Search results for: wheat biomass yield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3402

Search results for: wheat biomass yield

3162 To Include or Not to Include: Resolving Ethical Concerns over the 20% High Quality Cassava Flour Inclusion in Wheat Flour Policy in Nigeria

Authors: Popoola I. Olayinka, Alamu E. Oladeji, B. Maziya-Dixon

Abstract:

Cassava, an indigenous crop grown locally by subsistence farmers in Nigeria has potential to bring economic benefits to the country. Consumption of bread and other confectionaries has been on the rise due to lifestyle changes of Nigerian consumers. However, wheat, being the major ingredient for bread and confectionery production does not thrive well under Nigerian climate hence the huge spending on wheat importation. To reduce spending on wheat importation, the Federal Government of Nigeria intends passing into law mandatory inclusion of 20% high-quality cassava flour (HQCF) in wheat flour. While the proposed policy may reduce post harvest loss of cassava, and also increase food security and domestic agricultural productivity, there are downsides to the policy which include reduction in nutritional quality and low sensory appeal of cassava-wheat bread, reluctance of flour millers to use HQCF, technology and processing challenges among others. The policy thus presents an ethical dilemma which must be resolved for its successful implementation. While inclusion of HQCF to wheat flour in bread and confectionery is a topic that may have been well addressed, resolving the ethical dilemma resulting from the act has not received much attention. This paper attempts to resolve this dilemma using various approaches in food ethics (cost benefits, utilitarianism, deontological and deliberative). The Cost-benefit approach did not provide adequate resolution of the dilemma as all the costs and benefits of the policy could not be stated in the quantitative term. The utilitarianism approach suggests that the policy delivers greatest good to the greatest number while the deontological approach suggests that the act (inclusion of HQCF to wheat flour) is right hence the policy is not utterly wrong. The deliberative approach suggests a win-win situation through deliberation with the parties involved.

Keywords: HQCF, ethical dilemma, food security, composite flour, cassava bread

Procedia PDF Downloads 383
3161 Optimizing Hydrogen Production from Biomass Pyro-Gasification in a Multi-Staged Fluidized Bed Reactor

Authors: Chetna Mohabeer, Luis Reyes, Lokmane Abdelouahed, Bechara Taouk

Abstract:

In the transition to sustainability and the increasing use of renewable energy, hydrogen will play a key role as an energy carrier. Biomass has the potential to accelerate the realization of hydrogen as a major fuel of the future. Pyro-gasification allows the conversion of organic matter mainly into synthesis gas, or “syngas”, majorly constituted by CO, H2, CH4, and CO2. A second, condensable fraction of biomass pyro-gasification products are “tars”. Under certain conditions, tars may decompose into hydrogen and other light hydrocarbons. These conditions include two types of cracking: homogeneous cracking, where tars decompose under the effect of temperature ( > 1000 °C), and heterogeneous cracking, where catalysts such as olivine, dolomite or biochar are used. The latter process favors cracking of tars at temperatures close to pyro-gasification temperatures (~ 850 °C). Pyro-gasification of biomass coupled with water-gas shift is the most widely practiced process route for biomass to hydrogen today. In this work, an innovating solution will be proposed for this conversion route, in that all the pyro-gasification products, not only methane, will undergo processes that aim to optimize hydrogen production. First, a heterogeneous cracking step was included in the reaction scheme, using biochar (remaining solid from the pyro-gasification reaction) as catalyst and CO2 and H2O as gasifying agents. This process was followed by a catalytic steam methane reforming (SMR) step. For this, a Ni-based catalyst was tested under different reaction conditions to optimize H2 yield. Finally, a water-gas shift (WGS) reaction step with a Fe-based catalyst was added to optimize the H2 yield from CO. The reactor used for cracking was a fluidized bed reactor, and the one used for SMR and WGS was a fixed bed reactor. The gaseous products were analyzed continuously using a µ-GC (Fusion PN 074-594-P1F). With biochar as bed material, it was seen that more H2 was obtained with steam as a gasifying agent (32 mol. % vs. 15 mol. % with CO2 at 900 °C). CO and CH4 productions were also higher with steam than with CO2. Steam as gasifying agent and biochar as bed material were hence deemed efficient parameters for the first step. Among all parameters tested, CH4 conversions approaching 100 % were obtained from SMR reactions using Ni/γ-Al2O3 as a catalyst, 800 °C, and a steam/methane ratio of 5. This gave rise to about 45 mol % H2. Experiments about WGS reaction are currently being conducted. At the end of this phase, the four reactions are performed consecutively, and the results analyzed. The final aim is the development of a global kinetic model of the whole system in a multi-stage fluidized bed reactor that can be transferred on ASPEN PlusTM.

