Search results for: trimethyl chitosan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 268

Search results for: trimethyl chitosan

58 Synthesis of Iron Oxide Nanoparticles Using Different Stabilizers and Study of Their Size and Properties

Authors: Mohammad Hassan Ramezan zadeh 1 , Majid Seifi 2 , Hoda Hekmat ara 2 1Biomedical Engineering Department, Near East University, Nicosia, Cyprus 2Physics Department, Guilan University , P.O. Box 41335-1914, Rasht, Iran.

Abstract:

Magnetic nano particles of ferric chloride were synthesised using a co-precipitation technique. For the optimal results, ferric chloride at room temperature was added to different surfactant with different ratio of metal ions/surfactant. The samples were characterised using transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectrum to show the presence of nanoparticles, structure and morphology. Magnetic measurements were also carried out on samples using a Vibrating Sample Magnetometer. To show the effect of surfactant on size distribution and crystalline structure of produced nanoparticles, surfactants with various charge such as anionic cetyl trimethyl ammonium bromide (CTAB), cationic sodium dodecyl sulphate (SDS) and neutral TritonX-100 was employed. By changing the surfactant and ratio of metal ions/surfactant the size and crystalline structure of these nanoparticles were controlled. We also show that using anionic stabilizer leads to smallest size and narrowest size distribution and the most crystalline (polycrystalline) structure. In developing our production technique, many parameters were varied. Efforts at reproducing good yields indicated which of the experimental parameters were the most critical and how carefully they had to be controlled. The conditions reported here were the best that we encountered but the range of possible parameter choice is so large that these probably only represent a local optimum. The samples for our chemical process were prepared by adding 0.675 gr ferric chloride (FeCl3, 6H2O) to three different surfactant in water solution. The solution was sonicated for about 30 min until a transparent solution was achieved. Then 0.5 gr sodium hydroxide (NaOH) as a reduction agent was poured to the reaction drop by drop which resulted to participate reddish brown Fe2O3 nanoparticles. After washing with ethanol the obtained powder was calcinated in 600°C for 2h. Here, the sample 1 contained CTAB as a surfactant with ratio of metal ions/surfactant 1/2, sample 2 with CTAB and ratio 1/1, sample 3 with SDS and ratio 1/2, sample 4 SDS 1/1, sample 5 is triton-X-100 with 1/2 and sample 6 triton-X-100 with 1/1.

Keywords: iron oxide nanoparticles, stabilizer, co-precipitation, surfactant

Procedia PDF Downloads 224
57 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 452
56 Cellulose Supported Heterogeneous Pd(II) Catalyst for Synthesis of Biaryls

Authors: Talat Baran

Abstract:

The Suzuki C(sp2)-C(sp2) coupling reaction is considered to be one of the best ways for the synthesis of biaryl compounds. There are many studies reporting the catalytic performance of palladium catalyst in Suzuki coupling reactions. Natural biopolymer (such as zeolite, carbon, silica, and chitosan) supporting catalysts have been lately attracted interest because of their low-cost, nontoxicity, and eco-friendliness. One of the most important natural biopolymer is cellulose, which is widely considered as an eco-friendly biopolymer due to its biodegradable, non-toxic and renewable nature. In this study, (1) cellulose supported Pd(II) catalyst was synthesized (2) its chemical structure was characterized by FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES techniques (3) to investigate the performance of the catalyst in Suzuki coupling reactions by using microwave irradiation technique (4) reusability of the catalyst was done under optimum conditions. This cellulose supported Pd(II) catalyst exhibited high selectivity and efficiency in Suzuki coupling reactions under mild conditions (50°C). High TON and TOF values were recorded for the catalyst. Also, the reusability tests showed the catalysts could be used for several times in consequence of reusability tests.

Keywords: palladium, cellulose, Schiff base, reusability

Procedia PDF Downloads 215
55 Promissing Antifungal Chitinase from Marine Strain of Bacillus

Authors: Ben Amar Cheba, Taha Ibrahim Zaghloul, Mohamad Hisham El-Massry, Ahmad Rafik El-Mahdy

Abstract:

Seventy two bacterial strains with ability to degrade chitin were isolated during a screening program. One of the most potent isolates (strain R2) was identified as Bacillus sp. using conventional methods as well as 16S rRNA technique and submitted in the Gen Bank sequence database as Bacillus sp. R2 with a given accession number DQ 923161. This strain was able to produce high levels of extracellular chitinase. The chitinase of Bacillus sp. R2 hydrolyzed several chitinous substrates preferentially and showed a maximum activity toward the β chitin such as Calmar pen and squid bone chitins with the folds 1.47 and 1.23 respectively. The enzyme also exhibited a substrate binding capacity of more than 70% for squid chitin, shrimp shell colloidal chitin, chitosan and prawn shell chitin. The chitinase showed a moderate antifungal activity against many phytopathogenic fungi such as Aspergillus niger, A. flavus, Penicillium degitatum and Fusarium calmorum.This strain could be a suitable candidate for chitinase production on an industrial scale for using as promising antifungal biopestecide.

