Search results for: titanium dioxide nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2345

Search results for: titanium dioxide nanoparticles

2165 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy

Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma

Abstract:

Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.

Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles

Procedia PDF Downloads 167
2164 Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide

Authors: Humaira Khan, Mohsin Javed, Sammia Shahid

Abstract:

The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity.

Keywords: degradation, graphene oxide, photocatalysis, ZnO nanoparticles and copper-doped ZnO nanoparticles

Procedia PDF Downloads 183
2163 Synthesis of Size-Tunable and Stable Iron Nanoparticles for Cancer Treatment

Authors: Ambika Selvaraj

Abstract:

Magnetic iron oxide nanoparticles (IO) of < 20nm (superparamagnetic) become promising tool in cancer therapy, and integrated nanodevices for cancer detection and screening. The obstacles include particle heterogeneity and cost. It can be overcome by developing monodispersed nanoparticles in economical approach. We have successfully synthesized < 7 nm IO by low temperature controlled technique, in which Fe0 is sandwiched between stabilizer and Fe2+. Size analysis showed the excellent size control from 31 nm at 33°C to 6.8 nm at 10°C. Resultant monodispersed IO were found to be stable for > 50 reuses, proved its applicability in biomedical applications.

Keywords: low temperature synthesis, hybrid iron nanoparticles, cancer therapy, biomedical applications

Procedia PDF Downloads 313
2162 Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group

Authors: Vida Jodaeian, Behzad Sani

Abstract:

Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds.

Keywords: nanoparticles, carrageenan, seaweed, nitro aromatic compound

Procedia PDF Downloads 371
2161 Influence of La³⁺ on Structural, Magnetic, Optical and Dielectric Properties in CoFe₂O₄ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Combustion Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

Herein, we reported the influence of La³⁺ substitution on structural, magnetic and dielectric properties of CoFe₂O₄ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of La³⁺ ions doped CoFe₂O₄ nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of La³⁺ substituted CoFe₂O₄ nanoparticles. The field emission scanning electron microscopy study revealed that La³⁺ substituted CoFe2O4 nanoparticles were in the range of 10-40 nm. The magnetic properties of La³⁺ substituted CoFe₂O₄ nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with La³⁺ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied with change of concentration of La³⁺ ions in CoFe₂O₄ nanoparticles. The variation in optical properties was studied via UV-Vis absorption spectroscopy. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 289
2160 Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex

Authors: Shahnaz Ashrafpour, Tahereh Tohidi Moghadam, Bijan Ranjbar

Abstract:

Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 µM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme-AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.

Keywords: nanocarrier, nanoparticles, surface plasmon resonance, quenching fluorescence

Procedia PDF Downloads 299
2159 Trastuzumab Decorated Bioadhesive Nanoparticles for Targeted Breast Cancer Therapy

Authors: Kasi Viswanadh Matte, Abhisheh Kumar Mehata, M.S. Muthu

Abstract:

Brest cancer, up-regulated with human epidermal growth factor receptor type-2 (HER-2) led to the concept of developing HER-2 targeted anticancer therapeutics. Docetaxel-loaded D-α-tocopherol polyethylene glycol succinate 1000 conjugated chitosan (TPGS-g-chitosan) nanoparticles were prepared with or without Trastuzumab decoration. The particle size and entrapment efficiency of conventional, non-targeted and targeted nanoparticles were found to be in the range of 126-186 nm and 74-78% respectively. In-vitro, MDA-MB-231 cells showed that docetaxel-loaded non-targeted and HER-2 receptor targeted TPGS-g-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity with a promising bioadhesion property, in comparison to conventional nanoparticles. The IC50 values of non-targeted and targeted nanoparticles from cytotoxic assay were found to be 43 and 223 folds higher than DocelTM. The in-vivo pharmacokinetic study showed 2.33, and 2.82-fold enhancement in relative bioavailability of docetaxel for non-targeted and HER-2 receptor targeted nanoparticles, respectively than DocelTM, and after i.v administration, non-targeted and targeted nanoparticle achieved 3.48 and 5.94 times prolonged half-life in comparison to DocelTM. The area under the curve (AUC), relative bioavailability (FR) and mean residence time (MRT) were found to be higher for non-targeted and targeted nanoparticles compared to DocelTM. Further, histopathology results of non-targeted and targeted nanoparticles showed less toxicity on vital organs such as lungs, liver, and kidney compared to DocelTM.

