
 

 
Abstract—The enhancement of low-light images is a significant 

area of study aimed at enhancing the quality of captured images in 
challenging lighting environments. Recently, methods based on 
Convolutional Neural Networks (CNN) have gained prominence as 
they offer state-of-the-art performance. However, many approaches 
based on CNN rely on increasing the size and complexity of the neural 
network. In this study, we propose an alternative method for improving 
low-light images using an Autoencoders-based multiscale knowledge 
transfer model. Our method leverages the power of three autoencoders, 
where the encoders of the first two autoencoders are directly connected 
to the decoder of the third autoencoder. Additionally, the decoder of 
the first two autoencoders is connected to the encoder of the third 
autoencoder. This architecture enables effective knowledge transfer, 
allowing the third autoencoder to learn and benefit from the enhanced 
knowledge extracted by the first two autoencoders. We further 
integrate the proposed model into the Pix-to-Pix GAN framework. By 
integrating our proposed model as the generator in the GAN 
framework, we aim to produce enhanced images that not only exhibit 
improved visual quality but also possess a more authentic and realistic 
appearance. These experimental results, both qualitative and 
quantitative, show that our method is better than the state-of-the-art 
methodologies. 

 
Keywords—Low light image enhancement, deep learning, 

convolutional neural network, image processing.  

I. INTRODUCTION 

HE optimization of imagery obtained under low-
illumination conditions has long been a focus of ongoing 

research. Such efforts hold valuable applications in nighttime 
monitoring systems, autonomous platforms, and digital image 
editing tools. When light levels are inadequate, captured scenes 
may lack visual acuity and fine element detail. This 
insufficiency challenges the interpretability of resulting images 
and influences downstream evaluations of visual information. 
Concurrently, poor illumination can impact assessments of 
higher-order scene understanding, like segmentation of scene 
[1], [2] and face-recognition [3], [4]. 

Two primary conventional strategies for improving images 
under low light condition are techniques based on histogram 
equalization and Retinex [5], [6]. The Histogram equalization 
is a technique that improves the overall levels of lighting in an 
image by shifting how frequently pixels with varying brightness 
values occur in the frequency distribution. Retinex-based 
techniques [7], [8] split the input picture in two components one 
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is reflection component and illumination factor and then modify 
the illumination factor or utilize reflectance straight to get an 
improved output. Conventional approaches leveraging prior 
information have demonstrated capable performance. 
Nevertheless, traditionally prior-driven approaches are unable 
to take into consideration a wide range of lighting conditions 
and the outcomes that are produced frequently conceal specifics 
and maintain uneven illumination. Data driven algorithms are 
now widely used in computer vision because of deep learning’s 
potent feature representation capabilities. The majority of low-
light image denoising models are based on CNN, to match the 
mapping association from a large amount of data between low 
light and normal light images. Deep learning method to 
improve images are LLNet [9], the first CNN-based method 
that simultaneously learns low-light picture enhancement and 
denoising using a sparse denoising autoencoder. Many deep 
learning-based techniques have since been presented, including 
RetinexNet [10], MBLLEN [11], Knowledge distillation [12], 
LACN [13], DTSD [14], EnlightenGAN [15], all of which have 
significant advancement and produced striking visual 
outcomes. Unfortunately, most algorithms require more 
memory and computational power to run well, making them 
unsuitable for real world applications like edge computing and 
mobile platforms. This is because most algorithms increase 
computation and parameter counts while optimizing algorithm 
performance. The autoencoder [16] is used to learn effective 
data encodings in unsupervised manner. Autoencoders use an 
encoder-decoder architecture to learn distributed, compressed 
representations of data. The decoder reconstructs the input from 
the lower-dimensional latent space representation that the 
encoder has learned. A dual autoencoder network [17] has 
purpose to improving low light images. In the past, Generative 
Adversarial Networks (GANs) [18] have shown encouraging 
performance in computer vision. A unique unsupervised 
method for improving low-light photos is suggested by the LE-
GAN network [19], which addresses difficulties with noise, 
color bias, and over-exposure. It enhances visual quality 
without requiring paired training data by augmenting feature 
extraction with an illumination-aware attention module.  

