Search results for: synthetic nitrogen
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2085

Search results for: synthetic nitrogen

2085 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time

Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi

Abstract:

This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.

Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics

Procedia PDF Downloads 358
2084 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation

Procedia PDF Downloads 322
2083 Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula

Authors: Pragnyashree Mishra, Shradhanjali Mohapatra

Abstract:

The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield .

Keywords: calendula, golden emporer, GA3, nitrogen and gibberellic acid

Procedia PDF Downloads 457
2082 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 291
2081 Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan

Authors: Sakura Yoshii, Masakazu Abe, Akihiro Iijima

Abstract:

Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation.

Keywords: atmospheric deposition, nitrogen accumulation, denitrification, forest ecosystems

Procedia PDF Downloads 270
2080 Mineral Nitrogen Retention, Nitrogen Availability and Plant Growth in the Soil Influenced by Addition of Organic and Mineral Fertilizers: Lysimetric Experiment

Authors: Lukáš Plošek, Jaroslav Hynšt, Jaroslav Záhora, Jakub Elbl, Antonín Kintl, Ivana Charousová, Silvia Kovácsová

Abstract:

Compost can influence soil fertility and plant health. At the same time compost can play an important role in the nitrogen cycle and it can influence leaching of mineral nitrogen from soil to underground water. This paper deals with the influence of compost addition and mineral nitrogen fertilizer on leaching of mineral nitrogen, nitrogen availability in microbial biomass and plant biomass production in the lysimetric experiment. Twenty-one lysimeters were filed with topsoil and subsoil collected in the area of protection zone of underground source of drinking water - Březová nad Svitavou. The highest leaching of mineral nitrogen was detected in the variant fertilized only mineral nitrogen fertilizer (624.58 mg m-2), the lowest leaching was recorded in the variant with high addition of compost (315.51 mg m-2). On the other hand, losses of mineral nitrogen are not in connection with the losses of available form of nitrogen in microbial biomass. Because loss of mineral nitrogen was detected in variant with the least change in the availability of N in microbial biomass. The leaching of mineral nitrogen, yields as well as the results concerning nitrogen availability from the first year of long term experiment suggest that compost can positive influence the leaching of nitrogen into underground water.

Keywords: nitrogen, compost, biomass production, lysimeter

Procedia PDF Downloads 343
2079 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids

Authors: Hiroshi Nakayama, Yuji Ito

Abstract:

Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.

Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid

Procedia PDF Downloads 351
2078 Compressive Strength of Synthetic Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Fuat Korkut

Abstract:

Synthetic fibers are commonly used in many civil engineering applications because of its some superior characteristics such as non-corrosive and cheapness. This study presents the results of experimental study on compressive strength of synthetic fiber reinforced concretes. Two types of polyamide (PA) synthetic fiber with the length of 12 and 54 mm are used for this study. The fiber volume ratio is kept as 0.25%, 0.75%, and 0.75% in all mixes. The plain concrete compressive strength is 36.2 MPa. The test results clearly show that the increase in compressive strength for synthetic fiber reinforced concretes is significant. The greatest increase in compressive strength is 23% for PA synthetic fiber reinforced concretes with 0.75% fiber volume.

Keywords: synthetic fibers, polyamide fibers, fiber volume, compressive strength

Procedia PDF Downloads 519
2077 Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley

Authors: Brian Marsh

Abstract:

Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 16 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein.

Keywords: wheat, nitrogen fertilization, chlorophyll meter

Procedia PDF Downloads 387
2076 Plasma-Assisted Nitrogen Fixation for the Elevation of Seed Germination and Plant Growth

Authors: Pradeep Lamichhane

Abstract:

Plasma-assisted nitrogen fixation is a process by which atomic nitrogen generated by plasma is converted into ammonia (NH₃) or related nitrogenous compounds. Nitrogen fixation is essential to plant because fixed inorganic nitrogen compounds are required to them for the biosynthesis of all nitrogen-containing organic compounds, such as amino acids and proteins, nucleoside triphosphates and nucleic acid. Most of our atmosphere is composed of nitrogen; however, the plant cannot absorb it directly from the air ambient. As a portion of the nitrogen cycle, nitrogen fixation fundamental for agriculture and the manufacture of fertilizer. In this study, plasma-assisted nitrogen fixation was performed by exposing a non-thermal atmospheric pressure nitrogen plasma generated a sinusoidal power supply (with an applied voltage of 10 kV and frequency of 33 kHz) on a water surface. Besides this, UV excitation of water molecules at the water interface was also done in order to disassociate water. Hydrogen and hydroxyl radical obtained from this UV photolysis electrochemically combine with nitrogen atom obtained from plasma. As a result of this, nitrogen fixation on plasma-activated water (PAW) significantly enhanced. The amount of nitrogen-based products like NOₓ and ammonia (NH₃) synthesized by this combined process of UV and plasma are 1.4 and 2.8 times higher than those obtained by plasma alone. In every 48 hours, 20 ml of plasma-activated water (pH≈3.15) for 10 minutes with moderate concentrations of NOₓ, NH₃ and hydrogen peroxide (H₂O₂) was irrigated on each corn plant (Zea Mays). It was found that the PAW has shown a significant impact on seeds germination rate and improved seedling growth. The result obtained from this experiment suggested that crop yield could increase in a short duration. In the future, this experiment could open boundless opportunities in plasma agriculture to mobilize nitrogen because nitrite, nitrate, and ammonia are more suitable for plant uptake.

Keywords: plasma-assisted nitrogen fixation, nitrogen plasma, UV excitation of water, ammonia synthesis

Procedia PDF Downloads 131
2075 Modeling of Nitrogen Solubility in Stainless Steel

Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky

Abstract:

Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.

Keywords: solubility, nitrogen, stainless steel, Schaeffler

Procedia PDF Downloads 234
2074 Effect of Nitrogen Management on Nitrogen Uptake, Dry Matter Production and Some Yield Parameters

Authors: Mandana Tayefe, Ebrahim Amiri, Azin Nasrollah Zade

Abstract:

Effect of nitrogen (N) fertilizer levels on nitrogen uptake, dry matter production, yield and some yield components of rice (Hashemi, Kazemi, Khazar) was investigated in an experiment as factorial in RCBD with 3 replications in a paddy light soil at Guilan province, Iran, 2008-2009. In this experiment, four treatments including: N1-control (no N fertilizer); N2- 30 kgN/ha; N3- 60 kgN/ha; N4- 90 kgN/ha were compared. Results showed that total biomass (8386 kg/ha), grain yield (3662 kg/ha), panicles m-2 (235.8) and total grain per panicle (103.8) were reached the highest value at high nitrogen level. Among the varieties the highest total biomass (7734 kg/ha), grain yield (3414 kg/ha) and total grain per panicle (78.2) belonged to Khazar. Dry matter, total N uptake was varied in different cultivars significantly and Khazar variety had the highest contents. Total biomass and total N uptake was varied significantly with the increasement of the amount of nitrogen applied. As total biomass and total N uptake increased with increasing in N fertilizing.

Keywords: rice, nitrogen, nitrogen uptake, dry matter

Procedia PDF Downloads 411
2073 Effect of Inorganic Fertilization on Soil N Dynamics in Agricultural Plots in Central Mexico

Authors: Karla Sanchez-Ortiz, Yunuen Tapia-Torres, John Larsen, Felipe Garcia-Oliva

Abstract:

Due to food demand production, the use of synthetic nitrogenous fertilizer has increased in agricultural soils to replace the N losses. Nevertheless, the intensive use of synthetic nitrogenous fertilizer in conventional agriculture negatively affects the soil and therefore the environment, so alternatives such as organic agriculture have been proposed for being more environmentally friendly. However, further research in soil is needed to see how agricultural management affects the dynamics of C and N. The objective of this research was to evaluate the C and N dynamics in the soil with three different agricultural management: an agricultural plot with intensive inorganic fertilization, a plot with semi-organic management and an agricultural plot with recent abandonment (2 years). For each plot, the soil C and N dynamics and the enzymatic activity of NAG and β-Glucosidase were characterized. Total C and N concentration of the plant biomass of each site was measured as well. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) was higher in abandoned plot, as well as this plot had higher total carbon (TC) and total nitrogen (TN), besides microbial N and microbial C. While the enzymatic activity of NAG and β-Glucosidase was greater in the agricultural plot with inorganic fertilization, as well as nitrate (NO₃) was higher in fertilized plot, in comparison with the other two plots. The aboveground biomass (AB) of maize in the plot with inorganic fertilization presented higher TC and TN concentrations than the maize AB growing in the semiorganic plot, but the C:N ratio was highest in the grass AB in the abandoned plot. The C:N ration in the maize grain was greater in the semi-organic agricultural plot. These results show that the plot under intensive agricultural management favors the loss of soil organic matter and N, degrading the dynamics of soil organic compounds, promoting its fertility depletion.

Keywords: mineralization, nitrogen cycle, soil degradation, soil nutrients

Procedia PDF Downloads 177
2072 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 73
2071 The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704

Authors: Elham Bagherzadeh, Mohammad Fadaee, Rouhollah Keykhosravi

Abstract:

In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield.

Keywords: corn, nitrogen, comparison, biological yield

Procedia PDF Downloads 353
2070 Effects of Chemical and Biological Fertilizer on, Yield, Nitrogen Uptake and Nitrogen Harvest Index of Rice

Authors: Azin Nasrollah Zadeh

Abstract:

A factorial experiment was applied to evaluate the effect of chemical and biological fertilizer on yield, total nitrogen uptake and NHI of rice. Four biological treatments including:(M1:no fertilizer),( M2:10 ton/ha cow dung ),(M3:20 ton/ha cow dung) and (M4:5 ton/ha azolla compost) and four chemical fertilizer treatments including: (S1: no fertilizer),(S2:40 kg N /ha),(S3:60 kg N /ha) and ( S4:80 kg N /ha ) were compared. Results showed that highest rate of yield (3387 kg/ha) and total nitrogen uptake (81.4 kg/ha) were reached the highest value at M4. Among the chemical fertilizers the highest grain yield (3373 kg/ha) and total nitrogen uptake (87.7) belonged to highest nitrogen level (S4).Also biological and chemical fertilizers were no significant on Harvest index (NHI). Interaction effect of chemical × biological fertilizers didn't show significant difference between all parameters except of yield, as the most grain yield were obtained in M4S4. So it can be concluded that using of bioilogical fertilizers at appropriate rate and type, considering plant requirement, may improve grain yield, nitrogen uptake and use efficiency in rice.

Keywords: azolla, fertilizer, nitrogen uptake, rice, yield

Procedia PDF Downloads 289
2069 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification

Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel

Abstract:

Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.

Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable

Procedia PDF Downloads 103
2068 Medium Design and Optimization for High Β-Galactosidase Producing Microbial Strains from Dairy Waste through Fermentation

Authors: Ashish Shukla, K. P. Mishra, Pushplata Tripathi

Abstract:

This paper investigates the production and optimization of β-galactosidase enzyme using synthetic medium by isolated wild strains (S1, S2) mutated strains (M1, M2) through SSF and SmF. Among the different cell disintegration methods used, the highest specific activity was obtained when the cells were permeabilized using isoamyl alcohol. Wet lab experiments were performed to investigate the effects of carbon and nitrogen substrates present in Vogel’s medium on β-galactosidase enzyme activity using S1, S2, and M1, M2 strains through SSF. SmF experiments were performed for effects of carbon and nitrogen sources in YLK2Mg medium on β-galactosidase enzyme activity using S1, S2 and M1, M2 strains. Effect of pH on β-galactosidase enzyme production was also done using S1, S2, and M1, M2 strains. Results were found to be very appreciable in all the cases.