Keywords: breast cancer, HER-2 receptor, targeted nanomedicine, chitosan, TPGS

Procedia PDF Downloads 217
2158 Nanoparticles Using in Chiral Analysis with Different Methods of Separation

Authors: Bounoua Nadia, Rebizi Mohamed Nadjib

Abstract:

Chiral molecules in relation to particular biological roles are stereoselective. Enantiomers differ significantly in their biochemical responses in a biological environment. Despite the current advancement in drug discovery and pharmaceutical biotechnology, the chiral separation of some racemic mixtures continues to be one of the greatest challenges because the available techniques are too costly and time-consuming for the assessment of therapeutic drugs in the early stages of development worldwide. Various nanoparticles became one of the most investigated and explored nanotechnology-derived nanostructures, especially in chirality, where several studies are reported to improve the enantiomeric separation of different racemic mixtures. The production of surface-modified nanoparticles has contributed to these limitations in terms of sensitivity, accuracy, and enantioselectivity that can be optimized and therefore makes these surface-modified nanoparticles convenient for enantiomeric identification and separation.

Keywords: chirality, enantiomeric recognition, selectors, analysis, surface-modified nanoparticles

Procedia PDF Downloads 60
2157 Polymer Nanocarrier for Rheumatoid Arthritis Therapy

Authors: Vijayakameswara Rao Neralla, Jueun Jeon, Jae Hyung Park

Abstract:

To develop a potential nanocarrier for diagnosis and treatment of rheumatoid arthritis (RA), we prepared a hyaluronic acid (HA)-5β-cholanic acid (CA) conjugate with an acid-labile ketal linker. This conjugate could self-assemble in aqueous conditions to produce pH-responsive HA-CA nanoparticles as potential carriers of the anti-inflammatory drug methotrexate (MTX). MTX was rapidly released from nanoparticles under inflamed synovial tissue in RA. In vitro cytotoxicity data showed that pH-responsive HA-CA nanoparticles were non-toxic to RAW 264.7 cells. In vivo biodistribution results confirmed that, after their systemic administration, pH-responsive HA-CA nanoparticles selectively accumulated in the inflamed joints of collagen-induced arthritis mice. These results indicate that pH-responsive HA-CA nanoparticles represent a promising candidate as a drug carrier for RA therapy.

Keywords: rheumatoid arthritis, hyaluronic acid, nanocarrier, self-assembly, MTX

Procedia PDF Downloads 269
2156 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications

Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan

Abstract:

Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.

Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification

Procedia PDF Downloads 480
2155 Produced Gas Conversion of Microwave Carbon Receptor Reforming

Authors: Young Nam Chun, Mun Sup Lim

Abstract:

Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used. 

Keywords: microwave, gas reforming, greenhouse gas, microwave receptor, catalyst

Procedia PDF Downloads 343
2154 Adsorption of Reactive Dye Using Entrapped nZVI

Authors: P. Gomathi Priya, M. E. Thenmozhi

Abstract:

Iron nanoparticles were used to cleanup effluents. This paper involves synthesis of iron nanoparticles chemically by sodium borohydride reduction of ammonium ferrous sulfate solution (FAS). Iron oxide nanoparticles have lesser efficiency of adsorption than Zero Valent Iron nanoparticles (nZVI). Glucosamine acts as a stabilizing agent and chelating agent to prevent Iron nanoparticles from oxidation. nZVI particles were characterized using Scanning Electron Microscopy (SEM). Thus, the synthesized nZVI was subjected to entrapment in biopolymer, viz. barium (Ba)-alginate beads. The beads were characterized using SEM. Batch dye degradation studies were conducted using Reactive black Water soluble Nontoxic Natural substances (WNN) dye which is one of the most hazardous dyes used in textile industries. Effect of contact time, effect of pH, initial dye concentration, adsorbent dosage, isotherm and kinetic studies were carried out.

Keywords: ammonium ferrous sulfate solution, barium, alginate beads, reactive black WNN dye, zero valent iron nanoparticles

Procedia PDF Downloads 299
2153 Synthesis and Characterisation of Bi-Substituted Magnetite Nanoparticles by Mechanochemical Processing (MCP)

Authors: Morteza Mohri Esfahani, Amir S. H. Rozatian, Morteza Mozaffari

Abstract:

Single phase magnetite nanoparticles and Bi-substituted ones were prepared by mechanochemical processing (MCP). The effects of Bi-substitution on the structural and magnetic properties of the nanoparticles were studied by X-ray Diffraction (XRD) and magnetometry techniques, respectively. The XRD results showed that all samples have spinel phase and by increasing Bi content, the main diffraction peaks were shifted to higher angles, which means the lattice parameter decreases from 0.843 to 0.838 nm and then increases to 0.841 nm. Also, the results revealed that increasing Bi content lead to a decrease in saturation magnetization (Ms) from 74.9 to 48.8 emu/g and an increase in coercivity (Hc) from 96.8 to 137.1 Oe.