Keywords: multi-staged fluidized bed reactor, pyro-gasification, steam methane reforming, water-gas shift

Procedia PDF Downloads 103
3160 Study on the Quality of Biscuits Prepared from Wheat Flour and Cassava Flour

Authors: Ramim Tanver Rahman, Muhammad Mahbub Sobhan, M. A. Alim

Abstract:

This study reports on processing of biscuits using skinned, treated and dried cassava flour. Five samples of biscuits S2, S3, S4, S5, and S6 containing 8, 16, 24, 32, and 40% cassava flour with wheat flour and a control sample (S1) containing no cassava flour were processed. The weights of all the biscuit samples were higher than that of control biscuit. The biscuit containing cassava flour was lower width than the control biscuit. The spread ratio of biscuits with 16% cassava flour was higher than other combinations of cassava flour. No remarkable changes in moisture content, peroxide value, fatty acid value, texture, and flavor were observed up to 4 months of storage in ambient conditions (27° to 35°C). A decreasing trend in color, flavor, texture and overall acceptability was observed with the increased incorporation of cassava flour. The sample S1 (no cassava flour) secured the highest overall acceptability and sample S6 (40% cassava flour) obtained the lowest overall acceptability. It is recommended that good quality cassava flour fortified biscuits may be processed in industrial-scale substituting the wheat flour by cassava flour up to 24% levels.

Keywords: cassava flour, wheat flour, shelf life, spread ratio, storage, biscuit

Procedia PDF Downloads 338
3159 Locating Potential Site for Biomass Power Plant Development in Central Luzon Philippines Using GIS-Based Suitability Analysis

Authors: Bryan M. Baltazar, Marjorie V. Remolador, Klathea H. Sevilla, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Biomass energy is a traditional source of sustainable energy, which has been widely used in developing countries. The Philippines, specifically Central Luzon, has an abundant source of biomass. Hence, it could supply abundant agricultural residues (rice husks), as feedstock in a biomass power plant. However, locating a potential site for biomass development is a complex process which involves different factors, such as physical, environmental, socio-economic, and risks that are usually diverse and conflicting. Moreover, biomass distribution is highly dispersed geographically. Thus, this study develops an integrated method combining Geographical Information Systems (GIS) and methods for energy planning; Multi-Criteria Decision Analysis (MCDA) and Analytical Hierarchy Process (AHP), for locating suitable site for biomass power plant development in Central Luzon, Philippines by considering different constraints and factors. Using MCDA, a three level hierarchy of factors and constraints was produced, with corresponding weights determined by experts by using AHP. Applying the results, a suitability map for Biomass power plant development in Central Luzon was generated. It showed that the central part of the region has the highest potential for biomass power plant development. It is because of the characteristics of the area such as the abundance of rice fields, with generally flat land surfaces, accessible roads and grid networks, and low risks to flooding and landslide. This study recommends the use of higher accuracy resource maps, and further analysis in selecting the optimum site for biomass power plant development that would account for the cost and transportation of biomass residues.

Keywords: analytic hierarchy process, biomass energy, GIS, multi-criteria decision analysis, site suitability analysis

Procedia PDF Downloads 384
3158 Glycine Betaine Affects Antioxidant Response and Lipid Peroxidation in Wheat Genotypes under Water-Deficit Conditions

Authors: S. K. Thind, Neha Gupta

Abstract:

Glycine betaine (N, N’, N’’– trimethyl glycine), (GB) as aqueous solution (100 mM) containing 0.1% TWEEN-20 (Ploythylene glycol sorbitan monolaurate) was sprayed on selected nineteen wheat genotypes at maximum tillering and anthesis stages. Water-deficit conditions resulted in lipid peroxidation. GB applications reduced lipid peroxidation in all wheat genotypes at both the stages. Catalase (CAT) activity was recorded more in control than under stressed conditions in selected wheat genotypes at both the stages; GB had no effect. The ascorbic acid content in leaves of selected genotypes increased under water deficit. A genotypic variability in Ascorbate peroxidase (APx) activity was recorded and GB treatment decreased it. Superoxide dismutase (SOD) activity was increased significantly under water-deficit at both stages in all genotypes. In present study, prolonged water-deficit conditions caused CAT deficiency/suppression which was compensated by APX and SOD; and GB exogenous application mitigated negative effect of water-deficit stress on lipid peroxidation.