Keywords: antifungal activity, Bacillus sp. R2, chitinase, substrate specificity

Procedia PDF Downloads 470
54 Liposome Loaded Polysaccharide Based Hydrogels: Promising Delayed Release Biomaterials

Authors: J. Desbrieres, M. Popa, C. Peptu, S. Bacaita

Abstract:

Because of their favorable properties (non-toxicity, biodegradability, mucoadhesivity etc.), polysaccharides were studied as biomaterials and as pharmaceutical excipients in drug formulations. These formulations may be produced in a wide variety of forms including hydrogels, hydrogel based particles (or capsules), films etc. In these formulations, the polysaccharide based materials are able to provide local delivery of loaded therapeutic agents but their delivery can be rapid and not easily time-controllable due to, particularly, the burst effect. This leads to a loss in drug efficiency and lifetime. To overcome the consequences of burst effect, systems involving liposomes incorporated into polysaccharide hydrogels may appear as a promising material in tissue engineering, regenerative medicine and drug loading systems. Liposomes are spherical self-closed structures, composed of curved lipid bilayers, which enclose part of the surrounding solvent into their structure. The simplicity of production, their biocompatibility, the size and similar composition of cells, the possibility of size adjustment for specific applications, the ability of hydrophilic or/and hydrophobic drug loading make them a revolutionary tool in nanomedicine and biomedical domain. Drug delivery systems were developed as hydrogels containing chitosan or carboxymethylcellulose (CMC) as polysaccharides and gelatin (GEL) as polypeptide, and phosphatidylcholine or phosphatidylcholine/cholesterol liposomes able to accurately control this delivery, without any burst effect. Hydrogels based on CMC were covalently crosslinked using glutaraldehyde, whereas chitosan based hydrogels were double crosslinked (ionically using sodium tripolyphosphate or sodium sulphate and covalently using glutaraldehyde). It has been proven that the liposome integrity is highly protected during the crosslinking procedure for the formation of the film network. Calcein was used as model active matter for delivery experiments. Multi-Lamellar vesicles (MLV) and Small Uni-Lamellar Vesicles (SUV) were prepared and compared. The liposomes are well distributed throughout the whole area of the film, and the vesicle distribution is equivalent (for both types of liposomes evaluated) on the film surface as well as deeper (100 microns) in the film matrix. An obvious decrease of the burst effect was observed in presence of liposomes as well as a uniform increase of calcein release that continues even at large time scales. Liposomes act as an extra barrier for calcein release. Systems containing MLVs release higher amounts of calcein compared to systems containing SUVs, although these liposomes are more stable in the matrix and diffuse with difficulty. This difference comes from the higher quantity of calcein present within the MLV in relation with their size. Modeling of release kinetics curves was performed and the release of hydrophilic drugs may be described by a multi-scale mechanism characterized by four distinct phases, each of them being characterized by a different kinetics model (Higuchi equation, Korsmeyer-Peppas model etc.). Knowledge of such models will be a very interesting tool for designing new formulations for tissue engineering, regenerative medicine and drug delivery systems.

Keywords: controlled and delayed release, hydrogels, liposomes, polysaccharides

Procedia PDF Downloads 197
53 Design and Development of Mucoadhesive Buccal Film Bearing Itraconazole

Authors: Yuvraj Singh Dangi, Kamta Prasad Namdeo, Surendra Bodhake

Abstract:

The purpose of this research was to develop and evaluate mucoadhesive films for buccal administration of itraconazole using film-forming and mucoashesive polymers. Buccal films of chitosan bearing Itraconazole were prepared by solvent casting technique. The films have been evaluated in terms of film weight, thickness, density, surface pH, FTIR, X-ray diffraction analysis, bioadhesion, swelling properties, and in vitro drug release studies. It was found that film formulations of 2 cm2 size having weight in the range of 204 ± 0.76 to 223 ± 2.09 mg and film thickness were in the range of 0.44 ± 0.11 to 0.57 ± 0.19 mm. Density of the films was found to be 0.102 to 0.126 g/ml. Drug content was found to be uniform in the range of 8.23 ± 0.07 to 8.73 ± 0.09 mg/cm2 for formulation A1 to A4. Maximum bioadhesion force was recorded for HPMC buccal films (A2) i.e. 0.57 ± 0.47 as compared to other films. In vitro residence time was in range of 1.7 ± 0.12 to 7.65 ± 0.15 h. The drug release studies show that formulations follow non-fickian diffusion. These mucoadhesive formulations could offer many advantages in comparison to traditional treatments.

