?," Pediatric Nephrology, vol. 18, pp. 981-985, 2003.
[3] F. J. Hoek, F. A. W. Kemperman, and R. T. K. Krediet, "A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate," Nephrology Dialysis Transplantation, vol. 18, pp. 2024-2031, 2003.
[4] A. S. Levey, J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth, "A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.," Annals of Internal Medicine, vol. 130, pp. 461-470, 1999.
[5] A. Larsson, J. Malm, A. Grubb, and L.-O. Hansson, "Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L," Scandinavian Journal of Clinical and Laboratory Investigation, vol. 64, pp. 25-30, 2004.
[6] A. S. Levey, T. Greene, G. J. Beck, and M. S. Group, "A simplified equation to predict glomerular filtration rate from serum creatinine," Journal of the American Society of Nephrology, vol. 11, pp. A0828, 2000.
[7] L. A. Stevens, J. Coresh, T. Greene, and A. S. Levey, "Assessing kidney function - measured and estimated glomerular filtration rate," New England Journal of Medicine, vol. 354, pp. 2473-2483, 2006.
[8] R. W. Jelliffe and S. M. Jelliffe, "A computer program for estimation of creatinine clearance from unstable serum creatinine levels, age, sex, and weight," Mathematical Biosciences, vol. 14, pp. 17-24, 1972.
[9] T. Le Bricon, E. Thervet, M. Froissart, M. Benlakehal, C. Legendre, and D. Erlich, "Plasma cystatin C is superior to 24-h creatinine clearance and plasma creatinine for estimation of glomerular filtration rate 3 months after kidney transplantation," Clinical Chemistry, vol. 46, pp. 1206- 1207, 2000.
[10] D. DuBois and E. F. DuBois, "A formula to estimate the approximate surface area if height and weight are known," Archives of Internal Medicine, vol. 17, pp. 863-871, 1916.
[11] R. W. Jelliffe, "Creatinine clearance: bedside estimate," Annals of Internal Medicine, vol. 79, pp. 604-605, 1973.
[12] A. D. Rule, E. J. Bergstralh, J. M. Slezak, J. Bergert, and T. S. Larson, "Glomerular filtration rate estimated by cystatin C among different clinical presentations," Kidney International, vol. 69, pp. 399-405, 2006.
[13] D. E. Salazar and G. B. Corcoran, "Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass," American Journal of Medicine, vol. 84, pp. 1053-1060, 1988.
[14] G. L. Barbour, C. K. Crumb, C. M. Boyd, R. D. Reeves, S. P. Rastogi, and R. M. Patterson, "Comparison of inulin, iothalamate, and 99mTc- DTPA for measurement of glomerular filtration rate," Journal of Nuclear Medicine, vol. 17, pp. 317-320, 1976.
[15] C. Lempert, "The chemistry of glycoamidines," Chemical Reviews, vol. 59, pp. 667-736, 1959.
[16] M. Wyss and I. Kaddurah-Daouk, "Creatine and creatinine metabolism," Physiological Reviews, vol. 80, pp. 1107-1213, 2000.
[17] A. C. Baxmann, M. S. Ahmed, N. C. Marques, V. B. Menon, A. B. Pereira, G. M. Kirsztajn, and I. P. Heilberg, "Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C," Clinical Journal of the American Society of Nephrology, vol. 3, pp. 348-354, 2008.
[18] M. H. Kroll, L. Nealon, M. A. Vogel, and R. J. Elin, "How certain drugs interfere negatively with the Jaffé reaction for creatinine," Clinical Chemistry, vol. 31, pp. 306-308, 1985.
[19] O. Shemesh, H. Golbetz, J. P. Kriss, and B. D. Myers, "Limitations of creatinine as a filtration marker in glomerulopathic patients," Kidney International, vol. 28, pp. 830-838, 1985.
[20] R. D. Perrone, N. E. Madias, and A. S. Levey, "Serum creatinine as an index of renal function: new insights into old concepts," Clinical Chemistry, vol. 38, pp. 1933-1953, 1992.
[21] R. Swaminathan, P. Major, H. Snieder, and T. Spector, "Serum creatinine and fat-free mass (lean body mass)," Clinical Chemistry, vol. 46, pp. 1695-1696, 2000.
[22] B. G. Keevil, E. S. Kilpatrick, S. P. Nichols, and P. W. Maylor, "Biological variation of cystatin C: implications for the assessment of glomerular filtration rate," Clinical Chemistry, vol. 44, pp. 1535-1539, 1998.
[23] G. Filler, F. Priem, I. Vollmer, J. Gellermann, and K. Jung, "Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate," Pediatric Nephrology, vol. 13, pp. 501-505, 1999.
[24] A. G. Christensson, A. O. Grubb, J.-Å. Nilsson, K. Norrgren, G. Sterner, and G. Sundkvist, "Serum cystatin C advantageous compared with serum creatinine in the detection of mild but not severe diabetic nephropathy," Journal of Internal Medicine, vol. 256, pp. 510-518, 2004.
[25] D. Groesbeck, A. Köttgen, R. Parekh, E. Selvin, G. J. Schwartz, J. Coresh, and S. Furth, "Age, gender, and race effects on cystatin C levels in US adolescents," Clinical Journal of the American Society of Nephrology, vol. 3, pp. 1777-1785, 2008.
[26] M. Yashiro, T. Kamata, H. Segawa, Y. Kadoya, T. Murakami, and E. Muso, "Comparisons of cystatin C with creatinine for evaluation of renal function in chronic kidney disease," Clinical and Experimental Nephrology, vol. 13, pp. 598-604, 2009.