Keywords: glycine-betaine, lipid peroxidation, ROS, water deficit stress

Procedia PDF Downloads 407
3157 The Effects of Yield and Yield Components of Some Quality Increase Applications on Ismailoglu Grape Type in Turkey

Authors: Yaşar Önal, Aydın Akın

Abstract:

This study was conducted Ismailoglu grape type (Vitis vinifera L.) and its vine which was aged 15 was grown on its own root in a vegetation period of 2013 in Nevşehir province in Turkey. In this research, it was investigated whether the applications of Control (C), 1/3 cluster tip reduction (1/3 CTR), shoot tip reduction (STR), 1/3 CTR + STR, TKI-HUMAS (TKI-HM) (Soil) (S), TKI-HM (Foliar) (F), TKI-HM (S + F), 1/3 CTR + TKI-HM (S), 1/3 CTR + TKI-HM (F), 1/3 CTR + TKI-HM (S+F), STR + TKI-HM (S), STR + TKI-HM (F), STR + TKI-HM (S + F), 1/3 CTR + STR+TKI-HM (S), 1/3 CTR + STR + TKI-HM (F), 1/3 CTR + STR + TKI-HM (S + F) on yield and yield components of Ismailoglu grape type. The results were obtained as the highest fresh grape yield (16.15 kg/vine) with TKI-HM (S), as the highest cluster weight (652.39 g) with 1/3 CTR + STR, as the highest 100 berry weight (419.07 g) with 1/3 CTR + STR + TKI-HM (F), as the highest maturity index (44.06) with 1/3 CTR, as the highest must yield (810.00 ml) with STR + TKI-HM (F), as the highest intensity of L* color (42.04) with TKI-HM (S + F), as the highest intensity of a* color (2.60) with 1/3 CTR + TKI-HM (S), as the highest intensity of b* color (7.16) with 1/3 CTR + TKI-HM (S) applications. To increase the fresh grape yield of Ismailoglu grape type can be recommended TKI-HM (S) application.

Keywords: 1/3 cluster tip reduction, shoot tip reduction, TKI-Humas application, yield and yield components

Procedia PDF Downloads 359
3156 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China

Authors: Xiping Wang,Shuran Yao, Liqin Dai

Abstract:

Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.

Keywords: bayesian networks, climatic change, freezing Injury, winter wheat

Procedia PDF Downloads 378
3155 Recent Trend in Gluten-Free Bakery Products

Authors: Madhuresh Dwivedi, Navneet Singh Deora, H. N. Mishra

Abstract:

In the context of bakery products, the gluten component of wheat has a crucial role in stabilizing the gas-cell and crumb structures, appearance, mouth feel and maintaining the rheological properties, thus the acceptability of these products. However, because of coeliac disease, some individuals cannot tolerate the protein gliadin present in the gluten fraction of wheat flour. Also termed as gluten-sensitive enteropathy, it is a common chronicle disorder in populations throughout the world with average prevalence of 0.37%. The safest way for celiac sufferers is to stay away from gluten-containing foods such as wheat, rye, barley as well as durum wheat, spelt wheat, and triticale. Thus, in view of the current increasing incidence of gluten intolerant sufferers (due to improved diagnostic procedures), the development of gluten-free cereal-based bakery products suitable for celiac patients represents a challenging and serious task, but also very demanding call for food technologists as well as for the bakers. The use of alternative cereal starches (like rice, soy, maize, potato and so on), gums, hydrocolloids, dietary fibres, alternative protein sources, prebiotics and combinations of them represent the most widespread approach used as replacement to mimic gluten in the manufacture of industrial processable gluten-free bakery products due to their structure-building and water binding properties.