Keywords: biovariability, buccal patches, itraconazole, Mucoadhesion

Procedia PDF Downloads 485
52 Ectopic Osteoinduction of Porous Composite Scaffolds Reinforced with Graphene Oxide and Hydroxyapatite Gradient Density

Authors: G. M. Vlasceanu, H. Iovu, E. Vasile, M. Ionita

Abstract:

Herein, the synthesis and characterization of chitosan-gelatin highly porous scaffold reinforced with graphene oxide, and hydroxyapatite (HAp), crosslinked with genipin was targeted. In tissue engineering, chitosan and gelatin are two of the most robust biopolymers with wide applicability due to intrinsic biocompatibility, biodegradability, low antigenicity properties, affordability, and ease of processing. HAp, per its exceptional activity in tuning cell-matrix interactions, is acknowledged for its capability of sustaining cellular proliferation by promoting bone-like native micro-media for cell adjustment. Genipin is regarded as a top class cross-linker, while graphene oxide (GO) is viewed as one of the most performant and versatile fillers. The composites with natural bone HAp/biopolymer ratio were obtained by cascading sonochemical treatments, followed by uncomplicated casting methods and by freeze-drying. Their structure was characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction, while overall morphology was investigated by Scanning Electron Microscopy (SEM) and micro-Computer Tomography (µ-CT). Ensuing that, in vitro enzyme degradation was performed to detect the most promising compositions for the development of in vivo assays. Suitable GO dispersion was ascertained within the biopolymer mix as nanolayers specific signals lack in both FTIR and XRD spectra, and the specific spectral features of the polymers persisted with GO load enhancement. Overall, correlations between the GO induced material structuration, crystallinity variations, and chemical interaction of the compounds can be correlated with the physical features and bioactivity of each composite formulation. Moreover, the HAp distribution within follows an auspicious density gradient tuned for hybrid osseous/cartilage matter architectures, which were mirrored in the mice model tests. Hence, the synthesis route of a natural polymer blend/hydroxyapatite-graphene oxide composite material is anticipated to emerge as influential formulation in bone tissue engineering. Acknowledgement: This work was supported by the project 'Work-based learning systems using entrepreneurship grants for doctoral and post-doctoral students' (Sisteme de invatare bazate pe munca prin burse antreprenor pentru doctoranzi si postdoctoranzi) - SIMBA, SMIS code 124705 and by a grant of the National Authority for Scientific Research and Innovation, Operational Program Competitiveness Axis 1 - Section E, Program co-financed from European Regional Development Fund 'Investments for your future' under the project number 154/25.11.2016, P_37_221/2015. The nano-CT experiments were possible due to European Regional Development Fund through Competitiveness Operational Program 2014-2020, Priority axis 1, ID P_36_611, MySMIS code 107066, INOVABIOMED.

Keywords: biopolymer blend, ectopic osteoinduction, graphene oxide composite, hydroxyapatite

Procedia PDF Downloads 85
51 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis

Authors: Shah Abbas

Abstract:

Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.

Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry

Procedia PDF Downloads 109
50 Regulation Effect of Intestinal Microbiota by Fermented Processing Wastewater of Yuba

Authors: Ting Wu, Feiting Hu, Xinyue Zhang, Shuxin Tang, Xiaoyun Xu

Abstract:

As a by-product of yuba, processing wastewater of Yuba (PWY) contains many bioactive components such as soybean isoflavones, soybean polysaccharides and soybean oligosaccharides, which is a good source of prebiotics and has a potential of high value utilization. The use of Lactobacillus plantarum to ferment PWY can be considered as a potential biogenic element, which can regulate the balance of intestinal microbiota. In this study, firstly, Lactobacillus plantarum was used to ferment PWY to improve its content of active components and antioxidant activity. Then, the health effect of fermented processing wastewater of yuba (FPWY) was measured in vitro. Finally, microencapsulation technology was used applied to improve the sustained release of FPWY and reduce the loss of active components in the digestion process, as well as to improving the activity of FPWY. The main results are as follows: (1) FPWY presented a good antioxidant capacity with DPPH free radical scavenging ability (0.83 ± 0.01 mmol Trolox/L), ABTS free radical scavenging ability (7.47 ± 0.35 mmol Trolox/L) and iron ion reducing ability (1.11 ± 0.07 mmol Trolox/L). Compared with non-fermented processing wastewater of yuba (NFPWY), there was no significant difference in the content of total soybean isoflavones, but the content of glucoside soybean isoflavones decreased, and aglyconic soybean isoflavones increased significantly. After fermentation, PWY can effectively reduce the soluble monosaccharides, disaccharides and oligosaccharides, such as glucose, fructose, galactose, trehalose, stachyose, maltose, raffinose and sucrose. (2) FPWY can significantly enhance the growth of beneficial bacteria such as Bifidobacterium, Ruminococcus and Akkermansia, significantly inhibit the growth of harmful bacteria E.coli, regulate the structure of intestinal microbiota, and significantly increase the content of short-chain fatty acids such as acetic acid, propionic acid, butyric acid, isovaleric acid. Higher amount of lactic acid in the gut can be further broken down into short chain fatty acids. (3) In order to improve the stability of soybean isoflavones in FPWY during digestion, sodium alginate and chitosan were used as wall materials for embedding. The FPWY freeze-dried powder was embedded by the method of acute-coagulation bath. The results show that when the core wall ratio is 3:1, the concentration of chitosan is 1.5%, the concentration of sodium alginate is 2.0%, and the concentration of calcium is 3%, the embossing rate is 53.20%. In the simulated in vitro digestion stage, the release rate of microcapsules reached 59.36% at the end of gastric digestion and 82.90% at the end of intestinal digestion. Therefore, the core materials with good sustained-release performance of microcapsules were almost all released. The structural analysis results of FPWY microcapsules show that the microcapsules have good mechanical properties. Its hardness, springness, cohesiveness, gumminess, chewiness and resilience were 117.75± 0.21 g, 0.76±0.02, 0.54±0.01, 63.28±0.71 g·sec, 48.03±1.37 g·sec, 0.31±0.01, respectively. Compared with the unembedded FPWY, the infrared spectrum results showed that the microcapsules had embedded effect on the FPWY freeze-dried powder.

