Search results for: Coal fired power plants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3482

Search results for: Coal fired power plants

302 Harnessing the Power of AI: Transforming DevSecOps for Enhanced Cloud Security

Authors: Ashly Joseph, Jithu Paulose

Abstract:

The increased usage of cloud computing has revolutionized the IT landscape, but it has also raised new security concerns. DevSecOps emerged as a way for tackling these difficulties by integrating security into the software development process. However, the rising complexity and sophistication of cyber threats need more advanced solutions. This paper looks into the usage of artificial intelligence (AI) techniques in the DevSecOps framework to increase cloud security. This study uses quantitative and qualitative techniques to assess the usefulness of AI approaches such as machine learning, natural language processing, and deep learning in reducing security issues. This paper thoroughly examines the symbiotic relationship between AI and DevSecOps, concentrating on how AI may be seamlessly integrated into the continuous integration and continuous delivery (CI/CD) pipeline, automated security testing, and real-time monitoring methods. The findings emphasize AI's huge potential to improve threat detection, risk assessment, and incident response skills. Furthermore, the paper examines the implications and challenges of using AI in DevSecOps workflows, considering factors like as scalability, interpretability, and adaptability. This paper adds to a better understanding of AI's revolutionary role in cloud security and provides valuable insights for practitioners and scholars in the field.

Keywords: Cloud Security, DevSecOps, Artificial Intelligence, AI, Machine Learning, Natural Language Processing, NLP, cybersecurity, AI-driven Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132
301 400 kW Six Analytical High Speed Generator Designs for Smart Grid Systems

Authors: A. El Shahat, A. Keyhani, H. El Shewy

Abstract:

High Speed PM Generators driven by micro-turbines are widely used in Smart Grid System. So, this paper proposes comparative study among six classical, optimized and genetic analytical design cases for 400 kW output power at tip speed 200 m/s. These six design trials of High Speed Permanent Magnet Synchronous Generators (HSPMSGs) are: Classical Sizing; Unconstrained optimization for total losses and its minimization; Constrained optimized total mass with bounded constraints are introduced in the problem formulation. Then a genetic algorithm is formulated for obtaining maximum efficiency and minimizing machine size. In the second genetic problem formulation, we attempt to obtain minimum mass, the machine sizing that is constrained by the non-linear constraint function of machine losses. Finally, an optimum torque per ampere genetic sizing is predicted. All results are simulated with MATLAB, Optimization Toolbox and its Genetic Algorithm. Finally, six analytical design examples comparisons are introduced with study of machines waveforms, THD and rotor losses.

Keywords: High Speed, Micro - Turbines, Optimization, PM Generators, Smart Grid, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
300 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, PLL megafunction, FPGA, time resolution, digitally-controlled DC-DC switching converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
299 Interference Management in Long Term Evolution-Advanced System

Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi

Abstract:

Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).

Keywords: LTE-Advanced, carrier aggregation, MIMO, capacity, peak data rate, spectral efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
298 Valorization of Lignocellulosic Wastes – Evaluation of Its Toxicity When Used in Adsorption Systems

Authors: Isabel Brás, Artur Figueirinha, Bruno Esteves, Luísa P. Cruz-Lopes

Abstract:

The agriculture lignocellulosic by-products are receiving increased attention, namely in the search for filter materials that retain contaminants from water. These by-products, specifically almond and hazelnut shells are abundant in Portugal once almond and hazelnuts production is a local important activity. Hazelnut and almond shells have as main constituents lignin, cellulose and hemicelluloses, water soluble extractives and tannins. Along the adsorption of heavy metals from contaminated waters, water soluble compounds can leach from shells and have a negative impact in the environment. Usually, the chemical characterization of treated water by itself may not show environmental impact caused by the discharges when parameters obey to legal quality standards for water. Only biological systems can detect the toxic effects of the water constituents. Therefore, the evaluation of toxicity by biological tests is very important when deciding the suitability for safe water discharge or for irrigation applications.

The main purpose of the present work was to assess the potential impacts of waters after been treated for heavy metal removal by hazelnut and almond shells adsorption systems, with short term acute toxicity tests.

