Search results for: transdermal drug delivery system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15924

Search results for: transdermal drug delivery system

15744 Proniosomes as a Carrier for Ocular Drug Delivery

Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy

Abstract:

Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.

Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes

Procedia PDF Downloads 198
15743 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis

Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu

Abstract:

Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.

Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide

Procedia PDF Downloads 209
15742 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing

Authors: Rajni Kant Panik

Abstract:

The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.

Keywords: hydrogel, nanoparticle, PLGA, wound healing

Procedia PDF Downloads 284
15741 Drug and Poison Information Centers: An Emergent Need of Health Care Professionals in Pakistan

Authors: Asif Khaliq, Sayeeda A. Sayed

Abstract:

The drug information centers provide drug related information to the requesters that include physicians, pharmacist, nurses and other allied health care professionals. The International Pharmacist Federation (FIP) describes basic functions of a drug and poison information centers as drug evaluation, therapeutic counseling, pharmaceutical advice, research, pharmaco-vigilence and toxicology. Continuous advancement in the field of medicine has expanded the medical literature, which has increased demand of a drug and poison information center for the guidance, support and facilitation of physicians. The objective of the study is to determine the need of drug and poison information centers in public and private hospitals of Karachi, Pakistan. A cross sectional study was conducted during July 2013 to April 2014 using a self-administered, multi-itemed questionnaire. Non Probability Convenient sampling was used to select the study participants. A total of 307 physicians from public and private hospitals of Karachi participated in the study. The need for 24/7 Drug and poison information center was highlighted by 92 % of physicians and 67% physicians suggested opening a drug information center at the hospital. It was reported that 70% physicians take at least 15 minutes for searching the information about the drug while managing a case. Regarding the poisoning case management, 52% physicians complaint about the unavailability of medicines in hospitals; and mentioned the importance of medicines for safe and timely management of patients. Although 73% physicians attended continued medical education (CME) sessions, 92 % physicians insisted on the need of 24/7 Drug and poison information center. The scarcity of organized channel for obtaining the information about drug and poisons is one of the most crucial problems for healthcare workers in Pakistan. The drug and poison information center is an advisory body that assists health care professional and patients in provision of appropriate drug and hazardous substance information. Drug and poison information center is one of the integral needs for running an effective health care system. Provision of a 24 /7 drug information centers with specialized staff offer multiple benefits to the hospitals while reducing treatment delays, addressing awareness gaps of all stakeholders and ensuring provision of quality health care.

Keywords: drug and poison information centers, Pakistan, physicians, public and private hospitals

Procedia PDF Downloads 299
15740 Cellular Uptake and Endocytosis of Doxorubicin Loaded Methoxy Poly (Ethylene Glycol)-Block-Poly (Glutamic Acid) [DOX/mPEG-b-PLG] Nanoparticles against Human Breast Cancer Cell Lines

Authors: Zaheer Ahmad, Afzal Shah

Abstract:

pH responsive block copolymers consist of mPEG and glutamic acid units were syntheiszed in different formulations. The synthesized polymers were structurally investigated. Doxorubicin Hydrocholide (DOX-HCl) as a chemotherapy medication for the treatment of cancer was selected. DOX-HCl was loaded and their drug loading content and drug loading efficiency were determined. The nanocarriers were obtained in small size, well shaped and slightly negative surface charge. The release study was carried out both at pH 7.4 and 5.5 and it was revealed that the release was sustained and in controlled manner and there was no initial burst release. The in vitro release study was further carried out for different formulations with different glutamic acid moieties. Time dependent cell proliferation inhibition of the free drug and drug loaded nanoparticles against human breast cancer cell lines MCF-7 and Zr-75-30 was observed. Cellular uptakes and endocytosis were investigated by confocal laser scanning microscopy (CLSM) and flow cytometery. The biocompatibility, optimum size, shape and surface charge of the developed nanoparticles make the nanoparticles an efficient drug delivery carrier.