For low-light image enhancement, we provide a multistage 
deep learning architecture. The first two autoencoders function 
to provide an initial enhancement, with the encoder of first two 
autoencoder transferring its learned feature representation to the 
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decoder of the third autoencoder.  
 

 

Fig. 1 The architecture of Generator Network for Low-Light Image Enhancement 
 

As shown in Fig. 1, the decoder part of the first autoencoder 
and second autoencoder reconstructed output is then provided 
to a third autoencoder, designed to furnish a higher-fidelity 
enhancement. In this final autoencoder, knowledge is shared bi-
directionally between its encoders and decoder segments. 
Specifically, the decoders inform the encoders as to what 
patterns and textures were effectively captured from the prior 
autoencoder’s output, while the encoders concurrently guide 
the decoders on reconstructing finer details. This cooperative 
training scheme enables more sophisticated reconstruction 
capable of resolving subtle color and lighting variations. The 
proposed model is integrated into the Pix-to-Pix GAN 
framework. Given Pix-to-Pix employs conditional adversarial 
learning to complete the enhancement pipeline, generating 
results with high perceptual quality and naturalness. Through 
this multi-pronged approach fusing the self-supervised feature 
disentangling of autoencoders with Pix-to-Pix is supervised 
feature generation, our goal is to maximize both subjective and 
objective quality measures for photos taken in low-light 
environment. 

This is a summary of the main contributions made by this 
work: 
 We present a multi-stage deep learning architecture that 

combines multiple autoencoders with Pix-to-Pix GAN for 

the purpose of low light image enhancement. This phased 
strategy makes use of each method’s supervised and 
unsupervised modeling capabilities. 

 Our model utilizes a cascaded autoencoder structure where 
encoders and decoders share knowledge bidirectional to 
iteratively improve the enhanced output. This cooperative 
training scheme captures fine-grained image pattern. 

 The autoencoder reconstructions are fed into Pix-to-Pix 
GAN for photo-realistic image translation to the high-light 
domain. This completes the enhancement with state-of-the-
art perceptual quality. 

 We designed a generator loss by combining the MAE loss, 
SSIM loss and Carbonnier loss. 

 Extensive experiment on benchmark datasets demonstrates 
that, in terms of standard image quality, the suggested 
method outperforms alternative strategies in terms of both 
qualitative and quantitative enhancement and generation 
performance. 

II. RELATED WORK 

A. Traditional Enhancement Method 

For a long time, researchers have been actively investigating 
methods for improving low-light images, including Retinex 
modeling and histogram equalization. In order to address the 
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issue of noise amplification, [5] suggested limiting the 
maximum amount of contrast amplification and performing 
histogram equalization on certain areas rather than the entire 
image. A formulation of the cumulative function was proposed 
by [20] to generate a mapping from a local histogram of the 
grayscale levels of pixels. The study of [21] demonstrated 
grayscale differences using a two-dimensional histogram 
organized in a hierarchical tree-like manner, grayscale 
differences should be more apparent in high-frequency zones. 
The problem is converted into K-dimensional space to create a 
reversible cumulative probability distribution function and 
calculate a strict pixel ordering for the image [22]. 

