Search results for: Polynomial interpolation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 356

Search results for: Polynomial interpolation

356 A Novel Deinterlacing Algorithm Based on Adaptive Polynomial Interpolation

Authors: Seung-Won Jung, Hye-Soo Kim, Le Thanh Ha, Seung-Jin Baek, Sung-Jea Ko

Abstract:

In this paper, a novel deinterlacing algorithm is proposed. The proposed algorithm approximates the distribution of the luminance into a polynomial function. Instead of using one polynomial function for all pixels, different polynomial functions are used for the uniform, texture, and directional edge regions. The function coefficients for each region are computed by matrix multiplications. Experimental results demonstrate that the proposed method performs better than the conventional algorithms.

Keywords: Deinterlacing, polynomial interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
355 Transformations between Bivariate Polynomial Bases

Authors: Dimitris Varsamis, Nicholas Karampetakis

Abstract:

It is well known, that any interpolating polynomial p (x, y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y, has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis e.t.c.. The aim of this short note is twofold : a) to present transformations between the coordinates of the polynomial p (x, y) in the aforementioned basis and b) to present transformations between these bases.

Keywords: Bivariate interpolation polynomial, Polynomial basis, Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
354 Interpolation of Geofield Parameters

Authors: A. Pashayev, C. Ardil, R. Sadiqov

Abstract:

Various methods of geofield parameters restoration (by algebraic polynoms; filters; rational fractions; interpolation splines; geostatistical methods – kriging; search methods of nearest points – inverse distance, minimum curvature, local – polynomial interpolation; neural networks) have been analyzed and some possible mistakes arising during geofield surface modeling have been presented.

Keywords: interpolation methods, geofield parameters, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
353 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation

Authors: Attapon Charoenpon, Ekkarach Pankeaw

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3667
352 Overview of Adaptive Spline Interpolation

Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu

Abstract:

In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.

Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
351 Factoring a Polynomial with Multiple-Roots

Authors: Feng Cheng Chang

Abstract:

A given polynomial, possibly with multiple roots, is factored into several lower-degree distinct-root polynomials with natural-order-integer powers. All the roots, including multiplicities, of the original polynomial may be obtained by solving these lowerdegree distinct-root polynomials, instead of the original high-degree multiple-root polynomial directly. The approach requires polynomial Greatest Common Divisor (GCD) computation. The very simple and effective process, “Monic polynomial subtractions" converted trickily from “Longhand polynomial divisions" of Euclidean algorithm is employed. It requires only simple elementary arithmetic operations without any advanced mathematics. Amazingly, the derived routine gives the expected results for the test polynomials of very high degree, such as p( x) =(x+1)1000.

Keywords: Polynomial roots, greatest common divisor, Longhand polynomial division, Euclidean GCD Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
350 Designing FIR Filters with Polynomial Approach

Authors: Sunil Bhooshan, Vinay Kumar

Abstract:

This paper discusses a method for designing the Finite Impulse Response (FIR) filters based on polynomial approach.

Keywords: FIR filter, Polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
349 The Adsorption of SDS on Ferro-Precipitates

Authors: R.Marsalek

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: ferro-precipitate, adsorption, SDS, zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
348 Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization

Authors: Abhijit Mitra, Harpreet Singh Dhillon

Abstract:

We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.

Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
347 Blow up in Polynomial Differential Equations

Authors: Rudolf Csikja, Janos Toth

Abstract:

Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.

Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
346 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface

Authors: Srijanani Anurag Prasad

Abstract:

The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprise a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.

Keywords: Fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 339
345 Statistical Approach to Basis Function Truncation in Digital Interpolation Filters

Authors: F. Castillo, J. Arellano, S. Sánchez

Abstract:

In this paper an alternative analysis in the time domain is described and the results of the interpolation process are presented by means of functions that are based on the rule of conditional mathematical expectation and the covariance function. A comparison between the interpolation error caused by low order filters and the classic sinc(t) truncated function is also presented. When fewer samples are used, low-order filters have less error. If the number of samples increases, the sinc(t) type functions are a better alternative. Generally speaking there is an optimal filter for each input signal which depends on the filter length and covariance function of the signal. A novel scheme of work for adaptive interpolation filters is also presented.

Keywords: Interpolation, basis function, over-sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
344 Better Perception of Low Resolution Images Using Wavelet Interpolation Techniques

Authors: Tarun Gulati, Kapil Gupta, Dushyant Gupta

Abstract:

High resolution images are always desired as they contain the more information and they can better represent the original data. So, to convert the low resolution image into high resolution interpolation is done. The quality of such high resolution image depends on the interpolation function and is assessed in terms of sharpness of image. This paper focuses on Wavelet based Interpolation Techniques in which an input image is divided into subbands. Each subband is processed separately and finally combined the processed subbandsto get the super resolution image. 

Keywords: SWT, DWTSR, DWTSWT, DWCWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
343 On Generalized New Class of Matrix Polynomial Set

Authors: Ghazi S. Kahmmash

Abstract:

New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.

Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
342 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)

Authors: Abbas Hani, Seyed Ali Hoseini Abari

Abstract:

Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.

Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
341 A Conservative Multi-block Algorithm for Two-dimensional Numerical Model

Authors: Yaoxin Zhang, Yafei Jia, Sam S.Y. Wang

Abstract:

A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.