Keywords: doxorubicin, glutamic acid, cell proliferation inhibition, breast cancer cell

Procedia PDF Downloads 99
15739 Analyses of Adverse Drug Reactions Reported of Hospital in Taiwan

Authors: Yu-Hong Lin

Abstract:

Background: An adverse drug reaction (ADR) reported is an injury which caused by taking medicines. Sometimes the severity of ADR reported may be minor, but sometimes it could be a life-threatening situation. In order to provide healthcare professionals as a better reference in clinical practice, we do data collection and analysis from our hospital. Methods: This was a retrospective study of ADRs reported performed from 2014 to 2015 in our hospital in Taiwan. We collected assessment items of ADRs reported, which contain gender and age, occurring sources, Anatomical Therapeutic Chemical (ATC) classification of suspected drugs, types of adverse reactions, Naranjo score calculating by Naranjo Adverse Drug Reaction Probability Scale and so on. Results: The investigation included two hundred and seven ADRs reported. Most of ADRs reported were occurring in outpatient department (92%). The average age of ADRs reported was 65.3 years. Less than 65 years of age were in the majority in this study (54%). Majority of all ADRs reported were males (51%). According to ATC classification system, the major classification of suspected drugs was cardiovascular system (19%) and antiinfectives for systemic use (18%) respectively. Among the adverse reactions, Dermatologic Effects (35%) were the major type of ADRs. Also, the major Naranjo scores of all ADRs reported ranged from 1 to 4 points (91%), which represents a possible correlation between ADRs reported and suspected drugs. Conclusions: Definitely, ADRs reported is still an extremely important information for healthcare professionals. For that reason, we put all information of ADRs reported into our hospital's computer system, and it will improve the safety of medication use. By hospital's computer system, it can remind prescribers to think of information about patient's ADRs reported. No drugs are administered without risk. Therefore, all healthcare professionals should have a responsibility to their patients, who themselves are becoming more aware of problems associated with drug therapy.

Keywords: adverse drug reaction, Taiwan, healthcare professionals, safe use of medicines

Procedia PDF Downloads 203
15738 Formulation of Famotidine Solid Lipid Nanoparticles (SLN): Preparation, Evaluation and Release Study

Authors: Rachmat Mauludin, Nurmazidah

Abstract:

Background and purpose: Famotidine is an H2 receptor blocker. Absorption orally is rapid enough, but famotidine can be degraded by stomach acid causing dose reduction until 35.8% after 50 minutes. This drug also undergoes first-pass metabolism which reduced its bio availability only until 40-50%. To overcome these problems, Solid Lipid Nano particles (SLNs) as alternative delivery systems can be formulated. SLNs is a lipid-based drug delivery technology with 50-1000 nm particle size, where the drug incorporated into the bio compatible lipids and the lipid particles are stabilized using appropriate stabilizers. When the particle size is 200 nm or below, lipid containing famotidine can be absorbed through the lymphatic vessels to the subclavian vein, so first-pass metabolism can be avoided. Method: Famotidine SLNs with various compositions of stabilizer was prepared using a high-speed homogenization and sonication method. Then, the particle size distribution, zeta potential, entrapment efficiency, particle morphology and in vitro release profiles were evaluated. Optimization of sonication time also carried out. Result: Particle size of SLN by Particle Size Analyzer was in range 114.6 up to 455.267 nm. Ultrasonicated SLNs within 5 minutes generated smaller particle size than SLNs which was ultrasonicated for 10 and 15 minutes. Entrapment efficiency of SLNs were 74.17 up to 79.45%. Particle morphology of the SLNs was spherical and distributed individually. Release study of Famotidine revealed that in acid medium, 28.89 up to 80.55% of famotidine could be released after 2 hours. Nevertheless in basic medium, famotidine was released 40.5 up to 86.88% in the same period. Conclusion: The best formula was SLNs which stabilized by 4% Poloxamer 188 and 1 % Span 20, that had particle size 114.6 nm in diameter, 77.14% famotidine entrapped, and the particle morphology was spherical and distributed individually. SLNs with the best drug release profile was SLNs which stabilized by 4% Eudragit L 100-55 and 1% Tween 80 which had released 36.34 % in pH 1.2 solution, and 74.13% in pH 7.4 solution after 2 hours. The optimum sonication time was 5 minutes.