Drawing from the concepts of color constancy, the Retinex 
theory [7] enables decomposing the image into a reflection 
factor and an illumination component, where the illumination 
factor depicts the light incident on the item, and the reflection 
factor characterizes the object’s intrinsic qualities. In the 
algorithmic domain, SSR [23] suggested Gaussian surround 
functions to solve for the illumination component and 
reflectance component, with the reflection factor being used as 
the improved result. In order to process the original image, a 
multiscale Retinex model using different sized Gaussian filters 
is presented by MSR [24]. Guo et al. [25], [26], using the 
enhanced Lagrange multiplier method, optimize the 
illumination factor by adding structural smoothing to the prior 
data and starting with the maximum pixel value. In order to 
perform Retinex decomposition [27], a bright-pass filter 
specifically suited for non-uniform pictures, using a double 
logarithmic transformation to maintain naturalness and details. 
To estimate the noise map [28], a noise component is added to 
the original Retinex model, putting restrictions on the 
segmental smoothness of the illumination map and the gradient 
consistency of the reflectance map. The reflectance and 
illumination components are thoroughly decomposed using a 
morphological closed-loop operation [29]. The two 
illumination maps are then combined using a weighted fusion 
approach that was produced through curve modification and 
histogram equalization. A weighted variational model was 
proposed as a means of improving the estimation of 
illumination factor and reflectance factor [8]. However, the 
capacity to recover details is restricted and approaches based on 
the Retinex model and histogram equalization frequently lose 
details in image and blurry edge features. 

B. Deep Learning Based Methods 

The approaches of deep learning have been effectively used 
in the area of low-light image enhancement and have gained 
prominence within related study due to the explosive progress 
of deep learning technology in the area of computer vision. The 
use of deep learning technology for low-light image 
enhancement, [9] suggested using an autoencoder structure for 
both denoising and low-light image enhancement 
simultaneously. Retinex theory was the foundation [10] which 
broke down the light and reflectance maps. In order to produce 
the output image; [11] suggested using a multi-branches 
enhancing fusion. In order to enhance images, [30] suggested a 

network for global light perception and details retention. A full-
resolution illumination map is obtained [31] by first extracting 
global and local information at poor quality of resolution, 
followed by bilateral grid-based Upsampling. The study of [32] 
first utilizes a decomposition network to split the original image 
into illumination factor and reflectance factor. After that, they 
employ a reflectance map recovery network and an adjustment 
network, respectively, to alter the illumination factor and 
reflectance factor. In order to improve the image captured under 
low-light condition, the light back-projection was proposed 
[33] which also constructed the deep lightening network in a 
cascading manner. They then added an adjustable light control 
factor parameter. In order to guarantee temporal consistency in 
low-light video enhancement, [34] suggested simulating video 
from a single using an optical flow estimating method. Based 
on prior understanding of Retinex theory, [35] suggested a 
neural network architectural search method to automatically 
find effective network architectures from a predetermined 
search area. In order to prevent color bias, [36] suggested the 
Retinex-based self-regularized approach and carried out 
recovery in HSV color space. The study of [37] involves 
training the network through a series of unsupervised losses and 
relies on high-order curve adjustment in the absence of ground 
truth images. A semi-supervised method of picture 
enhancement [38] which uses unsupervised learning to raise the 
perceived images quality and picture fidelity restoration by 
supervised learning. 

C. Generative Adversarial Network Methods 

The application of GANs to deep learning approaches for 
low-light picture enhancement has demonstrated potential in 
terms of learning the mapping between low-light and normal-
light image domain. A GAN-based domain adaptation strategy 
for learning from paired and unpaired data [39]. The study [15] 
suggested GANs for unpaired learning with global and local 
discriminators to improve low-light photos. The perceptual-
details GAN [40] employs fractional differential gradient masks 
in the discriminator to suppress noise and enhance details while 
recovering illumination from extremely noisy low-light images. 
It does this by combining a Zero-DCE model and residual 
dense-block autoencoder. A progressive GAN-based transfer 
network that makes use of Retinex theory [41] is an efficient 
way to improve low-light photos. With the capacity to learn 
both the mapping and the loss function, the study of [42] 
presented a potent solution for image-to-image translation 
tasks. This method has been effectively used for a number of 
tasks, including object recognition and photo synthesis. 

III. METHODOLOGY 
This section first provides details of the proposed models 

including Generator and Discriminator model and an overview 
of the PIX2PIX GAN framework and their training. 
Afterwards, we go over the loss functions used in optimization, 
including SSIM, MAE, Generator, and Discriminator losses. 