Keywords: bi-substituted magnetite nanoparticles, mechanochemical processing, X-ray diffraction, magnetism

Procedia PDF Downloads 505
2152 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 351
2151 Analysis and Measurement on Indoor Environment of University Dormitories

Authors: Xuechen Gui, Senmiao Li, Qi Kan

Abstract:

Dormitory is a place for college students to study and live their daily life. The indoor environment quality of the dormitory is closely related to the physical health, mood status and work efficiency of the dormitory students. In this paper, the temperature, humidity and carbon dioxide concentration of the dormitory in Zijingang campus of Zhejiang University have been tested for three days. The experimental results show that the concentration of carbon dioxide is related to the size of the window opens and the number of dormitory staff, and presents a high concentration of carbon dioxide at nighttime while a low concentration at daytime. In terms of temperature and humidity, there is no significant difference between different orientation and time and presents a small humidity at daytime while a high humidity at nighttime.

Keywords: dormitory, indoor environment, temperature, relative humidity, carbon dioxide concentration

Procedia PDF Downloads 144
2150 Development of pH Responsive Nanoparticles for Colon Targeted Drug Delivery System

Authors: V. Balamuralidhara

Abstract:

The aim of the present work was to develop Paclitaxel loaded polyacrylamide grafted guar gum nanoparticles as pH responsive nanoparticle systems for targeting colon. The pH sensitive nanoparticles were prepared by modified ionotropic gelation technique. The prepared nanoparticles showed mean diameters in the range of 264±0.676 nm to 726±0.671nm, and a negative net charge 10.8 mV to 35.4mV. Fourier Transformed Infrared Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) studies suggested that there was no chemical interaction between drug and polymers. The encapsulation efficiency of the drug was found to be 40.92% to 48.14%. The suitability of the polyacrylamide grafted guar gum ERN’s for the release of Paclitaxel was studied by in vitro release at pH 1.2 and 7.4. It was observed that, there was no significant amount of drug release at gastric pH and 97.63% of drug release at pH 7.4 was obtained for optimized formulation F3 at the end of 12 hrs. In vivo drug targeting performance for the prepared optimized formulation (F3) and pure drug Paclitaxel was evaluated by HPLC. It was observed that the polyacrylamide grafted guar gum can be used to prepare nanoparticles for targeting the drug to the colon. The release performance was greatly affected by the materials used in ERN’s preparation, which allows maximum release at colon’s pH. It may be concluded that polyacrylamide grafted guar gum nanoparticles loaded with paclitaxel have desirable release responsive to specific pH. Hence it is a unique approach for colonic delivery of drug having appropriate site specificity and feasibility and controlled release of drug.

Keywords: colon targeting, polyacrylamide grafted guar gum nanoparticles, paclitaxel, nanoparticles

Procedia PDF Downloads 317
2149 Energy-efficient Buildings In Construction Industry Using Fly Ash-based Geopolymer Technology

Authors: Maryam Kiani

Abstract:

The aim of this study was to investigate the influence of nanoparticles additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of nanoparticles flexural strength, water absorption, and micro-structural properties of the cured samples. The results revealed that the inclusion of nanoparticles additive significantly enhanced the mechanical and electrical properties of the geopolymer binder. Micro-structural analysis using scanning electron microscopy (SEM) revealed a more compact and homogeneous structure in the geopolymer samples with nanoparticles. The dispersion of nanoparticles particles within the geopolymer matrix was observed, suggesting improved inter-particle bonding and increased density. Overall, this study demonstrates the positive impact of nanoparticles additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications for the development of construction and infrastructure for energy buildings.

Keywords: fly-ash, geopolymer, energy buildings, nanotechnology

Procedia PDF Downloads 54
2148 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation-Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solid-solid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulse-like pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: brownian dynamics, molecular dynamics, nanofluid, thermal conductivity

Procedia PDF Downloads 353
2147 Optimization of the Enzymatic Synthesis of the Silver Core-Shell Nanoparticles

Authors: Lela Pintarić, Iva Rezić, Ana Vrsalović Presečki

Abstract:

Considering an enormous increase of the use of metal nanoparticles with the exactly defined characteristics, the main goal of this research was to found the optimal and environmental friendly method of their synthesis. The synthesis of the inorganic core-shell nanoparticles was optimized as a model. The core-shell nanoparticles are composed of the enzyme core belted with the metal ions, oxides or salts as a shell. In this research, enzyme urease was the core catalyst and the shell nanoparticle was made of silver. Silver nanoparticles are widespread utilized and some of their common uses are: as an addition to disinfectants to ensure an aseptic environment for the patients, as a surface coating for neurosurgical shunts and venous catheters, as an addition to implants, in production of socks for diabetics and athletic clothing where they improve antibacterial characteristics, etc. Characteristics of synthesized nanoparticles directly depend on of their size, so the special care during this optimization was given to the determination of the size of the synthesized nanoparticles. For the purpose of the above mentioned optimization, sixteen experiments were generated by the Design of Experiments (DoE) method and conducted under various temperatures, with different initial concentration of the silver nitrate and constant concentration of the urease of two separate manufacturers. Synthesized nanoparticles were analyzed by the Nanoparticle Tracking Analysis (NTA) method on Malvern NanoSight NS300. Results showed that the initial concentration of the silver ions does not affect the concentration of the synthesized silver nanoparticles neither their size distribution. On the other hand, temperature of the experiments has affected both of the mentioned values.