Keywords: famotodine, SLN, high speed homogenization, particle size, release study

Procedia PDF Downloads 825
15737 European Drug Serialization: Securing the Pharmaceutical Drug Supply Chain from Counterfeiters

Authors: Vikram Chowdhary, Marek Vins

Abstract:

The profitability of the pharmaceutical drug business has attracted considerable interest, but it also faces significant challenges. Counterfeiters take advantage of the industry's vulnerabilities, which are further exacerbated by the globalization of the market, online trading, and complex supply chains. Governments and organizations worldwide are dedicated to creating a secure environment that ensures a consistent and genuine supply of pharmaceutical products. In 2019, the European authorities implemented regulation EU 2016/161 to strengthen traceability and transparency throughout the entire drug supply chain. This regulation requires the addition of enhanced security features, such as serializing items to the saleable unit level or individual packs. Despite these efforts, the incidents of pharmaceutical counterfeiting continue to rise globally, with regulated territories being particularly affected. This paper examines the effectiveness of the drug serialization system implemented by European authorities. By conducting a systematic literature review, we assess the implementation of drug serialization and explore the potential benefits of integrating emerging digital technologies, such as RFID and Blockchain, to improve traceability and management. The objective is to fortify pharmaceutical supply chains against counterfeiters and manipulators and ensure their security.

Keywords: blockchain, counterfeit drugs, EU drug serialization, pharmaceutical industry, RFID

Procedia PDF Downloads 70
15736 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 277
15735 Formulation and Evaluation of Niosomes Containing an Antihypertensive Drug

Authors: Sunil Kamboj, Suman Bala, Vipin Saini

Abstract:

Niosomes were formulated with an aim of enhancing the oral bioavailability of losartan potassium and formulated in different molar ratios of surfactant, cholesterol and dicetyl phosphate. The formulated niosomes were found in range of 54.98 µm to 107.85 µm in size. Formulations with 1:1 ratio of surfactant and cholesterol have shown maximum entrapment efficiencies. Niosomes with sorbitan monostearate showed maximum drug release and zero order release kinetics, at the end of 24 hours. The in vivo study has shown the significant enhancement in oral bioavailability of losartan potassium in rats, after a dose of 10 mg/kg. The average relative bioavailability in relation with pure drug solution was found 2.56, indicates more than two fold increase in oral bioavailability. A significant increment in MRT reflects the release retarding ability of the vesicles. In conclusion, niosomes could be a promising delivery of losartan potassium with improved oral bioavailability and prolonged release profiles.

Keywords: non-ionic surfactant vesicles, losartan potassium, oral bioavailability, controlled release

Procedia PDF Downloads 319
15734 Prevalence of Drug Injection among Male Prisoners in the West of Iran

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh

Abstract:

Background: Substance addiction is one of the major worldwide problems that destroys economy, familial relationships, and the abuser’s career and has several side effects; in the meantime drug injection due to the possibility of shared use of syringes among drug users could have multiple complications to be followed. The purpose of this study was to determine the prevalence of drug injection among male prisoners in Kermanshah city, the west of Iran. Methods: In this cross-sectional study 615 male prisoners were randomly selected to participate voluntarily in the study. Participants filled out a writing self-report questionnaire. Data were analyzed by the SPSS software (ver. 21.0) at 95% significant level. Results: The mean age of respondents was 31.13 years [SD: 7.76]. Mean initiation age for drug use was 14.36 years (range, 9-34 years). Almost, 39.4 % reported a history of drug use before prison. Opium (33.2%) and crystal (27.1%) was the most used drug among prisoners. Furthermore, 9.3 % had a history of injection addiction. There was a significant correlation between age, crime type, marital status, economic status, unprotected sex and drug injection (P < 0.05). Conclusion: The low age of drug abuse and the prevalence of drug injection among offenders can be as a warning for responsible; in this regard, implementation of prevention programs to risky behavior and harm reduction among high-risk groups can follow useful results.