Keywords: β-galactosidase, cell disintegration, permeabilized, SSF, SmF

Procedia PDF Downloads 266
2067 Nitrogen-Doped Ultrananocrystalline Diamond/Hydrogenated Amorphous Carbon Composite Films Prepared by Coaxial Arc Plasma Deposition

Authors: Abdelrahman Zkria, Tsuyoshi Yoshitake

Abstract:

Diamond is one of the most interesting semiconducting carbon materials owing to its unique physical and chemical properties, yet its application in electronic devices is limited due to the difficulty of realizing n-type conduction by nitrogen doping. In contrast Ultrananocrystalline diamond with diamond grains of about 3–5 nm in diameter have attracted much attention for device-oriented applications because they may enable the realization of n-type doping with nitrogen. In this study, nitrogen-doped Ultra-Nanocrystalline diamond films were prepared by coaxial arc plasma deposition (CAPD) method, the nitrogen content was estimated by X-ray photoemission spectroscopy (XPS). The electrical conductivity increased with increasing nitrogen contents. Heterojunction diodes with p-type Si were fabricated and evaluated based on current–voltage (I–V) and capacitance–voltage (C–V) characteristics measured in dark at room temperature.

Keywords: heterojunction diodes, hopping conduction mechanism, nitrogen-doping, ultra-nanocrystalline diamond

Procedia PDF Downloads 297
2066 Divalent Iron Oxidative Process for Degradation of Carbon and Nitrogen Based Pollutants from Dye Intermediate Industrial Wastewater

Authors: Nibedita Pani, Vishnu Tejani, T. S. Anantha Singh

Abstract:

Water pollution resulting from discharge of partial/not treated textile wastewater containing high carbon and nitrogen pollutants pose a huge threat to the environment, ecosystem, and human health. It is essential to remove carbon- and nitrogen-based organic pollutants more effectively from industrial wastewater before discharging. The present study focuses on removal of carbon-based pollutant in particular COD (chemical oxygen demand) and nitrogen-based pollutants, in particular, ammoniacal nitrogen by Fenton oxidation process using Fe²⁺ and H₂O₂ as reagents. The study was carried out with high strength wastewater containing initial COD 5632 mg/L and NH⁴⁺-N 1372 mg/L. The major operating condition like pH was varied between 1.0 to 4.0. The maximum degradation was obtained at pH 3.0 taking the molar ratio of Fe²⁺/H₂O₂ as 1:1. At this pH, the removal efficiencies of COD and ammoniacal nitrogen were found to be 77.27% and 74.9%, respectively. The Fenton process can be the best alternative for the simultaneous removal of COD and NH4+-N from industrial wastewater.

Keywords: ammoniacal nitrogen, COD, Fenton oxidation, industrial wastewater

Procedia PDF Downloads 197
2065 Numerical Simulation of Liquid Nitrogen Spray Equipment for Space Environmental Simulation Facility

Authors: He Chao, Zhang Lei, Liu Ran, Li Ang

Abstract:

Temperature regulating system by gaseous nitrogen is of importance to the space environment simulator, which keep the shrouds in the temperature range from -150℃ to +150℃. Liquid nitrogen spray equipment is one of the most critical parts in the temperature regulating system by gaseous nitrogen. Y type jet atomizer and internal mixing atomizer of the liquid nitrogen spray equipment are studied in this paper, 2D/3D atomizer model was established and grid division was conducted respectively by the software of Catia and ICEM. Based on the above preparation, numerical simulation on the spraying process of the atomizer by FLUENT is performed. Using air and water as the medium, comparison between the tests and numerical simulation was conducted and the results of two ways match well. Hence, it can be conclude that this atomizer model can be applied in the numerical simulation of liquid nitrogen spray equipment.