 

 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:11, 2024 

659International Scholarly and Scientific Research & Innovation 18(11) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
11

, 2
02

4 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
87

3.
pd

f



 

 

 

 

Fig. 2 Qualitative visual comparison outcomes of the various techniques using the LOL dataset 
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A. Network Architecture 

1) Generator 

We present a network architecture, as shown in Fig. 1 that 
leverages the power of autoencoders to enhance low-light 
image. Our network comprises three interconnected 
autoencoders: A, B and C. Autoencoder A and B are 
specifically designed to process low light images as input, the 
encoder sections of both autoencoder A and B progressively 
reduce the dimensions of the input image through multiple 
layers. Notably, each layer in encoder A and encoder B is 
connected to a corresponding layer with the same dimensions 
in the decoder of autoencoder C. This interconnected design 
enables the transfer of knowledge from autoencoders A and B 
to autoencoder C at every scale of the decoder. By establishing 
these connections, our network aims to capture and integrate 
more comprehensive information from the input image. In 
doing so, it facilitates the generation of high-quality outputs, 
effectively enhancing the visual appeal of photos taken in poor 
light. 

Furthermore, we extend the knowledge transfer by 
connecting the decoders of autoencoders A and B to the 
corresponding layers in the encoder of autoencoder C. This 
connection allows the improved quality of the low light image 
obtained from autoencoder A and B to be transmitted to the 
encoder of autoencoder C. This transfer of knowledge helps 
enhance the encoder of autoencoder C further, leveraging the 
improved features extracted from the input images. 

By exploiting the hierarchical representation learned by cross 

interconnected autoencoders, the network effectively combines 
the benefits of multi-scale information extraction and 
reconstruction. By using this method, the network is able to 
enhance the overall visual quality of the low-light photos by 
utilizing the rich contextual information that the encoders have 
acquired. 

2) Discriminator 

The discriminator architecture is based on a convolutional 
neural network. Regarding the challenges involving image-to-
image translation, the discriminator acts as a binary classifier 
that is crucial for the GAN framework to discern between real 
and generated ones. Specifically, the discriminator contains 
convolutional block sequence that gradually downsample the 
input to extract multi-scale hierarchical features. As shown in 
Fig. 3, each convolutional block comprises of convolution-
BatchNorm-LeakyReLU layers to apply linear transformations, 
normalize activations and introduce non-linearities. Global 
average pooling is used to combine feature maps into a single 
vector that represents the image after down-sampling. This is 
allowed by additional convolutional layers to synthesize 
hierarchical representations into a final binary classification. 
Through this architecture, the discriminator is able to capture 
both local textures and global structures to make a holistic 
judgment on image realism. The extracted hierarchical features 
are then used to calculated adversarial losses to provide training 
signals for the generator to match the distribution of data for 
actual images. 

 

 

Fig. 3 The architecture of discriminator network 
 

B. Generative Adversarial Networks 

GANs discover how to translate a random noise vector z to 
an output image y, denoted as G:z→y. The Generator takes the 
noise vector z as input and produces an image y as the output 
without any conditioning information. Conditional GANs, on 
other hand, learn a mapping G:{x,z}→y, between an observed 
picture x and a random noise vector z to an output image y. The 
generator in a cGAN creates an output picture y that is 
conditioned on both the observed image x and the noise vector 

z as input. Discriminator Network D is trained to discriminate 
between actual photos and generate images as “fake”, while 
Generator Network G is trained to produce outputs that are 
indistinguishable from real images, looking realistic and 
capable of “fooling” discriminator. The conditional GAN’s 
objective can be described as: 

 
𝐿ீேሺ𝐺, 𝐷ሻ ൌ 𝐸௫,௬ሾlog 𝐷 ሺ𝑥, 𝑦ሻሿ  𝐸௫,௭ሾlogሺ1 െ 𝐷ሺ𝑥, 𝐺 ሺ𝑥, 𝑦ሻሻሿ  

   (1) 
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where D tries to maximize this objective, and G that tries to 
minimize it, i.e.: 
 