Keywords: substance abuse, drug injection, prison, Iran

Procedia PDF Downloads 459
15733 Conjugated Chitosan-Carboxymethyl-5-Fluorouracil Nanoparticles for Skin Delivery

Authors: Mazita Mohd Diah, Anton V. Dolzhenko, Tin Wui Wong

Abstract:

Nanoparticles, being small with a large specific surface area, increase solubility, enhance bioavailability, improve controlled release and enable precision targeting of the entrapped compounds. In this study, chitosan as polymeric permeation enhancer was conjugated to a polar pro-drug, carboxymethyl-5-fluorouracil (CMFU) to increase the skin drug permeation. Chitosan-CMFU conjugate was synthesized using chemical conjugation process through succinate linker. It was then transformed into nanoparticles via spray drying method. The conjugation was elucidated using Fourier Transform Infrared and Proton Nuclear Magnetic Resonance techniques. The nanoparticle size, size distribution, zeta potential, drug content, skin permeation and retention profiles were characterized. The conjugation was denoted using 1H NMR by new peaks at signal δ = 4.184 ppm (singlet, 2H for CH2) and 7.676-7.688 ppm (doublet, 1H for C6) attributed to CMFU in chitosan-CMFU NMR spectrum. The nanoparticles had profiles of particle size: 93.97 ±35.11 nm, polydispersity index: 0.40 ± 0.14, zeta potential: +18.25 ±2.95 mV and drug content: 6.20 ± 1.98 % w/w. Almost 80 % w/w CMFU in the form of nanoparticles permeated through the skin in 24 hours and close to 50 % w/w permeation occurred in first 1-2 hours. Without conjugation to chitosan and nanoparticulation, less than 40 % w/w CMFU permeated through the skin in 24 hours. The skin drug retention likewise was higher with chitosan-CMFU nanoparticles (15.34 ± 5.82 % w/w) than CMFU (2.24 ± 0.57 % w/w). CMFU, through conjugation with chitosan permeation enhancer and processed in nanogeometry, had its skin permeation and retention degree promoted.

Keywords: carboxymethyl-5-fluorouracil, chitosan, conjugate, skin permeation, skin retention

Procedia PDF Downloads 331
15732 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy

Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets

Abstract:

Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery

Procedia PDF Downloads 344
15731 Lead-Time Estimation Approach Using the Process Capability Index

Authors: Abdel-Aziz M. Mohamed

Abstract:

This research proposes a methodology to estimate the customer order lead time in the supply chain based on the process capability index. The cases when the process output is normally distributed and when it is not are considered. The relationships between the system capability indices in both service and manufacturing applications, delivery system reliability and the percentages of orders delivered after their promised due dates are presented. The proposed method can be used to examine the current process capability to deliver the orders before the promised lead-time. If the system was found to be incapable, the method can be used to help revise the current lead-time to a proper value according to the service reliability level selected by the management. Numerical examples and a case study describing the lead time estimation methodology and testing the system capability of delivering the orders before their promised due date are illustrated.

