
Abstract—In this paper an alternative analysis in the time 
domain is described and the results of the interpolation process are 
presented by means of functions that are based on the rule of 
conditional mathematical expectation and the covariance function. A 
comparison between the interpolation error caused by low order 
filters and the classic sinc(t) truncated function is also presented. 
When fewer samples are used, low-order filters have less error. If the 
number of samples increases, the sinc(t) type functions are a better 
alternative. Generally speaking there is an optimal filter for each 
input signal which depends on the filter length and covariance 
function of the signal. A novel scheme of work for adaptive 
interpolation filters is also presented.

Keywords—Interpolation, basis function, over-sampling. 

I. INTRODUCTION

HE main objective of digital to analog converters (DACs) 
is to reconstruct the signal accurately and efficiently. In 

practice, the implementation of reconstruction algorithms 
depends on the availability of the fastest processors so that the 
finished devices can be used in real-time applications. 

In recent years, DACs have used techniques such as sigma 
delta modulation (SDM) and pulse width modulation (PWM), 
in which over-sampling and interpolation serve as an earlier 
phase of the conversion process [1]. This phase adds 
information (sampling points) between two adjacent samples, 
which results in an increase in the accuracy of the signal. Such 
precision is directly dependent on the efficiency of the 
interpolation algorithm. 

The error between the reconstructed and the original signal 
must be as low as possible. One way to carry out the 
reconstruction process is to use low pass digital filters where a 
widespread option is the sinc(t) function as established by the 
classical sampling theorem. 

A signal cannot be limited in both time and frequency 
domains simultaneously. The classic sampling theorem is 
limited in frequency; it uses the sinc(t) function which is 
continuous in the time domain. In the practical 
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implementation of this theorem a truncated version of the 
sinc(t) function has been used, resulting in a frequency effect 
known as Gibbs’ phenomenon [2]. The error caused by this 
effect can be significant in the reconstructed signal. On the 
other hand, the reduction of this error is directly associated 
with the filter order, which challenges the hardware in use. 

This article presents an alternative analysis based on the 
rule of conditional mathematical expectation and the 
covariance function. As a result, a simpler design of basis 
functions is obtained. This also results in a lower error 
compared to the sinc(t) truncated function. 

II. INTERPOLATION PROCESS IN DIGITAL TO ANALOG
CONVERTERS

 The purpose of the interpolation filter is to approach the 
signal that would have been obtained if it had been sampled at 
the over-sampling rate instead of at the Nyquist rate. The L 
interpolation order can vary from a few dozen to hundreds of 
points [3]; in any case, it is very important to use a robust 
reconstruction algorithm in order to get a low interpolation 
error as well as good computational efficiency. 

A typical over-sampling DAC structure is shown in Fig. 1. 
The L interpolation order is a multiple of the Nyquist rate. 
Reducing the sampling rate by a factor M is known as 
decimation [4]. 

Fig. 1 Typical over-sampling DAC structure  

Fig. 2 shows time and frequency signals through the 
interpolation process. Fig. 2 (a) shows the signal at the input 
of the digital interpolation filter. Fig. 2 (b) shows the signals 
at the filter output. 

a)
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b)
Fig. 2  Interpolation effects. a) Original signal. b) Interpolated signal 

One of the most widely used basis functions is the sinc(t)
function, as described below. 

III. THE SINC( t ) FUNCTION

The classic sampling theorem is the fundamental basis of 
the sampling process and the signal’s reconstruction [5]. It 
states that if x(t) is a low-pass signal limited to the band           
( W,W), the waveform is completely determined by the values 
taken at intervals of 1/2 W.

n W
ntWc

W
nxtx

2
2sin

2
)(         (1) 

Where: tB
W
ntWc

2
2sin  is the basis 

reconstruction function. 

Theoretically, the continuous function x(t) can be 
reconstructed from the samples using the interpolation 
function sinc(t). This process can be described in terms of 
convolution as: 

)2(sin)}({)( 21 WtctxCombtx W            (2) 

There is a disadvantage to using this theorem in the 
interpolation process of practical systems: it requires the 
contribution of all the samples, going backwards and forwards 
to a given interpolation point. One possibility is to use a 
truncated version of the function and accept a truncation error
in the output signal. 

IV. THE STATISTICAL METHOD

Given the values of a random signal x(t) which have been 
taken at regular intervals of time (truncated sequence), it is 
possible to observe some statistical characteristics such as the 
conditional expectation and the variance. These can be used to 
approximate a reconstruction function and an error function 
respectively [6]. 
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The Fourier transformation connects these results with their 
counterparts in the frequency domain.
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xx )()(

             (5b) 
Where: 
Sx( ) is the power spectral density 

This method is well known and has been used for sequence 
analysis of truncated Gaussian processes [7, 8]. Here, we 
focus on the basis functions analysis for interpolation filters 
and delimit the use of the sinc(t) function. 

V. IMPLEMENTATION

Comparing the expressions for the zero mean conditional 
expectation (3) and the sampling theorem (1) we have: 
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                          (6) 
Where: 

N

i
ijij aTtKtB

1
)()(  is the filter impulse response in a 

linear system. 

 Since Bj(t) depends on the covariance function, an analysis 
in the time domain is possible. A truncation of the signal will 
change the characteristics of the basis function Bj(t). For the 
evaluation we use some known functions, such as the first, 
second and third order RC filters as well as the sinc(t)
truncated function. These are used as covariance functions in 
order to calculate the covariance matrix Kx and the Bj(t)
functions for filter 1, filter 2, filter 3 and the ideal filter (filter 
4) respectively, see Fig. 3. 