Keywords: gluten-free, coeliac disease, alternative flour, hydrocolloid, crumb structure

Procedia PDF Downloads 246
3154 Process for Production of Added-Value Water–Extract from Liquid Biomass

Authors: Lozano Paul

Abstract:

Coupled Membrane Separation Technology (CMST), including Cross Flow Microfiltration (CFM) and Reverse Osmosis (RO), are used to concentrate microalgae biomass or/and to extract and concentrate water-soluble metabolites produced during micro-algae production cycle, as well as water recycling. Micro-algae biomass was produced using different feeding mixtures of ingredients: pure chemical origin compounds and natural/ecological water-extracted components from available local plants. Micro-algae was grown either in conventional plastic bags (100L/unit) or in small-scale innovative bioreactors (75L). Biomass was concentrated as CFM retentate using a P19-60 ceramic membrane (0.2μm pore size), and water-soluble micro-algae metabolites left in the CFM filtrate were concentrated by RO. Large volumes of water (micro-algae culture media) of were recycled by the CMTS for another biomass production cycle.

Keywords: extraction, membrane process, microalgae, natural compound

Procedia PDF Downloads 247
3153 Evaluation of Nitrogen Fixation Capabilities of Selected Pea Lines Grown under Different Environmental Conditions in Canadian Prairie

Authors: Chao Yang, Rosalind Bueckert, Jeff Schoenau, Axel Diederichsen, Hossein Zakeri, Tom Warkentin

Abstract:

Pea is a very popular pulse crop that widely grew in Western Canadian prairie. However, the N fixation capabilities of these pea lines were not well evaluated under local environmental conditions. In this study, 2 supernodulating mutants Frisson P64 Sym29, Frisson P88 Sym28 along with their wild parent Frisson, 1 hypernodulating mutant Rondo-nod3 (fix+) along with its wild parent Rondo, 1 non-nodulating mutant Frisson P56 (nod-) and 2 commercial pea cultivar CDC Meadow and CDC Dakota which are widely planted in Western Canada were selected in order to evaluate the capabilities of their BNF, biomass, and yield production in symbiosis with R. leguminosarumbv. viciae, Our results showed different environmental conditions and variation of pea lines could both significantly impact days to flowering (DTF), days to podding (DTP), biomass and yield of tested pea lines (P < 0.0001), suggesting consideration of environmental factors could be important when selecting pea cultivar for local farming under different soil zones in Western Canada. Significant interaction effects between environmental conditions and pea lines were found on pea N fixation as well (P = 0.001), suggesting changes in N fixation capability of the same pea cultivar when grown under different environmental conditions. Our results provide useful information for farming and better opportunity for selection of pea cultivars with higher N-fixing capacity during breeding programs in Western Canada.

Keywords: Canadian prairie, environmental condition, N fixation, pea cultivar

Procedia PDF Downloads 317
3152 Carbon Sequestration under Hazelnut (Corylus avellana) Agroforestry and Adjacent Land Uses in the Vicinity of Black Sea, Trabzon, Turkey

Authors: Mohammed Abaoli Abafogi, Sinem Satiroglu, M. Misir

Abstract:

The current study has addressed the effect of Hazelnut (Corylus avellana) agroforestry on carbon sequestration. Eight sample plots were collected from Hazelnut (Corylus avellana) agroforestry using random sampling method. The diameter of all trees in each plot with ≥ 2cm at 1.3m DBH was measured by using a calliper. Average diameter, aboveground biomass, and carbon stock were calculated for each plot. Comparative data for natural forestland was used for C was taken from KTU, and the soil C was converted from the biomass conversion equation. Biomass carbon was significantly higher in the Natural forest (68.02Mgha⁻¹) than in the Hazelnut agroforestry (16.89Mgha⁻¹). SOC in Hazelnut agroforestry, Natural forest, and arable agricultural land were 7.70, 385.85, and 0.00 Mgha⁻¹ respectively. Biomass C, on average accounts for only 0.00% of the total C in arable agriculture, and 11.02% for the Hazelnut agroforestry while 88.05% for Natural forest. The result shows that the conversion of arable crop field to Hazelnut agroforestry can sequester a large amount of C in the soil as well as in the biomass than Arable agricultural lands.

Keywords: arable agriculture, biomass carbon, carbon sequestration, hazelnut (Corylus avellana) agroforestry, soil organic carbon

Procedia PDF Downloads 273
3151 Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi

Authors: Seema Sangwan, Ekta Narwal, Kannepalli Annapurna

Abstract:

The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence.

Keywords: Arbuscular mycorrhizal fungi, wheat, drought, stress

Procedia PDF Downloads 157
3150 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis

Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.