Keywords: processing wastewater of yuba, lactobacillus plantarum, intestinal microbiota, microcapsule

Procedia PDF Downloads 48
49 Immobilization of Enzymes and Proteins on Epoxy-Activated Supports

Authors: Ehsan Khorshidian, Afshin Farahbakhsh, Sina Aghili

Abstract:

Enzymes are promising biocatalysts for many organic reactions. They have excellent features like high activity, specificity and selectivity, and can catalyze under mild and environment friendly conditions. Epoxy-activated supports are almost-ideal ones to perform very easy immobilization of proteins and enzymes at both laboratory and industrial scale. The activated epoxy supports (chitosan/alginate, Eupergit C) may be very suitable to achieve the multipoint covalent attachment of proteins and enzymes, therefore, to stabilize their three-dimensional structure. The enzyme is firstly covalently immobilized under conditions pH 7.0 and 10.0. The remaining groups of the support are blocked to stop additional interaction between the enzyme and support by mercaptoethanol or Triton X-100. The results show support allowed obtaining biocatalysts with high immobilized protein amount and hydrolytic activity. The immobilization of lipases on epoxy support may be considered as attractive tool for obtaining highly active biocatalysts to be used in both aqueous and anhydrous aqueous media.

Keywords: immobilization of enzymes, epoxy supports, enzyme multipoint covalent attachment, microbial lipases

Procedia PDF Downloads 358
48 Nanocomposite Effect Based on Silver Nanoparticles and Anemposis Californica Extract as Skin Restorer

Authors: Maria Zulema Morquecho Vega, Fabiola CarolinaMiranda Castro, Rafael Verdugo Miranda, Ignacio Yocupicio Villegas, Ana lidia Barron Raygoza, Martin enrique MArquez Cordova, Jose Alberto Duarte Moller

Abstract:

Background: Anemopsis californica, also called (tame grass) belongs to the Saururaceae family small, green plant. The blade is long and wide. Gives a white flower. The plant population is only found in humid, swampy habitats, it grows where there is water, along the banks of streams and water holes. In the winter, it dries up. The leaves, rhizomes, or roots of this plant have been used to treat a range of diseases. Some of its healing properties are used to treat wounds, cold and flu symptoms, spasmodic cough, infection, pain and inflammation, burns, swollen feet, as well as lung ailments, asthma, circulatory problems (varicose veins), rheumatoid arthritis, purifies blood, helps in urinary and digestive tract diseases, sores and healing, for headache, sore throat, diarrhea, kidney pain. The tea made from the leaves and roots is used to treat uterine cancer, womb cancer, relieves menstrual pain and stops excessive bleeding after childbirth. It is also used as a gynecological treatment for infections, hemorrhoids, candidiasis and vaginitis. Objective: To study the cytotoxicity of gels prepared with silver nanoparticles in AC extract combined with chitosan, collagen and hyaluronic acid as an alternative therapy for skin conditions. Methods: The Ag NPs were synthesized according to the following method. A 0.3 mg/mL solution is prepared in 10 ml of deionized water, adjust to pH 12 with NaOH, stirring is maintained constant magnetic and a temperature of 80 °C. Subsequently, 100 ul of a 0.1 M AgNO3 solution and kept stirring constantly for 15 min. Once the reaction is complete, measurements are performed by UV-Vis. A gel was prepared in a 5% solution of acetic acid with the respective nanoparticles and AC extract of silver in the extract of AC. Chitosan is added until the process begins to occur gel. At that time, collagen will be added in a ratio of 3 to 5 drops, and later, hyaluronic acid in 2% of the total compound formed. Finally, after resting for 24 hours, the cytotoxic effect of the gels was studied. in the presence of highly positive bacteria Staphylococcus aureus and highly negative for Escherichia coli. Cultures will be incubated for 24 hours in the presence of the compound and compared with the reference. Results: Silver nanoparticles obtained had a spherical shape and sizes among 20 and 30 nm. UV-Vis spectra confirm the presence of silver nanoparticles showing a surface plasmon around 420 nm. Finally, the test in presence of bacteria yield a good antibacterial property of this nanocompound and tests in people were successful. Conclusion: Gel prepared by biogenic synthesis shown beneficious effects in severe acne, acne vulgaris and wound healing with diabetic patients.