To conduct the study, water at pH 6 with 25 mg.L-1 of lead, was treated with 10 g of shell per litre of wastewater, for 24 hours. This procedure was followed for each bark. Afterwards the water was collected for toxicological assays; namely bacterial resistance, seed germination, Lemna minor L. test and plant grow. The effect in isolated bacteria strains was determined by disc diffusion method and the germination index of seed was evaluated using lettuce, with temperature and humidity germination control for 7 days. For aquatic higher organism, Lemnas were used with 4 days contact time with shell solutions, in controlled light and temperature. For terrestrial higher plants, biomass production was evaluated after 14 days of tomato germination had occurred in soil, with controlled humidity, light and temperature.

Toxicity tests of water treated with shells revealed in some extent effects in the tested organisms, with the test assays showing a close behaviour as the control, leading to the conclusion that its further utilization may not be considered to create a serious risk to the environment.

Keywords: Acute toxicity tests, adsorption, lignocellulosic wastes, risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2244
297 Antioxidative Potential of Aqueous Extract of Ocimum americanum L. Leaves: An in vitro and in vivo Evaluation

Authors: B. T. Aluko, O. I. Oloyede

Abstract:

Ocimum americanum L (Lamiaceae) is an annual herb that is native to tropical Africa. The in vitro and in vivo antioxidant activity of its aqueous extract was carefully investigated by assessing the DPPH radical scavenging activity, ABTS radical scavenging activity and hydrogen peroxide radical scavenging activity. The reducing power, total phenol, total flavonoids and flavonols content of the extract were also evaluated. The data obtained revealed that the extract is rich in polyphenolic compounds and scavenged the radicals in a concentration dependent manner. This was done in comparison with the standard antioxidants such as BHT and Vitamin C. Also, the induction of oxidative damage with paracetamol (2000 mg/kg) resulted in the elevation of lipid peroxides and significant (P < 0.05) decrease in activities of superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase in the liver and kidney of rats. However, the pretreatment of rats with aqueous extract of O. americanum leaves (200 and 400 mg/kg) and silymarin (100 mg/kg) caused a significant (P < 0.05) reduction in the values of lipid peroxides and restored the levels of antioxidant parameters in these organs. These findings suggest that the leaves of O. americanum have potent antioxidant properties which may be responsible for its acclaimed folkloric uses.

Keywords: Antioxidants, free radicals, Ocimum americanum, scavenging activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
296 Thermodynamic Optimization of Turboshaft Engine using Multi-Objective Genetic Algorithm

Authors: S. Farahat, E. Khorasani Nejad, S. M. Hoseini Sarvari

Abstract:

In this paper multi-objective genetic algorithms are employed for Pareto approach optimization of ideal Turboshaft engines. In the multi-objective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are specific thrust (F/m& 0), specific fuel consumption ( P S ), output shaft power 0 (& /&) shaft W m and overall efficiency( ) O η . These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters (compressor pressure ratio, turbine temperature ratio and Mach number). At the first stage single objective optimization has been investigated and the method of NSGA-II has been used for multiobjective optimization. Optimization procedures are performed for two and four objective functions and the results are compared for ideal Turboshaft engine. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of four objective optimization the results are given in tables.

Keywords: Multi-objective, Genetic algorithm, Turboshaft Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
295 Design and Control Strategy of Diffused Air Aeration System

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

During the past decade, pond aeration systems have been developed which will sustain large quantities of fish and invertebrate biomass. Dissolved Oxygen (DO) is considered to be among the most important water quality parameters in fish culture. Fishponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. This paper presents a new design of diffused aeration system using fuel cell as a power source. Also fuzzy logic control Technique (FLC) is used for controlling the speed of air flow rate from the blower to air piping connected to the pond by adjusting blower speed. MATLAB SIMULINK results show high performance of fuzzy logic control (FLC).

Keywords: aeration system, Fuel cell, Artificial intelligence (AI) techniques, fuzzy logic control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3515
294 Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates

Authors: Ahmed Kiani

Abstract:

The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders. 

Keywords: Electric vehicles, greenhouse gas emission reductions, market analysis, policy recommendations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
293 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, design with nature, sustainable architecture, waste water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
292 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.

Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
291 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
290 Location of Vortex Formation Threshold at Suction Inlets near Ground Planes – Ascending and Descending Conditions

Authors: Wei Hua Ho

Abstract:

Vortices can develop in intakes of turbojet and turbo fan aero engines during high power operation in the vicinity of solid surfaces. These vortices can cause catastrophic damage to the engine. The factors determining the formation of the vortex include both geometric dimensions as well as flow parameters. It was shown that the threshold at which the vortex forms or disappears is also dependent on the initial flow condition (i.e. whether a vortex forms after stabilised non vortex flow or vice-versa). A computational fluid dynamics study was conducted to determine the difference in thresholds between the two conditions. This is the first reported numerical investigation of the “memory effect". The numerical results reproduce the phenomenon reported in previous experimental studies and additional factors, which had not been previously studied, were investigated. They are the rate at which ambient velocity changes and the initial value of ambient velocity. The former was found to cause a shift in the threshold but not the later. It was also found that the varying condition thresholds are not symmetrical about the neutral threshold. The vortex to no vortex threshold lie slightly further away from the neutral threshold compared to the no vortex to vortex threshold. The results suggests that experimental investigation of vortex formation threshold performed either in vortex to no vortex conditions, or vice versa, solely may introduce mis-predictions greater than 10%.

Keywords: Jet Engine Test Cell, Unsteady flow, Inlet Vortex

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
289 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
288 Low Light Image Enhancement with Multi-Stage Interconnected Autoencoders Integration in Pix-to-Pix GAN

Authors: Muhammad Atif, Cang Yan

Abstract:

The enhancement of low-light images is a significant area of study aimed at enhancing the quality of captured images in challenging lighting environments. Recently, methods based on Convolutional Neural Networks (CNN) have gained prominence as they offer state-of-the-art performance. However, many approaches based on CNN rely on increasing the size and complexity of the neural network. In this study, we propose an alternative method for improving low-light images using an Autoencoders-based multiscale knowledge transfer model. Our method leverages the power of three autoencoders, where the encoders of the first two autoencoders are directly connected to the decoder of the third autoencoder. Additionally, the decoder of the first two autoencoders is connected to the encoder of the third autoencoder. This architecture enables effective knowledge transfer, allowing the third autoencoder to learn and benefit from the enhanced knowledge extracted by the first two autoencoders. We further integrate the proposed model into the Pix-to-Pix GAN framework. By integrating our proposed model as the generator in the GAN framework, we aim to produce enhanced images that not only exhibit improved visual quality but also possess a more authentic and realistic appearance. These experimental results, both qualitative and quantitative, show that our method is better than the state-of-the-art methodologies.

Keywords: Low light image enhancement, deep learning, convolutional neural network, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33
287 Intelligent Neural Network Based STLF

Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi

Abstract:

Short-Term Load Forecasting (STLF) plays an important role for the economic and secure operation of power systems. In this paper, Continuous Genetic Algorithm (CGA) is employed to evolve the optimum large neural networks structure and connecting weights for one-day ahead electric load forecasting problem. This study describes the process of developing three layer feed-forward large neural networks for load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. We find good performance for the large neural networks. The proposed methodology gives lower percent errors all the time. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.

Keywords: Feed-forward Large Neural Network, Short-TermLoad Forecasting, Continuous Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
286 Development of Piezoelectric Gas Micro Pumps with the PDMS Check Valve Design

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng, Ming-Yu Lai

Abstract:

This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micro pump with check valve having the advantages of miniature size, light weight and low power consumption. The micro pump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micro pump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micro pump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micro pump and the displacement of the piezoelectric actuator, simultaneously. The gas micro pump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micro pump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz.

Keywords: PDMS, Check valve, Micro pump, Piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
285 Numerical Simulation of Heating Characteristics in a Microwave T-Prong Antenna for Cancer Therapy

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This research is presented with microwave (MW) ablation by using the T-Prong monopole antennas. In the study, three-dimensional (3D) finite-element methods (FEM) were utilized to analyse: the tissue heat flux, temperature distributions (heating pattern) and volume destruction during MW ablation in liver cancer tissue. The configurations of T-Prong monopole antennas were considered: Three T-prong antenna, Expand T-Prong antenna and Arrow T-Prong antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The microwave power deliveries were 10 W; the duration of ablation in all cases was 300s. Our numerical result, heat flux and the hotspot occurred at the tip of the T-prong antenna for all cases. The temperature distribution pattern of all antennas was teardrop. The Arrow T-Prong antenna can induce the highest temperature within cancer tissue. The microwave ablation was successful when the region where the temperatures exceed 50°C (i.e. complete destruction). The Expand T-Prong antenna could complete destruction the liver cancer tissue was maximized (6.05 cm3). The ablation pattern or axial ratio (Widest/length) of Expand T-Prong antenna and Arrow T-Prong antenna was 1, but the axial ratio of Three T-prong antenna of about 1.15.