Keywords: lead-time estimation, process capability index, delivery system reliability, statistical analysis, service achievement index, service quality

Procedia PDF Downloads 531
15730 Preparation and Size Control of Sub-100 Nm Pure Nanodrugs

Authors: Jinfeng Zhang, Chun-Sing Lee

Abstract:

Pure nanodrugs (PNDs) – nanoparticles consisting entirely of drug molecules, have been considered as promising candidates for the next-generation nanodrugs. However, the traditional preparation method via reprecipitation faces critical challenges including low production rates, relatively large particle sizes and batch-to-batch variations. Here, for the first time, we successfully developed a novel, versatile and controllable strategy for preparing PNDs via an anodized aluminium oxide (AAO) template-assisted method. With this approach, we prepared PNDs of an anti-cancer drug (VM-26) with precisely controlled sizes reaching the sub-20 nm range. This template-assisted approach has much higher feasibility for mass production comparing to the conventional reprecipitation method and is beneficial for future clinical translation. The present method is further demonstrated to be easily applicable for a wide range of hydrophobic biomolecules without the need of custom molecular modifications and can be extended for preparing all-in-one nanostructures with different functional agents.

Keywords: drug delivery, pure nanodrugs, size control, template

Procedia PDF Downloads 276
15729 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems

Authors: Raouf Alizadeh, Kadijeh Hemmati

Abstract:

The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.

Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior

Procedia PDF Downloads 287
15728 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 72
15727 Parameters Influencing Human Machine Interaction in Hospitals

Authors: Hind Bouami

Abstract:

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.

Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making

Procedia PDF Downloads 152
15726 Inventory Management to Minimize Storage Costs and Improve Delivery Time in a Pharmaceutical Industry

Authors: Israel Becerril Rosales, Manuel González De La Rosa, Gerardo Villa Sánchez

Abstract:

In this work, the effects that produce not having a good inventory management is analyzed, in addition of the way that how it affects the storage costs. The research began conducting the historical analysis about stored products, its storage capacity, and distribution. The results were not optimal, since in all its raw materials (RM) have overstocking, the warehouse capacity is only used by 61%, does not have a specific place for each of its RM, causing that the delivery times increases and makes difficult a cyclical inventory. These shortcomings allowed to view and select as design alternatives the inventory ABC, so that depending on the consumption of each RM would be redistributed by using economic amount requested. Also, the Delphi method to ensure the practical applicability of the proposed tool was used, taking in account comments and suggestions of the involved experts, as well as the compliance of NOM-059-SSA1-2015 good manufacturing practices of drug. With the actions implemented, the utilization rate drops of 61% to 32% capacity, it shows that the warehouse was not designed properly due to there is not an industrial engineering area.

Keywords: lead time, improve delivery, storage costs, inventory management

Procedia PDF Downloads 203
15725 Polymer Composites Of MOF-5 For Efficient and Sustained Delivery of Cephalexin and Metronidazole

Authors: Anoff Anim, Lila Mahmoud, Maria Katsikogianni, Sanjit Nayak

Abstract:

Sustained and controlled delivery of antimicrobial drugs have been largely studied recently using metal organic frameworks (MOFs)and different polymers. However, much attention has not been given to combining both MOFs and biodegradable polymers, which would be a good strategy in providing a sustained gradual release of the drugs. Herein, we report a comparative study of the sustained and controlled release of widely used antibacterial drugs, cephalexin and metronidazole, from zinc-based MOF-5 incorporated in biodegradable polycaprolactone (PCL) and poly-lactic glycolic acid (PLGA) membranes. Cephalexin and metronidazole were separately incorporated in MOF-5 post-synthetically, followed by their integration into biodegradable PLGA and PCL membranes. The pristine MOF-5 and the loaded MOFs were thoroughly characterized by FT-IR, SEM, TGA and PXRD. Drug release studies were carried out to assess the release rate of the drugs in PBS and distilled water for up to 48 hours using UV-Vis Spectroscopy. Four bacterial strains from both the Gram-positive and Gram-negative types, Staphylococus aureus, Staphylococuss epidermidis, Escherichia coli, Acinetobacter baumanii, were tested against the pristine MOF, pure drugs, loaded MOFs and the drug-loaded MOF-polymer composites. Metronidazole-loaded MOF-5 composite of PLGA (PLGA-Met@MOF-5) was found to show highest efficiency to inhibit the growth of S. epidermidis compared to the other bacteria strains while maintaining a sustained minimum inhibitory concentration (MIC). This study demonstrates that the combination of biodegradable MOF-polymer composites can provide an efficient platform for sustained and controlled release of antimicrobial drugs and can be a potential strategy to integrate them in biomedical devices.