Keywords: anemopsis californica, nanomedicina, biotechnology, biomedicine

Procedia PDF Downloads 64
47 Natural Preservatives: An Alternative for Chemical Preservative Used in Foods

Authors: Zerrin Erginkaya, Gözde Konuray

Abstract:

Microbial degradation of foods is defined as a decrease of food safety due to microorganism activity. Organic acids, sulfur dioxide, sulfide, nitrate, nitrite, dimethyl dicarbonate and several preservative gases have been used as chemical preservatives in foods as well as natural preservatives which are indigenous in foods. It is determined that usage of herbal preservatives such as blueberry, dried grape, prune, garlic, mustard, spices inhibited several microorganisms. Moreover, it is determined that animal origin preservatives such as whey, honey, lysosomes of duck egg and chicken egg, chitosan have antimicrobial effect. Other than indigenous antimicrobials in foods, antimicrobial agents produced by microorganisms could be used as natural preservatives. The antimicrobial feature of preservatives depends on the antimicrobial spectrum, chemical and physical features of material, concentration, mode of action, components of food, process conditions, and pH and storage temperature. In this review, studies about antimicrobial components which are indigenous in food (such as herbal and animal origin antimicrobial agents), antimicrobial materials synthesized by microorganisms, and their usage as an antimicrobial agent to preserve foods are discussed.

Keywords: animal origin preservatives, antimicrobial, chemical preservatives, herbal preservatives

Procedia PDF Downloads 341
46 Rapid Detection of Melamine in Milk Products Based on Modified Gold Electrode

Authors: Rovina Kobun, Shafiquzzaman Siddiquee

Abstract:

A novel and simple electrochemical sensor for the determination of melamine was developed based on modified gold electrode (AuE) with chitosan (CHIT) nanocomposite membrane, zinc oxide nanoparticles (ZnONPs) and ionic liquids ([EMIM][Otf]) to enhance the potential current response of melamine. Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behaviour between melamine and modified AuE in the presence of methylene blue as a redox indicator. The experimental results indicated that the interaction of melamine with CHIT/ZnONPs/([EMIM][Otf])/AuE were based on the strong interaction of hydrogen bonds. The morphological characterization of modified AuE was observed under scanning electron microscope. Under optimal conditions, the current signal was directly proportional to the melamine concentration ranging from 9.6 x 10-5 to 9.6 x 10-11 M, with a correlation coefficient of 0.9656. The detection limit was 9.6 x 10-12 M. Finally, the proposed method was successfully applied and displayed an excellent sensitivity in the determination of melamine in milk samples.

Keywords: melamine, gold electrode, zinc oxide nanoparticles, cyclic voltammetries, differential pulse voltammetries

Procedia PDF Downloads 395
45 Functionalized DOX Nanocapsules by Iron Oxide Nanoparticles for Targeted Drug Delivery

Authors: Afsaneh Ghorbanzadeh, Afshin Farahbakhsh, Zakieh Bayat

Abstract:

The drug capsulation was used for release and targeted delivery in determined time, place and temperature or pH. The DOX nanocapsules were used to reduce and to minimize the unwanted side effects of drug. In this paper, the encapsulation methods of doxorubicin (DOX) and the labeling it by the magnetic core of iron (Fe3O4) has been studied. The Fe3O4 was conjugated with DOX via hydrazine bond. The solution was capsuled by the sensitive polymer of heat or pH such as chitosan-g-poly (N-isopropylacrylamide-co-N,N-dimethylacrylamide), dextran-g-poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and mPEG-G2.5 PAMAM by hydrazine bond. The drug release was very slow at temperatures lower than 380°C. There was a rapid and controlled drug release at temperatures higher than 380°C. According to experiments, the use mPEG-G2.5PAMAM is the best method of DOX nanocapsules synthesis, because in this method, the drug delivery time to certain place is lower than other methods and the percentage of released drug is higher. The synthesized magnetic carrier system has potential applications in magnetic drug-targeting delivery and magnetic resonance imaging.

Keywords: drug carrier, drug release, doxorubicin, iron oxide NPs

Procedia PDF Downloads 391
44 Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry

Authors: R. Chanajaree, D. Luanwiset, K. Pongpratea

Abstract:

Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY).