[27] J. Stoves, E. J. Lindley, M. C. Barnfield, M. T. Burniston, and C. G. Newstead, "MDRD equation estimates of glomerular filtration rate in potential living kidney donors and renal transplant recipients with impaired graft function," Nephrology Dialysis Transplantation, vol. 17, pp. 2036-2037, 2002.
[28] J. Lin, E. L. Knight, M. L. Hogan, and A. K. Singh, "A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease," Journal of the American Society of Nephrology, vol. 14, pp. 2573-2580, 2003.
[29] C. White, A. Akbari, N. Hussain, L. Dinh, G. Filler, N. Lepage, and G. A. Knoll, "Estimating glomerular filtration rate in kidney transplantation: a comparison between serum creatinine and cystatin Cbased methods," Journal of the American Society of Nephrology, vol. 16, pp. 3763-3770, 2005.
[30] J. S. Al Wakeel, D. Hammad, A. Al Suwaida, N. Tarif, A. Chaudhary, A. Isnani, W. A. Albedaiwi, A. H. Mitwalli, and S. S. Ahmad, "Validation of predictive equations for glomerular filtration rate in the Saudi population," Saudi Journal of Kidney Diseases and Transplantation, vol. 20, pp. 1030-1037, 2009.
[31] S. Savaj, T. Shoushtarizadeh, M. A. Abbai, S. H. Razavimanesh, and A. J. Ghods, "Estimation of glomerular filtration rate with creatinine-based versus cystatin C-based equations in kidney transplant recipients," Iranian Journal of Kidney Disease, vol. 3, pp. 234-238, 2009.
[32] A. S. Levey, L. A. Stevens, C. H. Schmid, Y. Zhang, A. F. Castro, III, H. I. Feldman, J. W. Kusek, P. Eggers, F. Van Lente, T. Greene, and J. Coresh, "A new equation to estimate glomerular filtration rate," Annals of Internal Medicine, vol. 150, pp. 604-612, 2009.
[33] S. Brown, "Re: Estimation of glomerular filtration rate with creatininebased versus cystatin C-based equations in kidney transplant recipients," Iranian Journal of Kidney Disease, vol. 4, pp. 169-170, 2010.
[34] J. R. Taylor, An introduction to error analysis. The study of uncertainties in physical measurements, 2nd ed. Sausalito: University Science Books, 1997.
[35] V. Menon, M. G. Shlipak, X. Wang, J. Coresh, T. Greene, L. Stevens, J. W. Kusek, G. J. Beck, A. J. Collins, A. S. Levey, and M. J. Sarnak, "Cystatin C as a risk factor for outcomes in chronic kidney disease," Annals of Internal Medicine, vol. 147, pp. 19-27, 2007.
[36] D. J. Newman, H. Thakkar, R. G. Edwards, M. Wilkie, T. White, A. O. Grubb, and C. P. Price, "Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine," Kidney International, vol. 47, pp. 312-318, 1995.
[37] H. Li, G. Xu, X. Wang, X. Zhang, and J. Yanh, "Diagnostic accuracy of various glomerular filtration rates estimating equations in patients with chronic kidney disease and diabetes," Chinese Medical Journal, vol. 123, pp. 745-751, 2010.
[38] U. Pöge, B. Stoffel-Wagner, H. U. Klehr, T. Sauerbruch, and R. P. Woitas, "Calculation of glomerular filtration rate based on cystatin C in cirrhotic patients," Nephrology Dialysis Transplantation, vol. 21, pp. 660-664, 2006.
[39] L. K. van Rossum, R. Zietse, A. G. Vulto, and Y. B. de Rijke, "Renal extraction of cystatin C vs 125I-iothalamate in hypertensive patients," Nephrology Dialysis Transplantation, vol. 21, pp. 1253-1256, 2006.
[40] H. Stowe, D. Lawrence, D. J. Newman, and E. J. Lamb, "Analytical performance of a particle-enhanced nephelometric immunoassay for serum cystatin C using rate analysis," Clinical Chemistry, vol. 47, pp. 1482-1485, 2001.
[41] R. H. Laessig, S. S. Ehrmeyer, and J. E. Leinweber, "Intralaboratory performance requirements necessary to pass proficiency testing: CAP- 1990 vs CLIA-1867 (March 14, 1990) formats compared," Clinical Chemistry, vol. 38, pp. 895-903, 1992.
[42] M. A. McDowell, C. D. Fryar, C. L. Ogden, and K. M. Flegal, "Anthropometric reference data for children and adults: United States, 2003-2006," National Center for Health Statistics, Hyattsville 10, 2008.
[43] F. Ceriotti, J. C. Boyd, G. Klein, J. Henny, J. Queralt├│, V. Kairisto, and M. Panteghini, "Reference intervals for serum creatinine concentrations: assessment of available data for global application," Clinical Chemistry, vol. 54, pp. 559-566, 2008.
[44] M. Peake and M. Whiting, "Measurement of serum creatinine - current status and future goals," Clinical Biochemistry Reviews, vol. 27, pp. 173- 184, 2007.
[45] R. Botev, J.-P. Mallié, C. Couchoud, O. Sch├╝ck, J.-P. Fauvel, J. F. M. Wetzels, N. Lee, N. G. De Santo, and M. Cirillo, "Estimating glomerular filtration rate: Cockcroft-Gault and modification of diet in renal disease formulas compared to renal inulin clearance," Clinical Journal of the American Society of Nephrology, vol. 4, pp. 899-906, 2009.