Keywords: space environmental simulator, liquid nitrogen spray, Y type jet atomizer, internal mixing atomizer, numerical simulation, fluent

Procedia PDF Downloads 401
2064 Mechanical Behavior of Hybrid Hemp/Jute Fibers Reinforced Polymer Composites at Liquid Nitrogen Temperature

Authors: B. Vinod, L. Jsudev

Abstract:

Natural fibers as reinforcement in polymer matrix material is gaining lot of attention in recent years, as they are light in weight, less in cost, and ecologically advanced surrogate material to glass and carbon fibers in composites. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites like cryogenic wind tunnels, cryogenic transport vessels, support structures in space shuttles and rockets are gaining importance. In these unique cryogenic applications, the requirements of polymer composites are extremely severe and complicated. These materials need to possess good mechanical and physical properties at cryogenic temperatures such as liquid helium (4.2 K), liquid hydrogen (20 K), liquid nitrogen (77 K), and liquid oxygen (90 K) temperatures, etc., to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hemp and Jute fibers are used as reinforcement material as they have high specific strength, stiffness and good adhering property and has the potential to replace the synthetic fibers. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 336
2063 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet

Authors: K. Boualem, T. Yahiaoui, A. Azzi

Abstract:

Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.

Keywords: active control, synthetic jet, NACA airfoil, CFD

Procedia PDF Downloads 307
2062 Effect of Chemical, Organic and Biological Nitrogen on Yield and Yield Components of Soybean Cultivars

Authors: Hamid Hatami

Abstract:

This experiment was included two cultivars i.e. Habbit and L17 (Main factor) with six fertilizer treatments i.e. control, seed inoculated with rhyzobium, base nitrogen + top-dress urea at R2 stage, base nitrogen + seed inoculated with rhyzobium + top-dress nitrogen at R2 stage, seed treated with humax + top-dress humax at R2 stage, base nitrogen + seed treated with humax + top-dress humax at R2 stage (sub factors ), as split-plot on the basis of RCBD with 3 replications at 2014. Treatment fertilizer of base nitrogen + seed treated with humax + top- dress humax at R2 stage and base nitrogen + top-dress urea in R2 stage had a significant superiority than the other fertilizer treatment in biological yield. L17 and Habbit with base nitrogen + seed treated with humax + top-dress humax in R2 stage and yield economical 5600 and 5767 kg/ha respectively, showed the most economical yield and Habbit cultivar with control and economical yield 3085 kg/ha showed the least economical yield among all the treatments. Results showed that fertilizer treatment of base nitrogen + seed treated with humax + top-dress humax in R2 stage and Habbit variety were suitable in this study.

Keywords: soybean, humax, rhyzobium, habbit

Procedia PDF Downloads 447
2061 Assessment of the Biological Nitrogen Fixation in Soybean Sown in Different Types of Moroccan Soils

Authors: F. Z. Aliyat, B. Ben Messaoud, L. Nassiri, E. Bouiamrine, J. Ibijbijen

Abstract:

The present study aims to assess the biological nitrogen fixation in the soybean tested in different Moroccan soils combined with the rhizobial inoculation. These effects were evaluated by the plant growth mainly by the aerial biomass production, total nitrogen content and the proportion of the nitrogen fixed. This assessment clearly shows that the inoculation with bacteria increases the growth of soybean. Five different soils and a control (peat) were used. The rhizobial inoculation was performed by applying the peat that contained a mixture of 2 strains Sinorhizobium fredii HH103 and Bradyrhizobium. The biomass, the total nitrogen content and the proportion of nitrogen fixed were evaluated under different treatments. The essay was realized at the greenhouse the Faculty of Sciences, Moulay Ismail University. The soybean has shown a great response for the parameters assessed. Moreover, the best response was reported by the inoculated plants compared to non- inoculated and to the absolute control. Finally, good production and the best biological nitrogen fixation present an important ecological technology to improve the sustainable production of soybean and to ensure the increase of the fertility of soils.

Keywords: biological nitrogen fixation, inoculation, rhizobium, soybean

Procedia PDF Downloads 167
2060 Effects of Nitrogen and Arsenic on Antioxidant Enzyme Activities and Photosynthetic Pigments in Safflower (Carthamus tinctorius L.)