Keywords: antimicrobial resistance, biodegradable polymers, cephalexin, drug release metronidazole, MOF-5, PCL, PLGA

Procedia PDF Downloads 101
15724 Drugstore Control System Design and Realization Based on Programmable Logic Controller (PLC)

Authors: Muhammad Faheem Khakhi, Jian Yu Wang, Salman Muhammad, Muhammad Faisal Shabir

Abstract:

Population growth and Chinese two-child policy will boost pharmaceutical market, and it will continue to maintain the growth for a period of time in the future, the traditional pharmacy dispensary has been unable to meet the growing medical needs of the peoples. Under the strong support of the national policy, the automatic transformation of traditional pharmacies is the inclination of the Times, the new type of intelligent pharmacy system will continue to promote the development of the pharmaceutical industry. Under this background, based on PLC control, the paper proposed an intelligent storage and automatic drug delivery system; complete design of the lower computer's control system and the host computer's software system has been present. The system can be applied to dispensing work for Chinese herbal medicinal and Western medicines. Firstly, the essential of intelligent control system for pharmacy is discussed. After the analysis of the requirements, the overall scheme of the system design is presented. Secondly, introduces the software and hardware design of the lower computer's control system, including the selection of PLC and the selection of motion control system, the problem of the human-computer interaction module and the communication between PC and PLC solves, the program design and development of the PLC control system is completed. The design of the upper computer software management system is described in detail. By analyzing of E-R diagram, built the establish data, the communication protocol between systems is customize, C++ Builder is adopted to realize interface module, supply module, main control module, etc. The paper also gives the implementations of the multi-threaded system and communication method. Lastly, each module of the lower computer control system is tested. Then, after building a test environment, the function test of the upper computer software management system is completed. On this basis, the entire control system accepts the overall test.

Keywords: automatic pharmacy, PLC, control system, management system, communication

Procedia PDF Downloads 272
15723 Design and Development of Sustained Release Floating Tablet of Stavudine

Authors: Surajj Sarode, G. Vidya Sagar, G. P. Vadnere

Abstract:

The purpose of the present study was to prolong the gastric residence time of Stavudine by developing gastric floating drug delivery system (GFDDS). Moreover, to study influence of different polymers on its release rate using gas-forming agents, like sodium bicarbonate, citric acid. Floating tablets were prepared by wet granulation method using PVP K-30 as a binder and the other polymers include Pullulan Gum, HPMC K100M, six different formulations with the varying concentrations of polymers were prepared and the tablets were evaluated in terms of their pre-compression parameters like bulk density, tapped density, Haunsner ratio, angle of repose, compressibility index, post compression physical characteristics, in vitro release, buoyancy, floating lag time (FLT), total floating time (TFT) and swelling index. All the formulations showed good floating lag time i.e. less than 3 mins. The batch containing combination of Pullulan Gum and HPMC 100M (i.e. F-6) showed total floating lag time more than 12 h., the highest swelling index among all the prepared batches. The drug release was found to follow zero order kinetics.

Keywords: Suavudine, floating, total floating time (TFT), gastric residence

Procedia PDF Downloads 366
15722 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 109
15721 The Application of Lean-Kaizen in Course Plan and Delivery in Malaysian Higher Education Sector

Authors: Nur Aishah Binti Awi, Zulfiqar Khan

Abstract:

Lean-kaizen has always been applied in manufacturing sector since many years ago. What about education sector? This paper discuss on how lean-kaizen can also be applied in education sector, specifically in academic area of Malaysian’s higher education sector. The purpose of this paper is to describe the application of lean kaizen in course plan and delivery. Lean-kaizen techniques have been used to identify waste in the course plan and delivery. A field study has been conducted to obtain the data. This study used both quantitative and qualitative data. The researcher had interviewed the chosen lecturers regarding to the problems of course plan and delivery that they encountered. Secondary data of students’ feedback at the end of semester also has been used to improve course plan and delivery. The result empirically shows that lean-kaizen helps to improve the course plan and delivery by reducing the wastes. Thus, this study demonstrates that lean-kaizen can also help education sector to improve their services as achieved by manufacturing sector.