Keywords: Multi-block algorithm, conservation, interpolation, numerical model, flow simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
340 RF Power Consumption Emulation Optimized with Interval Valued Homotopies

Authors: Deogratius Musiige, François Anton, Vital Yatskevich, Laulagnet Vincent, Darka Mioc, Nguyen Pierre

Abstract:

This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.

Keywords: Radio frequency, high power amplifier, baseband, LTE, power, emulation, homotopy, interval analysis, Tx power, register-transfer level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
339 Evolutionary Design of Polynomial Controller

Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka

Abstract:

In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.

Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
338 A Localized Interpolation Method Using Radial Basis Functions

Authors: Mehdi Tatari

Abstract:

Finding the interpolation function of a given set of nodes is an important problem in scientific computing. In this work a kind of localization is introduced using the radial basis functions which finds a sufficiently smooth solution without consuming large amount of time and computer memory. Some examples will be presented to show the efficiency of the new method.

Keywords: Radial basis functions, local interpolation method, closed form solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
337 Discrete Polynomial Moments and Savitzky-Golay Smoothing

Authors: Paul O'Leary, Matthew Harker

Abstract:

This paper presents unified theory for local (Savitzky- Golay) and global polynomial smoothing. The algebraic framework can represent any polynomial approximation and is seamless from low degree local, to high degree global approximations. The representation of the smoothing operator as a projection onto orthonormal basis functions enables the computation of: the covariance matrix for noise propagation through the filter; the noise gain and; the frequency response of the polynomial filters. A virtually perfect Gram polynomial basis is synthesized, whereby polynomials of degree d = 1000 can be synthesized without significant errors. The perfect basis ensures that the filters are strictly polynomial preserving. Given n points and a support length ls = 2m + 1 then the smoothing operator is strictly linear phase for the points xi, i = m+1. . . n-m. The method is demonstrated on geometric surfaces data lying on an invariant 2D lattice.

Keywords: Gram polynomials, Savitzky-Golay Smoothing, Discrete Polynomial Moments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
336 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling

Authors: Negar Riazifar, Nigel G. Stocks

Abstract:

This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals does not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.

Keywords: Level crossing sampling, numerical stability, speech processing, trigonometric polynomial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
335 A Novel Interpolation Scheme and Apparatus to Extend DAC Usable Spectrum over Nyquist Frequency

Authors: Wang liguo, Wang zongmin, Kong ying

Abstract:

A novel interpolation scheme to extend usable spectrum and upconvert in high performance D/A converters is addressed in this paper. By adjusting the pulse width of cycle and the production circuit of code, the expansion code is a null code or complementary code that is interpolation process. What the times and codes of interpolation decide DAC works in one of a normal mode or multi-mixer mode so that convert the input digital data signal into normal signal or a mixed analog signal having a mixer frequency that is higher than the data frequency. Simulation results show that the novel scheme and apparatus most extend the usable frequency spectrum into fifth to sixth Nyquist zone beyond conventional DACs.

Keywords: interpolation, upconversion, modulation, switching function, duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
334 Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm

Authors: Suparman

Abstract:

Piecewise polynomial regression model is very flexible model for modeling the data. If the piecewise polynomial regression model is matched against the data, its parameters are not generally known. This paper studies the parameter estimation problem of piecewise polynomial regression model. The method which is used to estimate the parameters of the piecewise polynomial regression model is Bayesian method. Unfortunately, the Bayes estimator cannot be found analytically. Reversible jump MCMC algorithm is proposed to solve this problem. Reversible jump MCMC algorithm generates the Markov chain that converges to the limit distribution of the posterior distribution of piecewise polynomial regression model parameter. The resulting Markov chain is used to calculate the Bayes estimator for the parameters of piecewise polynomial regression model.

Keywords: Piecewise, Bayesian, reversible jump MCMC, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
333 Fuzzy Fingerprint Vault using Multiple Polynomials

Authors: Daesung Moon, Woo-Yong Choi, Kiyoung Moon

Abstract:

Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.

Keywords: Fuzzy vault, fingerprint recognition multiple polynomials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
332 Computable Function Representations Using Effective Chebyshev Polynomial

Authors: Mohammed A. Abutheraa, David Lester

Abstract:

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.

Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3087
331 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis

Authors: Hadi Taghvafard

Abstract:

We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.

Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
330 Implementation and Analysis of Elliptic Curve Cryptosystems over Polynomial basis and ONB

Authors: Yong-Je Choi, Moo-Seop Kim, Hang-Rok Lee, Ho-Won Kim

Abstract:

Polynomial bases and normal bases are both used for elliptic curve cryptosystems, but field arithmetic operations such as multiplication, inversion and doubling for each basis are implemented by different methods. In general, it is said that normal bases, especially optimal normal bases (ONB) which are special cases on normal bases, are efficient for the implementation in hardware in comparison with polynomial bases. However there seems to be more examined by implementing and analyzing these systems under similar condition. In this paper, we designed field arithmetic operators for each basis over GF(2233), which field has a polynomial basis recommended by SEC2 and a type-II ONB both, and analyzed these implementation results. And, in addition, we predicted the efficiency of two elliptic curve cryptosystems using these field arithmetic operators.

Keywords: Elliptic Curve Cryptosystem, Crypto Algorithm, Polynomial Basis, Optimal Normal Basis, Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2088
329 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.

Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2800
328 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
327 Adaptive Bidirectional Flow for Image Interpolation and Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang

Abstract:

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.

Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538