Keywords: genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation

Procedia PDF Downloads 452
3149 Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull in Nueva Ecija, Philippines

Authors: Klathea Sevilla, Marjorie Remolador, Bryan Baltazar, Imee Saladaga, Loureal Camille Inocencio, Ma. Rosario Concepcion Ang

Abstract:

The underutilization of biomass resources in the Philippines, combined with its growing population and the rise in fossil fuel prices confirms demand for alternative energy sources. The goal of this paper is to provide a comparison of MODIS-based and Landsat-based agricultural land cover maps when used in the estimation of rice hull’s available energy potential. Biomass resource assessment was done using mathematical models and remote sensing techniques employed in a GIS platform.

Keywords: biomass, geographic information system (GIS), remote sensing, renewable energy

Procedia PDF Downloads 444
3148 Effect of Sweet Potato (Ipomoea batatas) Leaves on Wheat Offal Replacement for Chicks Feed Production

Authors: C. C. Okafor, T. M. Ezeh

Abstract:

The effect of addition of sweet potato leaves in replacement of wheat offal in the production of broiler chicks feed was studied. 72 day-old marshal strain chicks were used and brooded for two weeks with a normal commercial feed in Nigeria called top feed and weighed separately at the end of the two weeks, complete randomized design (CRD) was used. The weighed broiler chicks were randomly allocated to four dietary treatments. Each treatment was replicated to twice with eighteen birds per replicate. The four dietary treatment identified as T1, T2, T3 and T4. T1 served as control diet with 21% crude protein content, while T2 was prepared with Enzyme and in T3 and T4, wheat offal was replaced with sweet potato leaves and in T4 with inclusion of enzyme. Growth performance was studied using the following daily feed intake, daily weight gain and feed efficiency. The result in daily weight gain showed that chicks fed with T2 feed had the highest weight gain (93.75) while chicks fed with T3 had the least weight gain of (34.5 gm). In daily feed intake chicks fed with T4 fed more (53.06 gm) than chicks fed with T2 (51.08 gm). In feed efficiency T3 had the highest value of 30% while the T2 had the least efficiency of 22%. There was no significant difference (P≥ 0.05) in all the three parameter tested. Sweet potato leaves can replace wheat offal in broiler feed production without any adverse effect on the growth performance.

Keywords: broiler, diet, dietary, potato leaves, wheat offal

Procedia PDF Downloads 474
3147 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress

Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li

Abstract:

Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.

Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress

Procedia PDF Downloads 145
3146 The Composition of Biooil during Biomass Pyrolysis at Various Temperatures

Authors: Zoltan Sebestyen, Eszter Barta-Rajnai, Emma Jakab, Zsuzsanna Czegeny

Abstract:

Extraction of the energy content of lignocellulosic biomass is one of the possible pathways to reduce the greenhouse gas emission derived from the burning of the fossil fuels. The application of the bioenergy can mitigate the energy dependency of a country from the foreign natural gas and the petroleum. The diversity of the plant materials makes difficult the utilization of the raw biomass in power plants. This problem can be overcome by the application of thermochemical techniques. Pyrolysis is the thermal decomposition of the raw materials under inert atmosphere at high temperatures, which produces pyrolysis gas, biooil and charcoal. The energy content of these products can be exploited by further utilization. The differences in the chemical and physical properties of the raw biomass materials can be reduced by the use of torrefaction. Torrefaction is a promising mild thermal pretreatment method performed at temperatures between 200 and 300 °C in an inert atmosphere. The goal of the pretreatment from a chemical point of view is the removal of water and the acidic groups of hemicelluloses or the whole hemicellulose fraction with minor degradation of cellulose and lignin in the biomass. Thus, the stability of biomass against biodegradation increases, while its energy density increases. The volume of the raw materials decreases so the expenses of the transportation and the storage are reduced as well. Biooil is the major product during pyrolysis and an important by-product during torrefaction of biomass. The composition of biooil mostly depends on the quality of the raw materials and the applied temperature. In this work, thermoanalytical techniques have been used to study the qualitative and quantitative composition of the pyrolysis and torrefaction oils of a woody (black locust) and two herbaceous samples (rape straw and wheat straw). The biooil contains C5 and C6 anhydrosugar molecules, as well as aromatic compounds originating from hemicellulose, cellulose, and lignin, respectively. In this study, special emphasis was placed on the formation of the lignin monomeric products. The structure of the lignin fraction is different in the wood and in the herbaceous plants. According to the thermoanalytical studies the decomposition of lignin starts above 200 °C and ends at about 500 °C. The lignin monomers are present among the components of the torrefaction oil even at relatively low temperatures. We established that the concentration and the composition of the lignin products vary significantly with the applied temperature indicating that different decomposition mechanisms dominate at low and high temperatures. The evolutions of decomposition products as well as the thermal stability of the samples were measured by thermogravimetry/mass spectrometry (TG/MS). The differences in the structure of the lignin products of woody and herbaceous samples were characterized by the method of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). As a statistical method, principal component analysis (PCA) has been used to find correlation between the composition of lignin products of the biooil and the applied temperatures.