 𝐺∗ ൌ  𝑎𝑟𝑔 𝑚𝑖𝑛ீ 𝑚𝑎𝑥 𝐿ீே ሺ𝐺, 𝐷ሻ.        (2) 
 
A specific kind of GAN designed for image-to-image 

translation is the Pix2Pix GAN. Its purpose is to discover a 
mapping from a source image to an output image, utilizing a 
dataset that pairs the input and output photos. The key idea 
behind Pix2Pix is the use of a conditional GAN framework, 
where both the discriminator and generator networks are 
depending on the input picture. The discriminator network is a 
binary classifier that seeks to discern between the created output 
image and the actual ground truth images from the dataset, 
whereas the generator networks take the input image as input 
and attempt to generate the corresponding output image. An 
adversarial training process is used to develop the discriminator 
network and generator. The discriminator attempts to 
accurately identify the generated images and actual ground 
truth images, while the generator attempts to trick it by 
producing realistic output images that are identical to matching 
ground truth photos. 

C. Loss Functions 

The Pix2Pix GAN, also known as a conditional GAN with 
Image-to-Image translation, uses a specific objective function 
that combines adversarial loss with a pixel-wise loss term. 
Equation (3) is an expression for the pix2Pix GAN's objective 
function:  

 
ሺ𝐺, 𝐷ሻ ൌ 𝜆ௗ௩ ∗ 𝐿ௗ௩ሺீ,ሻ  𝜆௫ ∗ 𝐿௫         (3) 

 
where the generator network is represented by 𝐺, and the 
discriminator network is represented by 𝐷,  𝐿ௗ௩ሺீ,ሻ is the 
adversarial network, 𝐿௫ is the pixel-wise loss,𝜆ௗ௩ and 𝜆௫ is 
the hyper parameter that regulates the proportional significance 
of the pixel-wise and adversarial losses. 

Adversarial loss term 𝐿ௗ௩ሺ𝐺, 𝐷ሻ is similar as to standard 
CGAN objective and motivates the generator to provide 
realistic results that are indistinguishable from ground truth 
photos by the discriminator. It can be defined as:  

 
𝐿ௗ௩ሺ𝐺, 𝐷ሻ ൌ 𝐸௫,௬ሾlog 𝐷 ሺ𝑥, 𝑦ሻሿ  𝐸௫,௭ሾlogሺ1 െ 𝐷ሺ𝑥, 𝐺 ሺ𝑥, 𝑦ሻሻሿ    

  (4) 
 
where 𝑥 is the ground truth image, 𝑧 is the noise vector and 𝑦 is 
the corresponding output image. The difference between the 
generated image 𝐺ሺ𝑥ሻ and the target image 𝑦 at the pixel level 
is measured by the pixel-wise loss term 𝐿௫ሺீሻ 

1) Generator 

One popular pixel-wise image reconstruction loss that 
minimizes pixel-level disparities is the 𝐿ଵloss whose formula is 
as follows: 

 
𝐿ଵ ൌ  𝐸௫,௬,௭ሾ|𝑦 െ 𝐺ሺ𝑥, 𝑦ሻ|ሿ            (5) 

 

Here, we combined losses MAE loss 𝐿, Carbonnier loss 
𝐿, SSIM loss 𝐿௦௦ functions i.e.: 

 
𝐿ଵ ൌ  α𝐿  ∝ 𝐿  𝛾𝐿௦௦         (6) 

 
By comparing the improved image to the ground truth image, 

the MAE loss is utilized to assess the quality of the enhanced 
image. The difference between the desired output and the 
enhance image can be quantified with the aid of MAE loss. 
MAE loss is represented by: 

 

𝐿ொ ൌ ଵ


∑ |𝑦 െ 𝑦పෝ|

ୀଵ           (7) 