Keywords: dyes removal, binding free energies, quantum calculation, docking

Procedia PDF Downloads 122
43 Simultaneous Production of Forskolin and Rosmarinic Acid in vitro Cultures of Coleus Forskohlii Briq

Authors: Ennus Tajuddin Tamboli, Madhukar Garg, Mohd. Mujeeb, Sayeed Ahmad

Abstract:

An efficient protocol for simultaneous production of forskolin and rosmarinic acid in in vitro callus derived from the leaves of Coleus forskohlii Briq. has been developed. MS media was used for the establishment of cultures and NAA + 6-BA (1.0 ppm) was found best for callus growth. The callus was further subjected to treatment with various elicitor/precursors viz. chitosan, thidiazuron and methyl jasmonate to observe their effect on production of biomass and accumulation of secondary metabolites. The content of forskolin and rosmarinic acid were estimated by HPTLC, in comparison to natural explant which showed 2 fold and 10 fold rise in forskolin and rosmarinic acid content, respectively. Methy1 jasmonate 50 µM was found best for production of forskolin, whereas thidiazuron showed best results in the yield of rosmarinic acid, separately in static culture. However, combined treatment in suspension culture showed moderated effect for increase in secondary metabolites but the biomass increased significantly as compared to static culture.

Keywords: plant tissue culture, secondary metabolites, coleus, forskolin, rosmarinic acid, HPTLC

Procedia PDF Downloads 315
42 Coagulation-Flocculation of Palm Oil Mill Effluent from Pertubuhan Peladang Negeri Johor, Malaysia

Authors: A. H. Jagaba, Musa Babayo, Ab Aziz Abdul Latiff, Sule Abubakar, I. M. Lawal, Isa Zubairu, M. A. Nasara

Abstract:

Wastewater containing heavy metals is of extreme importance globally because of its potential threat to both the aquatic ecosystem and the soil environment. Heavy metal is hazardous even at low concentration and thereby causing various forms of diseases. One method which has been tested and found to be effective for heavy metals removal is coagulation-flocculation. For the coagulation process of POME obtained from Pertubuhan Peladang Negeri Johor (PPNJ), Oil Palm Mill Company located in Kahang area of Kluang, Johor Darul Takzim, Malaysia, diffèrent coagulants would be used to absorb and then separate the metals from wastewater. The determination of heavy metals concentration in POME was carried out using an inductively coupled plasma (ICP) and an Atomic Absorption Spectrometer (AAS). Results of the study showed that alum coagulant was successful in effectively reducing Cu, Cd, and Mn from 0.840 mg/l, 0.00509 mg/l and 8.191 mg/l to as low as 0.107 mg/l, 0.000270 mg/l and 0.612 mg/l respectively. All were obtained at a dose of 1000 mg/l. 1000 mg/l dose of ferric chloride reduced Pb concentration from 0.0248 mg/l to 0.00151 mg/l. Chitosan was best at reducing Fe and Zn from 62.91 mg/l and 3.616 mg/l to 6.003 mg/l and 0.595 mg/l all at a dose of 400 mg/l.

Keywords: palm oil mill effluent, coagulation, heavy metals, Pertubuhan Peladang Negeri Johor, Malaysia

Procedia PDF Downloads 197
41 Nutraceutical Potential of Mushroom Bioactive Metabolites and Their Food Functionality

Authors: Jackson Ishara, Ariel Buzera, Gustave N. Mushagalusa, Ahmed R. A. Hammam, Judith Munga, Paul Karanja, John Kinyuru

Abstract:

Numerous mushroom bioactive metabolites, including polysaccharides, eritadenine, lignin, chitosan, mevinolin, and astrakurkurone have been studied in life-threatening conditions and diseases such as diabetes, cardiovascular, hypertension, cancer, DNA damage, hypercholesterolemia, and obesity attempting to identify natural therapies. These bioactive metabolites have shown potential as antiviral and immune system strengthener natural agents through diverse cellular and physiological pathways modulation with no toxicity evidence, widely available, and affordable. In light of the emerging literature, this paper compiles the most recent information describing the molecular mechanisms that underlie the nutraceutical potentials of these mushroom metabolites suggesting their effectiveness if combined with existing drug therapies. The findings raise hope that these mushroom bioactive metabolites may be utilized as natural therapies considering their therapeutic potential while anticipating further research designing clinical trials and developing new drug therapies while encouraging their consumption as a natural adjuvant in preventing and controlling life-threatening conditions and diseases.