Keywords: course delivery, education, Kaizen, lean

Procedia PDF Downloads 340
15720 Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets

Authors: Indu Lata Kanwar, Preeti K. Suresh

Abstract:

The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nano­scale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration.

Keywords: bioactive, hydroxyapatite, nanocomposities, periondontal

Procedia PDF Downloads 300
15719 Innovative Preparation Techniques: Boosting Oral Bioavailability of Phenylbutyric Acid Through Choline Salt-Based API-Ionic Liquids and Therapeutic Deep Eutectic Systems

Authors: Lin Po-Hsi, Sheu Ming-Thau

Abstract:

Urea cycle disorders (UCD) are rare genetic metabolic disorders that compromise the body's urea cycle. Sodium phenylbutyrate (SPB) is a medication commonly administered in tablet or powder form to lower ammonia levels. Nonetheless, its high sodium content poses risks to sodium-sensitive UCD patients. This necessitates the creation of an alternative drug formulation to mitigate sodium load and optimize drug delivery for UCD patients. This study focused on crafting a novel oral drug formulation for UCD, leveraging choline bicarbonate and phenylbutyric acid. The active pharmaceutical ingredient-ionic liquids (API-ILs) and therapeutic deep eutectic systems (THEDES) were formed by combining these with choline chloride. These systems display characteristics like maintaining a liquid state at room temperature and exhibiting enhanced solubility. This in turn amplifies drug dissolution rate, permeability, and ultimately oral bioavailability. Incorporating choline-based phenylbutyric acid as a substitute for traditional SPB can effectively curtail the sodium load in UCD patients. Our in vitro dissolution experiments revealed that the ILs and DESs, synthesized using choline bicarbonate and choline chloride with phenylbutyric acid, surpassed commercial tablets in dissolution speed. Pharmacokinetic evaluations in SD rats indicated a notable uptick in the oral bioavailability of phenylbutyric acid, underscoring the efficacy of choline salt ILs in augmenting its bioavailability. Additional in vitro intestinal permeability tests on SD rats authenticated that the ILs, formulated with choline bicarbonate and phenylbutyric acid, demonstrate superior permeability compared to their sodium and acid counterparts. To conclude, choline salt ILs developed from choline bicarbonate and phenylbutyric acid present a promising avenue for UCD treatment, with the added benefit of reduced sodium load. They also hold merit in formulation engineering. The sustained-release capabilities of DESs position them favorably for drug delivery, while the low toxicity and cost-effectiveness of choline chloride signal potential in formulation engineering. Overall, this drug formulation heralds a prospective therapeutic avenue for UCD patients.

Keywords: phenylbutyric acid, sodium phenylbutyrate, choline salt, ionic liquids, deep eutectic systems, oral bioavailability

Procedia PDF Downloads 72
15718 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment

Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak

Abstract:

Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.

Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity

Procedia PDF Downloads 106
15717 An In-silico Pharmacophore-Based Anti-Viral Drug Development for Hepatitis C Virus

Authors: Romasa Qasim, G. M. Sayedur Rahman, Nahid Hasan, M. Shazzad Hosain

Abstract:

Millions of people worldwide suffer from Hepatitis C, one of the fatal diseases. Interferon (IFN) and ribavirin are the available treatments for patients with Hepatitis C, but these treatments have their own side-effects. Our research focused on the development of an orally taken small molecule drug targeting the proteins in Hepatitis C Virus (HCV), which has lesser side effects. Our current study aims to the Pharmacophore based drug development of a specific small molecule anti-viral drug for Hepatitis C Virus (HCV). Drug designing using lab experimentation is not only costly but also it takes a lot of time to conduct such experimentation. Instead in this in silico study, we have used computer-aided techniques to propose a Pharmacophore-based anti-viral drug specific for the protein domains of the polyprotein present in the Hepatitis C Virus. This study has used homology modeling and ab initio modeling for protein 3D structure generation followed by pocket identification in the proteins. Drug-able ligands for the pockets were designed using de novo drug design method. For ligand design, pocket geometry is taken into account. Out of several generated ligands, a new Pharmacophore is proposed, specific for each of the protein domains of HCV.

Keywords: pharmacophore-based drug design, anti-viral drug, in-silico drug design, Hepatitis C virus (HCV)

Procedia PDF Downloads 234
15716 The Improvement of Disease-Modifying Osteoarthritis Drugs Model Uptake and Retention within Two Cartilage Models

Authors: Polina Prokopovich

Abstract:

Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for OA, preventing or inhibiting OA development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic effects in clinical trials. The joint environment has played a role in the poor clinical performance of these drugs by limiting the amount of drug effectively delivered as well as the time that the drug spends within the joint space. The current study aims to enhance the cartilage uptake and retention time of the DMOADs-model (licofelone), which showed a significant therapeutic effect against OA progression and is currently in phase III. Licofelone will be covalently conjugated to the hydrolysable, cytocompatible, and cationic poly beta-amino ester polymers (PBAE). The cationic polymers (A16 and A87) can be electrostatically attached to the negatively charged cartilage component (glycosaminoglycan), which will increase the drug penetration through the cartilage and extend the drug time within the cartilage. In the cartilage uptake and retention time studies, an increase of 18 to 37 times of the total conjugated licofelone to A87 and A16 was observed when compared to the free licofelone. Furthermore, the conjugated licofelone to A87 was detectable within the cartilage at 120 minutes, while the free licofelone was not detectable after 60 minutes. Additionally, the A87-licofelone conjugate showed no effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 polymers increased the percentage of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of licofelone or other DMOADs clinically.

Keywords: PBAE, cartilage., osteoarthritis, injectable biomaterials, drug delivery

Procedia PDF Downloads 40
15715 Target Drug Delivery of Pamidronate Nanoparticles for Enhancing Osteoblastic Activity in Osteoporosis

Authors: Purnima Rawat, Divya Vohora, Sarika Gupta, Farhan J. Ahmad, Sushama Talegaonkar

Abstract:

Nanoparticles (NPs) that target bone tissue were developed using PLGA–mPEG (poly(lactic-co-glycolic-acid)–polyethylene glycol) diblock copolymers by using pamidronate as a bone-targeting moieties. These NPs are expected to enable the transport of hydrophilic drugs. The NP was prepared by in situ polymerization method, and their in- vitro characteristics were evaluated using dynamic light scattering, transmission electron microscopy (TEM) and in phosphate-buffered solution. The bone targeting potential of the NP was also evaluated on in-vitro pre-osteoblast MCT3E1 cell line using ALP activity, degree of mineralization and RT-PCR assay. The average particle size of the NP was 101.6 ± 3.7nm, zeta potential values were negative (-25±0.34mV) of the formulations and the entrapment efficiency was 93± 3.1 % obtained. The moiety of the PLGA–mPEG–pamidronate NPs exhibited the best apatite mineral binding ability in-vitro MCT3E1 pre-osteoblast cell line. Our results suggested that the developed nanoparticles may use as a delivery system for Pamidronate in bone repair and regeneration, warranting further evaluation of the treatment of bone disease.

Keywords: nanoparticle, pamidronate, in-situ polymerization, osteoblast

Procedia PDF Downloads 453