 
The L1 loss and the Carbonnier loss are comparable that they 

measure the absolute difference between predicted and target 
values. However, it includes an additional term that introduces 
a smoothness regularization to the loss function. This 
regularization term lessens the effect of noise and preserves 
edges in the rebuilt images. This is how the Carbonnier loss is 
defined: 

 

𝐿 ൌ  ∑ 𝑥, 𝑦, 𝑧 ඥሺ𝑦 െ  𝐺ሺ𝑥, 𝑦ሻሻଶ   𝛼ଶ      (8) 
 
A popular metric for assessing picture quality is called SSIM, 

which compares the brightness, contrast, and structural 
similarity between the created and reference images. In this 
instance, we utilize it to limit the network's training, which is 
written as: 

 
𝑆𝑆𝐼𝑀_𝑙𝑜𝑠𝑠 ൌ 1 െ 𝑆𝑆𝐼𝑀ሺ𝑥, 𝑦ሻ       (9) 

2) Discriminator 

The discriminator loss can be divided into two categories:   
produced images and real images lost. The discriminator loss 
can be expressed as:  
 

𝐷௦௦ ൌ 𝐿  𝐿        (10) 
 
For real images, the discriminator predicts the labels to be 

real (1), so the loss is: 
 

𝐿 ൌ  𝐸ሾlog 𝐷 ሺ𝑥ሻሿ        (11) 
 
where x is a real image, D represents discriminator network. 

For generated output, the discriminator predicts the labels to 
be fake (0), so the loss is: 
 

𝐿 ൌ  𝐸 ሾlogሺ1 െ 𝐷ሺ𝐺 ሺ𝑧ሻሻሻሿ                (12) 
 
Here, G represents generator network, z is a latent space input 
to G. 

By combining the two terms, the total discriminator loss is:  
 

𝐷௦௦ ൌ   𝐸ሾlog 𝐷 ሺ𝑥ሻሿ   𝐸 ሾlogሺ1 െ 𝐷ሺ𝐺 ሺ𝑧ሻሻሻሿ       (13) 
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IV. EXPERIMENTS 

A. Experimental Setup 

Dataset and Evaluation: The open-source LOL [10] and 
SICE [43] datasets are used to assess the effectiveness of the 
suggested method. The 500 matched low-light and normal-light 
samples in the LOL dataset were taken especially for studies on 
low-light image processing. To assess the models, the dataset 
was divided into 485 training pairs and 15 test pairs. The 
mapping from low to normal light domains is learned using the 
training set. SICE dataset comprises two parts, totaling 589 
image pairs collected under varied lighting conditions. Part 1 
consists of 360 pairs while part 2 contains 229 pairs, each 
depicting corresponding scenes captured under low and 
adequate illumination. For model assessment, 560 pairs were 
allocated to training, whereby the learning of the mapping from 
low to normal light. The remaining 29 pairs formed the test set, 
withheld from training for rigorous objective evaluation of 
generalizability to diverse scenarios not encountered 
previously. 

We made comparisons using state-of-the-art models, such as 
ZeroDCE [37], MBLLEN [11], DTSD [14], Knowledge 
Distillation [12], RetinexNet [10], KinD [32], DSENet [44], 
EnlightenGAN [15], Joint Decomposition and Denoising U-
Net (JDD U-Net) [45]. We obtain numerical values by running 
readily available open-source implementations or extracted 
data from associated publications. For the numerical evaluation 
of improved outputs, Structural Similarity Index Measure 
(SSIM), Learned Perceptual Image Patch Similarity (LPIPS) 
and Peak Signal-to-Noise Ratio (PSNR) are utilized. Higher 
SSIM and PSNR indicate better fidelity, while minimized 
LPIPS indicates higher perceptual accuracy. These objective 
criteria make it easier to conduct thorough assessments and 
compare performance to other methods. 