Keywords: Liver cancer, T-Prong antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
284 Towards the Design of a GIS-Linked Agent-Based Model for the Lake Chad Basin Region: Challenges and Opportunities

Authors: Stephen Akuma, Isaac Terngu Adom, Evelyn Doofan Akuma

Abstract:

Generation after generation of humans has experienced conflicts leading to needless deaths. Usually, it begins as a minor argument that occasionally escalates into a full-fledged conflict. There has been a lingering crisis in the Lake Chad Basin (LCB) of Africa for over a decade leading to bloodshed that has claimed thousands of lives. The terrorist group, Boko Haram has claimed responsibility for these deaths. Efforts have been made by the governments in the LCB region to end the crisis through kinetic approaches, but the conflict persists. In this work, we explored non-kinetic methods used by social scientists in resolving conflicts, with a focus on computational approaches due to the increasing processing power of the computer. Firstly, we reviewed the innovative computational methods available for researchers working on conflict, violence, and peace. Secondly, we described how an Agent-Based Model (ABM) can be linked with a Geographic Information System (GIS) to model the LCB. Finally, this research discusses the challenges and opportunities in constructing a Geographic Information System linked Agent-Based Model of the LCB region.

Keywords: Agent-based modelling, conflict, Geographical Information Systems, Lake Chad Basin, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143
283 Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

Authors: Thomas O. Olwal, Michael A. van Wyk, Barend J. van Wyk

Abstract:

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

Keywords: discrete polyphase matched filters, maximum likelihood estimators, soft timing phase estimation, wireless mobile systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
282 Highly Accurate Target Motion Compensation Using Entropy Function Minimization

Authors: Amin Aghatabar Roodbary, Mohammad Hassan Bastani

Abstract:

One of the defects of stepped frequency radar systems is their sensitivity to target motion. In such systems, target motion causes range cell shift, false peaks, Signal to Noise Ratio (SNR) reduction and range profile spreading because of power spectrum interference of each range cell in adjacent range cells which induces distortion in High Resolution Range Profile (HRRP) and disrupt target recognition process. Thus Target Motion Parameters (TMPs) effects compensation should be employed. In this paper, such a method for estimating TMPs (velocity and acceleration) and consequently eliminating or suppressing the unwanted effects on HRRP based on entropy minimization has been proposed. This method is carried out in two major steps: in the first step, a discrete search method has been utilized over the whole acceleration-velocity lattice network, in a specific interval seeking to find a less-accurate minimum point of the entropy function. Then in the second step, a 1-D search over velocity is done in locus of the minimum for several constant acceleration lines, in order to enhance the accuracy of the minimum point found in the first step. The provided simulation results demonstrate the effectiveness of the proposed method.

Keywords: ATR, HRRP, motion compensation, SFW, TMP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657
281 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
280 Modeling and Control of Direct Driven PMSG for Ultra Large Wind Turbines

Authors: Ahmed M. Hemeida, Wael A. Farag, Osama A. Mahgoub

Abstract:

This paper focuses on developing an integrated reliable and sophisticated model for ultra large wind turbines And to study the performance and analysis of vector control on large wind turbines. With the advance of power electronics technology, direct driven multi-pole radial flux PMSG (Permanent Magnet Synchronous Generator) has proven to be a good choice for wind turbines manufacturers. To study the wind energy conversion systems, it is important to develop a wind turbine simulator that is able to produce realistic and validated conditions that occur in real ultra MW wind turbines. Three different packages are used to simulate this model, namely, Turbsim, FAST and Simulink. Turbsim is a Full field wind simulator developed by National Renewable Energy Laboratory (NREL). The wind turbine mechanical parts are modeled by FAST (Fatigue, Aerodynamics, Structures and Turbulence) code which is also developed by NREL. Simulink is used to model the PMSG, full scale back to back IGBT converters, and the grid.

Keywords: FAST, Permanent Magnet Synchronous Generator(PMSG), TurbSim, Vector Control and Pitch Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5609
279 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications

Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo

Abstract:

In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.

Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
278 High Gain Mobile Base Station Antenna Using Curved Woodpile EBG Technique

Authors: P. Kamphikul, P. Krachodnok, R. Wongsan

Abstract:

This paper presents the gain improvement of a sector antenna for mobile phone base station by using the new technique to enhance its gain for microstrip antenna (MSA) array without construction enlargement. The curved woodpile Electromagnetic Band Gap (EBG) has been utilized to improve the gain instead. The advantages of this proposed antenna are reducing the length of MSAs array but providing the higher gain and easy fabrication and installation. Moreover, it provides a fan-shaped radiation pattern, wide in the horizontal direction and relatively narrow in the vertical direction, which appropriate for mobile phone base station. The paper also presents the design procedures of a 1x8 MSAs array associated with U-shaped reflector for decreasing their back and side lobes. The fabricated curved woodpile EBG exhibits bandgap characteristics at 2.1 GHz and is utilized for realizing a resonant cavity of MSAs array. This idea has been verified by both the Computer Simulation Technology (CST) software and experimental results. As the results, the fabricated proposed antenna achieves a high gain of 20.3 dB and the half-power beam widths in the E- and H-plane of 36.8 and 8.7 degrees, respectively. Good qualitative agreement between measured and simulated results of the proposed antenna was obtained.

Keywords: Gain Improvement, Microstrip Antenna Array, Electromagnetic Band Gap, Base Station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2980
277 Soil Moisture Control System: A Product Development Approach

Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni

Abstract:

In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.

Keywords: Agriculture, human factors, product design, soil moisture control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
276 SFE as a Superior Technique for Extraction of Eugenol-Rich Fraction from Cinnamomum tamala Nees (Bay Leaf) - Process Analysis and Phytochemical Characterization

Authors: Sudip Ghosh, Dipanwita Roy, Dipan Chatterjee, Paramita Bhattacharjee, Satadal Das

Abstract:

Highest yield of eugenol-rich fractions from Cinnamomum tamala (bay leaf) leaves were obtained by supercritical carbon dioxide (SC-CO2), compared to hydro-distillation, organic solvents, liquid CO2 and subcritical CO2 extractions. Optimization of SC-CO2 extraction parameters was carried out to obtain an extract with maximum eugenol content. This was achieved using a sample size of 10g at 55°C, 512 bar after 60min at a flow rate of 25.0 cm3/sof gaseous CO2. This extract has the best combination of phytochemical properties such as phenolic content (1.77mg gallic acid/g dry bay leaf), reducing power (0.80mg BHT/g dry bay leaf), antioxidant activity (IC50 of 0.20mg/ml) and anti-inflammatory potency (IC50 of 1.89mg/ml). Identification of compounds in this extract was performed by GC-MS analysis and its antimicrobial potency was also evaluated. The MIC values against E. coli, P. aeruginosa and S. aureus were 0.5, 0.25 and 0.5mg/ml, respectively

Keywords: Antimicrobial potency, Cinnamomum tamala, eugenol, supercritical carbon dioxide extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3628
275 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater

Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu

Abstract:

The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.

Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176
274 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
273 Model of High-Speed Train Energy Consumption

Authors: Romain Bosquet, Pierre-Olivier Vandanjon, Alex Coiret, Tristan Lorino

Abstract:

In the hardening energy context, the transport sector which constitutes a large worldwide energy demand has to be improving for decrease energy demand and global warming impacts. In a controversial situation where subsists an increasing demand for long-distance and high-speed travels, high-speed trains offer many advantages, as consuming significantly less energy than road or air transports. At the project phase of new rail infrastructures, it is nowadays important to characterize accurately the energy that will be induced by its operation phase, in addition to other more classical criteria as construction costs and travel time. Current literature consumption models used to estimate railways operation phase are obsolete or not enough accurate for taking into account the newest train or railways technologies. In this paper, an updated model of consumption for high-speed is proposed, based on experimental data obtained from full-scale tests performed on a new high-speed line. The assessment of the model is achieved by identifying train parameters and measured power consumptions for more than one hundred train routes. Perspectives are then discussed to use this updated model for accurately assess the energy impact of future railway infrastructures.

Keywords: High-speed train, energy, model, track profile, infrastructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5208