Keywords: bioactive metabolites, food functionality, health-threatening conditions, mushrooms, nutraceutical

Procedia PDF Downloads 70
40 Broad Spectrum Biofilm Inhibition by Chitosanase Purified from Bacillus licheniformis Isolated from Spoilt Vegetables

Authors: Sahira Nsayef Muslim, Israa M. S. Al-Kadmy, Nadheema Hammood Hussein, Alaa Naseer Mohammed Ali, Buthainah Mohammed Taha, Rayim Sabah Abbood, Sarah Naji Aziz

Abstract:

A novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples have the ability to produce the chitosanase enzyme when grown on chitosan substrate. Chitosanase was purified to homogeneity with a recovery yield of 35.71% and 5.5 fold of purification by using ammonium sulfate at 45% saturation followed by ion exchange chromatography on DEAE-cellulose column and gel filtration chromatography on Sephadex G-100 column. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria (biofilm producers) after using Congo Red agar and Microtiter plates methods. Highly antibiofilm of chitosanase recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation ratio to 22 and 29%, respectively compared with (100)% of control. Thus, chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug-resistant pathogen-associated infections, especially in situation where biofilms are involved.

Keywords: chitosanase, Bacillus licheniformis, vegetables, biofilm

Procedia PDF Downloads 349
39 Smart Polymeric Nanoparticles Loaded with Vincristine Sulfate for Applications in Breast Cancer Drug Delivery in MDA-MB 231 and MCF7 Cell Lines

Authors: Reynaldo Esquivel, Pedro Hernandez, Aaron Martinez-Higareda, Sergio Tena-Cano, Enrique Alvarez-Ramos, Armando Lucero-Acuna

Abstract:

Stimuli-responsive nanomaterials play an essential role in loading, transporting and well-distribution of anti-cancer compounds in the cellular surroundings. The outstanding properties as the Lower Critical Solution Temperature (LCST), hydrolytic cleavage and protonation/deprotonation cycle, govern the release and delivery mechanisms of payloads. In this contribution, we experimentally determine the load efficiency and release of antineoplastic Vincristine Sulfate into PNIPAM-Interpenetrated-Chitosan (PIntC) nanoparticles. Structural analysis was performed by Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1HNMR). ζ-Potential (ζ) and Hydrodynamic diameter (DH) measurements were monitored by Electrophoretic Mobility (EM) and Dynamic Light scattering (DLS) respectively. Mathematical analysis of the release pharmacokinetics reveals a three-phase model above LCST, while a monophasic of Vincristine release model was observed at 32 °C. Cytotoxic essays reveal a noticeable enhancement of Vincristine effectiveness at low drug concentration on HeLa cervix cancer and MDA-MB-231 breast cancer.

Keywords: nanoparticles, vincristine, drug delivery, PNIPAM

Procedia PDF Downloads 125
38 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications

Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara

Abstract:

Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.

Keywords: bone regeneration, chitosan, electrospinning, phosphorylation

Procedia PDF Downloads 195
37 Nanosilver Loaded Biomaterial for Wound Healing Applications: In Vitro Studies

Authors: Sathish Sundar Dhilip Kumar, Nicolette Houreld, Heidi Abrahamse

Abstract:

Silver nanoparticles (AgNPs) are classified as metal-based nanomaterials and have received considerable attention globally for wound healing and tissue engineering applications. Naturally available materials are a significant source of medicinal products to treat numerous diseases; polysaccharides are among them. Polysaccharides are non-toxic, safe, and inexpensive, and it has good biocompatibility and biodegradability. Most polysaccharides are shown to have a positive effect on wound healing processes, including chitosan and gum tragacanth. The present study evaluated the improvement of cellular wound healing by nanosilver-loaded polysaccharide-based biomaterial (CGT-NS) in WS1 cells. The physicochemical properties of prepared CGT-NS were studied using different characterization techniques, and it exhibited better stability and swelling properties in various pH conditions. Surface morphology was studied using scanning electron microscopy, and it revealed the porous morphology of the synthesized CGT-NS. The synthesized biomaterial displayed acceptable antibacterial properties against Gram-positive and Gram-negative bacterial strains, and it may prevent infection. The biocompatibility of the synthesized CGT-NS biomaterial was studied in WS1 cells, where it may lead to promote increased cell adhesion and proliferation properties. Thus, the CGT-NS biomaterial has good potential as a biomaterial in wound healing applications.

Keywords: biomaterial, wound healing, nano, silver nanoparticles

Procedia PDF Downloads 155
36 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)

Authors: Refal Hussain, Saifuddin M. Nomanbhay

Abstract:

Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.