Implementation Setup Details: The Keras and TensorFlow 
framework, which was built in the Python environment and 
operated on a Kaggle online P100 GPU, was used for all tests. 
Through the data augmentation procedure, the input photos 
were arbitrarily cropped, flipped, and formed 400 * 600 patches 
on both the horizontal and vertical axes. The generator 
parameters, with a learning rate of 0.1 and a rho of 0.95, were 
updated using the Adadelta optimizer and the discriminator 
parameters were updated using the Adam optimizer with a 
learning rate of 0.0002. The momentum parameters, beta1 and 
beta2, were adjusted to 0.5 and 0.999, respectively. Under the 
Pix-to-Pix GAN framework, the model underwent 50 thousand 
iterations of training. The MAE, SSIM, and Carbonnier loss 
weights were assigned values of 100, 0.1, and 0.1, in that order. 

B. Comparison with State-of-the-Arts 

1) Quantitative Evaluation 

Using cutting edge techniques, a quantitative assessment of 
these datasets was first carried out. The numerical outcomes of 
various techniques are displayed in Tables I and II, where the 
best results are represented in red, and the second-best results 
are shown in blue. 

As Table I illustrates, on the LOL dataset, our suggested 

method achieved the maximum SSIM and PSNR score. 
Furthermore, examining the first and second columns of the 
table reveals that our model gives the highest values, while the 
third and fourth columns show the lowest values as compared 
to others models. 

Furthermore, the outcomes in Table II show how much better 
our suggested method is than other methods on the SICE 
dataset. Notably, the number of learnable variables and 
processing requirements of our method are comparatively lower 
than most competing approaches. 

On the whole, our model shows competitive results with less 
computational resources and then cutting-edge alternative 
models. 

 
TABLE I 

COMPARATIVE ANALYSIS OF SEVERAL TECHNIQUES USING THE LOL 

DATASET IN TERMS OF PSNR, SSIM, MAE, AND LPIPS METRICS 

Model PSNR↑ SSIM↑ MAE↓ LPIPS↓

KinD 21.1750 0.7684 0.5639 0.4899 

ZeroDCE 22.9029 0.7914 0.0398 0.5810 

EnlightenGAN 19.4040 0.8212 0.0728 0.4068 

RetinexNet 23.0541 0.7706 0.0344 0.4410 

MBLLEN 22.2997 0.8989 0.0789 0.4490 

DSENet 18.1264 0.4317 0.2586 0.3895 

JDD U-Net 18.2169 0.7725 0.8852 0.3587 

KD 23.2002 0.8483 0.0409 0.0534 

DTSD 22.1672 0.8826 0.0284 0.4490 

Ours 25.9442 0.9954 0.0237 0.0459 

Note: The top two numerical results are indicated by red and blue highlights, 
respectively. 