We use the mathematical expectation as an interpolation 
function; the variance is used as an error measure. The 
conditions considered for comparison are the unit covariance 
time and a normalized covariance function [9]. 
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Due to covariance and inverse covariance matrices 
calculation, the computational cost of the statistical method 
was higher than the cost of the sinc(t) truncated function. The 
goal is to obtain the basis functions Bj(t). As a matter of fact, 
once we have obtained them, they can be implemented in a 
linear system such as an interpolation filter in an embedded 
system [12]. In this case we do not need such matrices. 

Fig. 4 shows a view of the developed program used to 
evaluate different basis functions using Matlab 7.0 language. 
It is possible to visualize the basis function, the interpolation 
function, and the interpolation error function. 

Fig. 3 Basis functions Bj, for different low pass filters. (a) Filter 1. (b) 
Filter 2. (c) Filter 3. (d) Ideal filter (truncated sinc(t))

In order to compare the interpolation of the basis function 
proposed we used two different input functions. As a first case 
study we used a smooth function defined as: 

)cos(
2
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2
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2
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2
5
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5
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5
8 nTnTnTnTnTnf

                          (7) 

This is a sine type function and it was sampled at the 
Nyquist rate. Table I shows the values obtained from (7). 

Fig. 4  View of the developed program 

Fig. 5 Interpolation process results for the first study case 

 Between samples 4 and 5, (central section) the sinc(t)
function  is the nearest to the original signal; however, 
between samples 3 and 4, filter 1 is the best approximation. In 
some sections, some filters can be better than others.  (See 
Fig. 5). 
 As a second case study we used a section of the rectangular 
pulse function:  

(a) 

(b)

(c)

(d)

TABLE I
VALUES OF F( n ) FOR (7) 

nT f(n) 
0.0 6.5000 
0.5 4.4728 
1.5 0.5064 
2.0 -0.5064 
2.5 -4.4728 
3.0 -6.5000 
3.5 2.0458 
4.0 -0.4206 
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1)(2)( nTGnf                   (8) 

Table 2 shows the values obtained from (8). 

Fig. 6  Interpolation process results for the second study case 

 In this case, filter 1 is the nearest to the original signal, and 
the sinc(t) function is the worst case (see Fig. 6). It can be 
observed that the sinc(t) function had the most significant 
error at the beginning and end of the reconstructed signal, due 
to signal truncation. 

High order filters are better when the reconstructed signal 
has a similar covariance to the basis function utilized. 
However, for chaotic signals, high order filters do not 
represent less error.

VI. RESULT

Fig. 7 shows a comparison of the interpolation error for a 
limited quantity of samples. Minimal interpolation error is 
observed in the central section in each truncated sequence. 
Fig. 8 shows a comparison of interpolation error calculated in 
the central sample. In this case the sequence is unlimited but 
the filter length (basis function) is truncated. The amount of 

samples needed for reconstruction increases with the filter 
order (Fig. 3) in order to avoid the truncation error in a 
reconstructed signal. When this amount of samples is 
exceeded, the error remains independent of the number of 
samples. In the ideal filter the contribution of all samples is 
required. 

Fig. 7 Interpolation error for limited sequences 

The basis functions Bj are determined basically for the 
covariance matrices. Regardless of truncations, these 
functions are unique for each covariance function. As we 
increase the filter order, less error can be expected. When 
considering a small number of samples, the low-order filters 
showed less interpolation error than the sinc(t) function, since 
its basis function has not been truncated.  

There is an optimal filter according to the covariance 
function of the input signal. In practice, filter design must take 
into account the interpolation order L and the digital filter 
length (taps) [11], but it might be difficult to have a basis 
function which matches the input signal. 

Fig. 8 Interpolation error for limited basis functions 

Fig. 9 shows a proposal for an amended scheme, which
considers the statistical characteristics of the input signal in 
order to calculate the coefficients of a dynamic basis function 
in an adaptive interpolation filter.  

TABLE II
VALUES OF F( n ) FOR (8) 

nT f(n) 
0.0 -1 
0.5 -1 
1.0 -1 
1.5 -1 
2.0 -1 
2.5 1 
3.0 1 
3.5 1 
4.0 1 
4.5 1 
5.0 -1 
5.5 -1 
6.0 -1 
6.5 -1 
7.0 -1 
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Fig. 9  Modified scheme for interpolation filter  

Interpolation techniques in the time domain like Lagrange 
or splines are widely used. It is clear that in this case results 
can be enhanced by frequency analysis [11, 15]; however, 
when we use DSPs, efficient and fast algorithms are necessary 
for good performance. One possibility is to use covariance to 
define a time structure and to use it as design criteria. These 
results show that the basis functions have to match the input 
signal covariance in order to guarantee low interpolation error 
and minimal hardware requirements. 

VII. CONCLUSION

 In this paper, statistical methods are used in order to study 
the effects of basis function truncation in the interpolation 
process. It is possible to implement interpolation functions 
based on the classic sampling theorem and the conditional 
mathematical expectation. It has been shown how this method 
provides simpler basis functions and causes less error in 
comparison to the classic sinc(t) truncated function. The use 
of the sinc(t) truncated function is limited to longer sequences. 
Statistical characteristics of the signal can be used in order to 
improve the interpolation filter’s response, thus minimizing 
the truncation error. Generally speaking there is an optimal 
filter for each input signal which depends on the filter length 
and covariance function of the signal. These results can be 
used in designing digital interpolation filters in digital to 
analog converters. 
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