Keywords: pyrolysis, torrefaction, biooil, lignin

Procedia PDF Downloads 296
3145 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)

Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli

Abstract:

One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.

Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress

Procedia PDF Downloads 185
3144 Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems

Authors: Yas Barzegaar, Atrin Barzegar

Abstract:

The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert’s opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers.

Keywords: failure modes, fuzzy rules, fuzzy inference system, risk assessment

Procedia PDF Downloads 61
3143 Uptake of Copper by Dead Biomass of Burkholderia cenocepacia Isolated from a Metal Mine in Pará, Brazil

Authors: Ingrid R. Avanzi, Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Elen A. Perpetuo, Claudio Auguto Oller do Nascimento

Abstract:

In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process. In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.

Keywords: biosorption, dead biomass, biotechnology, copper recovery

Procedia PDF Downloads 315
3142 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 357
3141 Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Authors: J. P. Makwana, A. K. Joshi, Rajesh N. Patel, Darshil Patel

Abstract:

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

Keywords: sized biomass, fluidized bed gasifier, equivalence ratio, temperature profile, gas composition

Procedia PDF Downloads 282
3140 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 153
3139 Subcritical and Supercritical Water Gasification of Xylose

Authors: Shyh-Ming Chern, Te-Hsiu Tang

Abstract:

Hemicellulose is one of the major constituents of all plant cell walls, making up 15-25% of dry wood. It is a biopolymer from many different sugar monomers, including pentoses, like xylose, and hexoses, like mannose. In an effort to gasify real biomass in subcritical and supercritical water in a single process, it is necessary to understand the gasification of hemicellulose, in addition to cellulose and lignin, in subcritical and supercritical water. In the present study, xylose is chosen as the model compound for hemicellulose, since it has the largest amount in most hardwoods. Xylose is gasified in subcritical and supercritical water for the production of higher-valued gaseous products. Experiments were conducted with a 16-ml autoclave batch-type reactor. Hydrogen peroxide is adopted as the oxidant in an attempt to promote the gasification yield. The major operating parameters for the gasification include reaction temperature (400 - 600°C), reaction pressure (5 - 25 MPa), the concentration of xylose (0.05 and 0.30 M), and level of oxidant added (0 and 0.25 chemical oxygen demand). 102 experimental runs were completed out of 46 different set of experimental conditions. Product gases were analyzed with a GC-TCD and determined to be mainly composed of H₂ (10 – 74 mol. %), CO (1 – 56 mol. %), CH₄ (1 – 27 mol. %), CO₂ (10 – 50 mol. %), and C₂H₆ (0 – 8 mol. %). It has been found that the gas yield (amount of gas produced per gram of xylose gasified), higher heating value (HHV) of the dry product gas, and energy yield (energy stored in the product gas divided by the energy stored in xylose) all increase significantly with rising temperature and moderately with reducing pressure. The overall best operating condition occurred at 873 K and 10 MPa, with a gas yield of 54 mmol/g of xylose, a gas HHV of 440 kJ/mol, and an energy yield of 1.3. A seemingly unreasonably energy yield of greater than unity resulted from the external heating employed in the experiments to drive the gasification process. It is concluded that xylose can be completely gasified in subcritical and supercritical water under proper operating conditions. The addition of oxidant does not promote the gasification of xylose.