 
TABLE II 

COMPARATIVE ANALYSIS OF SEVERAL TECHNIQUES USING THE SICE 

DATASET QUANTITATIVELY IN TERMS OF PSNR, SSIM, MAE, AND LPIPS 

METRICS 

Model PSNR↑ SSIM↑ MAE↓ LPIPS↓

KinD 19.1750 0.5999 0.0485 0.4970 

ZeroDCE 19.0048 0.9320 0.0801 0.5527 

EnlightenGAN 18.2709 0.5629 0.0833 0.4273 

RetinexNet 22.9851 0.7921 0.0581 0.3907 

MBLLEN 22.3828 0.8897 0.0510 0.0988 

DSENet 18.8291 0.4995 0.8575 0.3058 

JDD U-Net 21.9391 0.7664 0.0628 0.3895 

KD 22.5956 0.7866 0.0416 0.4490 

DTSD 22.8901 0.7165 0.0316 0.4390 

Ours 25.2481 0.9913 0.0282 0.0696 

2) Qualitative Evaluation 

A qualitative comparison is made the different methods 
currently in use and the proposed model. Fig. 2 represents the 
visual outputs obtained by applying various methods using the 
LOL dataset. As illustrated in Figs. 2 (a) and (b), it is apparent 
that the methods EnlightenGAN, DTSD and KD exhibit a 
deficiency in brightness, leading to underexposed images. 
ZeroDCE, MBLLEN and DSENet tend to over-smooth the 
image, resulting in a blurring of edge details information. KinD, 
RetinexNet, JDD U-Net exhibits slight color bias and noise-
related issues. In Fig. 2 (c), EnlightenGAN, KinD, RetinexNet 
and DSENet lead to a loss of edge information details due to 
excessive blurring. ZeroDCE, MBLLEN and KD exhibit slight 
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color bias and noise information. Figs. 4 (a)-(c) showcase the 
visual results obtained by applying various methods on the 
SICE dataset. The results show that the suggested model 

improves low-light images in an intuitive way and produces 
visually appealing outputs with proper brightness, consistent 
colors, and distinct details. 

 

 

 

 

Fig. 4 Qualitative visual comparison outcomes of the various techniques using the SICE dataset 
 

3) Efficiency Evaluation 

We compared the computational complexity of the 

approaches in addition to assessing their performance. This 
analysis took into account variables including each model's 
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runtime, FLOPs, and number of model parameters. The number 
of trainable parameters in the model, which measure its spatial 
complexity, is referred to as the model parameters (in M). On 
the other hand, FLOPs (in G) serve as a gauge of the model's 
temporal complexity since they indicate the total amount of 
floating-point operations that the model has executed. The 
model's inference time is captured by the runtime (in seconds), 
and time statistics were performed using the LOL dataset. It 
provides insights into the efficiency and speed of the model 
during the inference process. The runtime measurement was 
conducted on Kaggle with online GPU P100. This information 
provides context about the system used for running the 
experiments and obtaining the runtime statistics. The results of 
the computational complexity are shown in Table III, by 
utilizing the previous research analysis [46]. This provides a 
comprehensive overview of the model parameters, FLOPs, and 
runtime for each method, allowing for a detailed analysis of the 
computational efficiency of the different approaches. As it can 
be seen from Table III, our approach has less parameters, 
FLOPs, and runtime than most other approaches. This 
demonstrates how the proposed method operates with fewer 
parameters and allows for faster inference times, all while 
achieving greater performance. We provide an effective low 
light picture enhancing approach that balances computational 
complexity and improved performance. 

 
TABLE III 

QUANTITATIVE COMPARISON FINDINGS BETWEEN VARIOUS METHODS' 
COMPUTATIONAL COMPLEXITY 

Model Flops↓ Runtime↓ Parameter↓

KinD 574.954 0.6725 8.160 

ZeroDCE 84.990 0.5758 0.079 

EnlightenGAN 273.240 0.7068 8.637 

RetinexNet 587.470 0.0740 0.555 

MBLLEN 301.120 0.0896 0.950 

DSENet 516.971 0.0634 5.923 

JDD U-Net 196.359 0. 0618 2.891 

KD 83.9530 0.0800 0.283 

DTSD 386.640 0.0903 5.270 

Ours 79.244 0.0577 0.199 

The metrics used for evaluation are runtime (in seconds), FLOPs (in G), and 
parameters (in M). 

V. CONCLUSION 

Our study included an alternate autoencoder-based model 
that we implemented into the Pix-to-Pix GAN framework for 
low light image improvement. Three autoencoders make up the 
proposed model, and they cooperate to improve brightness and 
extract information. The first two autoencoders extract 
information and brighten the image simultaneously, the third 
autoencoder is cross-linked with the first two to improve the 
image that has already been enhanced. By balancing 
computational complexity and performance, this strategy 
reduces the burden on performance throughout the testing 
phase. The advantage of our suggested strategy over other 
cutting-edge techniques is shown by the outcomes of 
experiments. Our approach produces better, more realistic 
images that perform better than those produced by other 

methods in terms of visual appeal and image quality. 
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