Authors: Mostafa Heidari

Abstract:

Nitrogen fertilization has played a significant role in increasing crop yield, and solving problems of hunger and malnutrition worldwide. However, excessive of heavy metals such as arsenic can interfere on growth and reduced grain yield. In order to investigate the effects of different concentrations of arsenic and nitrogen fertilizer on photosynthetic pigments and antioxidant enzyme activities in safflower (cv. Goldasht), a factorial plot experiment as randomized complete block design with three replication was conducted in university of Zabol. Arsenic treatment included: A1= control or 0, A2=30, A3=60 and A4=90 mg. kg-1 soil from the Na2HASO4 source and three nitrogen levels including W1=75, W2=150 and W3=225 kg.ha-1 from urea source. Results showed that, arsenic had a significant effect on the activity of antioxidant enzymes. By increasing arsenic levels from A1 to A4, the activity of ascorbate peroxidase (APX) and gayacol peroxidase (GPX) increased and catalase (CAT) was decreased. In this study, arsenic had no significant on chlorophyll a, b and cartoneid content. Nitrogen and interaction between arsenic and nitrogen treatment, except APX, had significant effect on CAT and GPX. The highest GPX activity was obtained at A4N3 treatment. Nitrogen increased the content of chlorophyll a, b and cartoneid.

Keywords: arsenic, physiological parameters, oxidative enzymes, nitrogen

Procedia PDF Downloads 436
2059 Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor

Authors: Boonsiri Dandumrongsin, Halis Simsek, Chaiwat Rongsayamanont

Abstract:

Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained.

Keywords: dissolved organic nitrogen, hydraulic retention time, moving bed biofilm reactor, soluble microbial products

Procedia PDF Downloads 277
2058 An Investigation of Current Potato Nitrogen Fertility Programs' Contribution to Ground Water Contamination

Authors: Brian H. Marsh

Abstract:

Nitrogen fertility is an important component for optimum potato yield and quality. Best management practices are necessary in regards to N applications to achieve these goals without applying excess N with may contribute to ground water contamination. Eight potato fields in the Southern San Joaquin Valley were sampled for nitrogen inputs and uptake, tuber and vine dry matter and residual soil nitrate-N. The fields had substantial soil nitrate-N prior to the potato crop. Nitrogen fertilizer was applied prior to planting and in irrigation water as needed based on in-season petiole sampling in accordance with published recommendations. Average total nitrogen uptake was 237 kg ha-1 on 63.5 Mg ha-1 tuber yield and nitrogen use efficiency was very good at 81 percent. Sixty-nine percent of the plant nitrogen was removed in tubers. Soil nitrate-N increased 14 percent from pre-plant to post-harvest averaged across all fields and was generally situated in the upper soil profile. Irrigation timing and amount applied did not move water into the lower profile except for a single location where nitrate also moved into the lower soil profile. Pre-plant soil analysis is important information to be used. Rotation crops having deeper rooting growth would be able to utilize nitrogen that remained in the soil profile.

Keywords: potato, nitrogen fertilization, irrigation management, leaching potential

Procedia PDF Downloads 455
2057 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation

Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina

Abstract:

An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.

Keywords: nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure

Procedia PDF Downloads 335
2056 Influence of Nitrogen Fertilization on the Yields and Grain Quality of Winter Wheat under Different Environmental Conditions

Authors: Alicja Sułek, Grażyna Cacak-Pietrzak, Marta Wyzińska, Anna Nieróbca

Abstract:

In 2013/2014 and 2014/2015, a field experiment was conducted in two locations: Osiny and Wielichowo (Poland). The two-factor experiment was based on the method of randomized subblocks, in three replications. The first factor (A) was dose of nitrogen fertilization (two levels). The second factor (B) was nine winter wheat cultivars. It was found that winter wheat cultivars exhibited different reactions to higher nitrogen fertilization depending on the years and localities. Only KWS Dacanto cultivar under all growing conditions showed a significant increase in grain yield after the application of a higher level of nitrogen fertilization. The increase in nitrogen fertilization influenced the increase in gluten proteins content in wheat grain, but these changes were statistically significant only in the first year of the study. The quality of gluten does not depend on nitrogen fertilization. The quality of wheat grain depends on cultivars.

Keywords: fertilization, grain quality, winter wheat, yield

Procedia PDF Downloads 196