Keywords: gasification, subcritical water, supercritical water, xylose

Procedia PDF Downloads 206
3138 Elucidating the Defensive Role of Silicon-Induced Biochemical Responses in Wheat Exposed to Drought and Diuraphis noxia Infestation

Authors: Lintle Mohase, Ninikoe Lebusa, Mpho Stephen Mafa

Abstract:

Wheat is an economically important cereal crop. However, the changing climatic conditions that intensify drought in production areas, and additional pest infestation, such as the Russian wheat aphid (RWA, Diuraphis noxia), severely hamper its production. Drought and pest management require an additional water supply through irrigation and applying inorganic nutrients (including silicon) as alternative strategies to mitigate the stress effects. Therefore, other approaches are needed to enhance wheat productivity during drought stress and aphid abundance. Two wheat cultivars were raised under greenhouse conditions, exposed to drought stress, and treated with silicon before infestation with the South African RWA biotype 2 (RWASA2). The morphological evaluations showed that severe drought or a combination of drought and infestation significantly reduced the plant height of wheat cultivars. Silicon treatment did not alleviate the growth reduction. The biochemical responses were measured using spectrophotometric assays with specific substrates. An evaluation of the enzyme activities associated with oxidative stress and defence responses indicated that drought stress increased NADPH oxidase activity, while silicon treatment significantly reduced it in drought-stressed and infested plants. At 48 and 72 hours sampling periods, a combination of silicon, drought and infestation treatment significantly increased peroxidase activity compared to drought and infestation treatment. The treatment also increased β-1,3-glucanase activity 72 hours after infestation. In addition, silicon and drought treatment increased glucose but reduced sucrose accumulation. Furthermore, silicon, drought, and infestation treatment combinations reduced the sucrose content. Finally, silicon significantly increased the trehalose content under severe drought and infestation, evident at 48 and 72-hour sampling periods. Our findings shed light on silicon’s ability to induce protective biochemical responses during drought and aphid infestation.

Keywords: drought, enzyme activity, silicon, soluble sugars, Russian wheat aphid, wheat

Procedia PDF Downloads 46
3137 Different Tillage Possibilities for Second Crop in Green Bean Farming

Authors: Yilmaz Bayhan, Emin Güzel, Ömer Barış Özlüoymak, Ahmet İnce, Abdullah Sessiz

Abstract:

In this study, determining of reduced tillage techniques in green bean farming as a second crop after harvesting wheat was targeted. To this aim, four different soil tillage methods namely, heavy-duty disc harrow (HD), rotary tiller (ROT), heavy-duty disc harrow plus rotary tiller (HD+ROT) and no-tillage (NT) (seeding by direct drill) were examined. Experiments were arranged in a randomized block design with three replications. The highest green beans yields were obtained in HD+ROT and NT as 5,862.1 and 5,829.3 Mg/ha, respectively. The lowest green bean yield was found in HD as 3,076.7 Mg/ha. The highest fuel consumption was measured 30.60 L ha-1 for HD+ROT whereas the lowest value was found 7.50 L ha-1 for NT. No tillage method gave the best results for fuel consumption and effective power requirement. It is concluded that no-tillage method can be used in second crop green bean in the Thrace Region due to economic and erosion conditions.

Keywords: green bean, soil tillage, yield, vegetative

Procedia PDF Downloads 332
3136 Screening of Different Exotic Varieties of Potato through Adaptability Trial for Local Cultivation

Authors: Arslan Shehroz, Muhammad Amjad Ali, Amjad Abbas, Imran Ramzan, Muhammad Zunair Latif

Abstract:

Potato (Solanum tuberosum L.) is the 4th most important food crop of the world after wheat, rice and maize. It is the staple food in many European countries. Being rich in starch (one of the main three food ingredients) and having the highest productivity per unit area, has great potential to address the challenge of the food security. Processed potato is also used as chips and crisps etc as ‘fast food’. There are many biotic and abiotic factors which check the production of potato and become hurdle in achievement production potential of potato. 20 new varieties along with two checks were evaluated. Plant to plant and row to row distances were maintained as 20 cm and 75 cm, respectively. The trial was conducted according to the randomized complete block design with three replications. Normal agronomic and plant protection measures were carried out in the crop. It is revealed from the experiment that exotic variety 171 gave the highest yield of 35.5 t/ha followed by Masai with 31.0 t/ha tuber yield. The check variety Simply Red 24.2 t/ha yield, while the lowest tuber yield (1.5 t/ha) was produced by the exotic variety KWS-06-125. The maximum emergence was shown by the Variety Red Sun (89.7 %). The lowest emergence was shown by the variety Camel (71.7%). Regarding tuber grades, it was noted that the maximum Ration size tubers were produced by the exotic variety Compass (3.7%), whereas 11 varieties did not produce ration size tubers at all. The variety Red Sun produced lowest percentage of small size tubers (12.7%) whereas maximum small size tubers (93.0%) were produced by the variety Jitka. Regarding disease infestation, it was noted that the maximum scab incidence (4.0%) was recorded on the variety Masai, maximum rhizoctonia attack (60.0%) was recorded on the variety Camel and maximum tuber cracking (0.7%) was noted on the variety Vendulla.