Keywords: bioethanol, Escherichia coli, immobilization, optimization

Procedia PDF Downloads 619
35 Transformations of Spatial Distributions of Bio-Polymers and Nanoparticles in Water Suspensions Induced by Resonance-Like Low Frequency Electrical Fields

Authors: A. A. Vasin, N. V. Klassen, A. M. Likhter

Abstract:

Water suspensions of in-organic (metals and oxides) and organic nano-objects (chitozan and collagen) were subjected to the treatment of direct and alternative electrical fields. In addition to quasi-periodical spatial patterning resonance-like performance of spatial distributions of these suspensions has been found at low frequencies of alternating electrical field. These resonances are explained as the result of creation of equilibrium states of groups of charged nano-objects with opposite signs of charges at the interparticle distances where the forces of Coulomb attraction are compensated by the repulsion forces induced by relatively negative polarization of hydrated regions surrounding the nanoparticles with respect to pure water. The low frequencies of these resonances are explained by comparatively big distances between the particles and their big masses with t\respect to masses of atoms constituting molecules with high resonance frequencies. These new resonances open a new approach to detailed modeling and understanding of mechanisms of the influence of electrical fields on the functioning of internal organs of living organisms at the level of cells and neurons.

Keywords: bio-polymers, chitosan, collagen, nanoparticles, coulomb attraction, polarization repulsion, periodical patterning, electrical low frequency resonances, transformations

Procedia PDF Downloads 524
34 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 242
33 Synthesis of Beetosan's Hydrogels with Yellow Tea

Authors: Jolanta Jaskowska, Anna Drabczyk, Sonia Kudlacik, Agnieszka Sobczak-Kupiec, Bozena Tyliszczak

Abstract:

The aim of the study was to select the best conditions for the synthesis of Beetosan's hydrogels with yellow tea. The study determined recipe hydrogel matrix by selecting the appropriate ratio of substrates and to investigate the effect of yellow tea, on the structure and properties of the hydrogel materials. The scope of the research included both to obtain of raw materials required for the synthesis of hydrogel materials, as well as an assessment of their properties. In the first stage of research Beetosan (chitosan derived from bees), and extract the yellow tea China Kekecha was obtained. The second stage was synthesis hydrogels modified by yellow tea. The synthesis of polymeric matrix was preparation under UV radiation. Obtained hydrogel materials were investigated extensively using incubation investigations, absorption capacity, and spectroscopic (FT-IR) and X-ray diffraction (XRD) methods. Moreover, there was also performed the surface wettability test and a photomicrograph of the structure using scanning electron microscope. Analysis of the obtained results confirms that presence of yellow tea does not significantly affect the behavior of the hydrogels in the incubation fluids. The results show that hydrogel materials exhibit compatibility with the incubatory solutions and they also retain the stability in the tested liquids. Hydrogels obtained in this method might be applied in the cosmetics industry and in the field of medicine. This is possible due to the many interesting properties of tea and biocompatibility and non-toxicity hydrogel materials. The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER/033/697/L-5/13/NCBR/2014) for providing financial support to this project.

Keywords: Beetosan, hygrogels, materials, yellow tea

Procedia PDF Downloads 249
32 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties

Authors: Mahnoosh Aliahmadi, Akbar Esmaeili

Abstract:

This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.

Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium

Procedia PDF Downloads 51
31 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 84
30 Remote Controlled of In-Situ Forming Thermo-sensitive Hydrogel Nanocomposite for Hyperthermia Therapy Application: Synthesis and Characterizations

Authors: Elbadawy A. Kamoun

Abstract:

Magnetically responsive hydrogel nanocomposite (NCH) based on composites of superparamagnetic of Fe3O4 nano-particles and temperature responsive hydrogel matrices were developed. The nanocomposite hydrogel system based on the temperature sensitive N-isopropylacrylamide hydrogels crosslinked by poly(ethylene glycol)-400 dimethacrylate (PEG400DMA) incorporating with chitosan derivative, was synthesized and characterized. Likewise, the NCH system was synthesized by visible-light free radical photopolymerization, using carboxylated camphorquinone-amine system to avoid the common risks of the use of UV-light especially in hyperthermia treatment. Superparamagnetic of iron oxide nanoparticles were introduced into the hydrogel system by polymerizing mixture technique and monomer solution. FT-IR with Raman spectroscopy and Wide angle-XRD analysis were utilized to verify the chemical structure of NCH and exfoliation reaction for nanoparticles, respectively. Additionally, morphological structure of NCH was investigated using SEM and TEM photographs. The swelling responsive of the current nanocomposite hydrogel system with different crosslinking conditions, temperature, magnetic field efficiency, and the presence effect of magnetic nanoparticles were evaluated. Notably, hydrolytic degradation of this system was proved in vitro application. While, in-vivo release profile behavior is under investigation nowadays. Moreover, the compatibility and cytotoxicity tests were previously investigated in our studies for photoinitiating system. These systems show promised polymeric material candidate devices and are expected to have a wide applicability in various biomedical applications as mildly.

Keywords: hydrogel nanocomposites, tempretaure-responsive hydrogel, superparamagnetic nanoparticles, hyperthermia therapy

Procedia PDF Downloads 249
29 Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application

Authors: Li Maksym, Prabhakar M. N., Jung-Il Song

Abstract:

In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport.

Keywords: cotton farbic, flame retardancy, surface coating, intumescent mechanism

Procedia PDF Downloads 61