Keywords: check variety, potato, potential and yield, trial

Procedia PDF Downloads 353
3135 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2

Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen

Abstract:

Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.

Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel

Procedia PDF Downloads 119
3134 Differentially Response of Superoxide Dismutase in Wheat Susceptible and Resistant Cultivars against FHB

Authors: M. Sorahi Nobar, V. Niknam, H. Ebrahimzadeh, H. Soltanloo

Abstract:

Fusarium graminearum is one of the most destructive crop diseases in the world. Infection occurs during the flowering period in warm and humid conditions. It causes reduction in yield. Moreover, harvested grain is often contaminated with mycotoxins and its acetylated derivatives. Fusarium mycotoxines are potent inhibitor of protein synthesis, and thereby presents hazards for both human and animal health. A rapid production of reactive oxygen intermediates, primarily superoxide and hydrogen peroxide at the site of attempted infection considered as key feature underlying successful pathogen recognition. Here, we compared the time course activity of superoxide dismutase (SOD) as a first line of defenses against ROS- induced oxidative burst between FHB- resistant Sumai3 and susceptible Falat at 48, 96 and 144 hours after infection. Our results showed that Sumai3 SOD activity increased with time and reached the highest-level 4 days after infection while in susceptible cultivar Falat, SOD activity decreased during the first 96 h. after infection. Decreased was followed by an increased at 6 days after infection. According to our results rapid induction of SOD activity in resistant cultivar may play an important role in resistance against FHB in wheat.

Keywords: Fusarium graminearum, mycotoxins, resistant cultivar, superoxide dismutase

Procedia PDF Downloads 416
3133 Quantification and Identification of the Main Components of the Biomass of the Microalgae Scenedesmus SP. – Prospection of Molecules of Commercial Interest

Authors: Carolina V. Viegas, Monique Gonçalves, Gisel Chenard Diaz, Yordanka Reyes Cruz, Donato Alexandre Gomes Aranda

Abstract:

To develop the massive cultivation of microalgae, it is necessary to isolate and characterize the species, improving genetic tools in search of specific characteristics. Therefore, the detection, identification and quantification of the compounds that compose the Scenedesmus sp. were prerequisites to verify the potential of these microalgae. The main objective of this work was to carry out the characterization of Scenedesmus sp. as to the content of ash, carbohydrates, proteins and lipids as well as the determination of the composition of their lipid classes and main fatty acids. The biomass of Scenedesmus sp, showed 15,29 ± 0,23 % of ash and CaO (36,17 %) was the main component of this fraction, The total protein and carbohydrate content of the biomass was 40,74 ± 1,01 % and 23,37 ± 0,95 %, respectively, proving to be a potential source of proteins as well as carbohydrates for the production of ethanol via fermentation, The lipid contents extracted via Bligh & Dyer and in situ saponification were 8,18 ± 0,13 % and 4,11 ± 0,11 %, respectively. In the lipid extracts obtained via Bligh & Dyer, approximately 50 % of the composition of this fraction consists of fatty compounds, while the other half is composed of an unsaponifiable fraction composed mainly of chlorophylls, phytosterols and carotenes. From the lowest yield, it was possible to obtain a selectivity of 92,14 % for fatty components (fatty acids and fatty esters) confirmed through the infrared spectroscopy technique. The presence of polyunsaturated acids (~45 %) in the lipid extracts indicated the potential of this fraction as a source of nutraceuticals. The results indicate that the biomass of Scenedesmus sp, can become a promising potential source for obtaining polyunsaturated fatty acids, carotenoids and proteins as well as the simultaneous obtainment of different compounds of high commercial value.

Keywords: microalgae, Desmodesmus, lipid classes, fatty acid profile, proteins, carbohydrates

Procedia PDF Downloads 57