Keywords: core-shell nanoparticles, optimization, silver, urease

Procedia PDF Downloads 284
2146 Silver Nanoparticle Application in Food Packaging and Impacts on Food Safety and Consumer’s Health

Authors: Worku Dejene Bekele, András Marczika Csilla Sörös

Abstract:

Silver nanoparticles are silver metal with a size of 1-100nm. The most common source of silver nanoparticles is inorganic salts. Nanoparticles can be ingested through our foods and constitute nanoparticles and silver ions, whether as an additive or by migrants and, in some cases, as a pollutant. Silver nanoparticles are the most widely applicable engineered nanomaterials, especially for antimicrobial function. Ag nanoparticles give different advantages in the case of food safety, quality, and overall acceptability; however, they affect the health of humans and animals, putting them at risk of health problems and environmental pollution. Silver nanoparticles have been used widely in food packaging technologies, especially in water treatments, meat and meat products, fruit, and many other food products. This is for bio-preservation from food products. The primary goal of this review is to determine the safety and health impact of Ag nanoparticles application in food packaging and analysis of the human organs more affected by this preservative technology, to assess the implications of a nanoparticle on food safety, to determine the effects of nanoparticles on consumers health and to determine the impact of nanotechnology on product acceptability. But currently, much research has demonstrated that there is cause to believe that silver nanoparticles may have toxicological effects on biological organs and systems. The silver nanoparticles affect DNA expression, gastrointestinal barriers, lungs, and other breathing organs illness. Silver particles and molecules are very toxic. During its application in food packaging, food industries used the thinnest particle. This particle can potentially affect the gastrointestinal tracts-it suffers from mucus production, DNA, lungs, and other breezing organs. This review is targeted to demonstrate the knowledge gap that industrials use in the application of silver nanoparticles in food packaging and preservation and its health effects on the consumer.

Keywords: food preservatives, health impact, nanoparticle, silver nanoparticle

Procedia PDF Downloads 27
2145 Synthesis of TiO2 Nanoparticles by Sol-Gel and Sonochemical Combination

Authors: Sabriye Piskin, Sibel Kasap, Muge Sari Yilmaz

Abstract:

Nanocrystalline TiO2 particles were successfully synthesized via sol-gel and sonochemical combination using titanium tetraisopropoxide as a precursor at lower temperature for a short time. The effect of the reaction parameters (hydrolysis media, acid media, and reaction temperatures) on the synthesis of TiO2 particles were investigated in the present study. Characterizations of synthesized samples were prepared by X-ray diffraction (XRD) analysis. It was shown that the reaction parameters played a significant role in the synthesis of TiO2 particles.

Keywords: crystalline TiO2, sonochemical mechanism, sol-gel reaction, XRD

Procedia PDF Downloads 426
2144 Green Synthesis of Silver Nanoparticles Using Echinacea Flower Extract and Characterization

Authors: Masood Hussain, Erol Pehlivan, Ahmet Avci, Ecem Guder

Abstract:

Green synthesis of silver nanoparticles (AgNPs) was carried out by using echinacea flower extract as reducing/protecting agent. The effects of various operating parameters and additives on the dimensions such as stirring rate, temperature, pH of the solution, the amount of extract and concentration of silver nitrate were optimized in order to achieve monodispersed spherical and small size echinacea protected silver nanoparticles (echinacea-AgNPs) through biosynthetic method. The surface roughness and topography of synthesized metal nanoparticles were confirmed by using Atomic Force Microscopy (AFM). High-Resolution Transmission Electron Microscopic (HRTEM) results elaborated the formation of uniformly distributed Echinacea protected AgNPs (Echinacea-AgNPs) having an average size of 30.2±2nm.

Keywords: Echinacea flower extract, green synthesis, silver nanoparticles, morphology

Procedia PDF Downloads 392
2143 Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition

Authors: Jin-Woo Park, Sung-Soo Lee, Nong-Moon Hwang

Abstract:

The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR.

Keywords: chemical vapour deposition, charged cluster model, generation of charged nanoparticles, deposition behaviour, nanostructures, gan, charged transfer rate

Procedia PDF Downloads 402
2142 Efficient Synthesis of Calix[4]Pyrroles Catalyzed by Powerful and Magnetically Recoverable Fe3O4 Nanoparticles

Authors: Renu Gautam, S. M. S. Chauhan

Abstract:

The magnetic Fe3O4 nanoparticles has been used as an efficient and facile acid catalyst for the synthesis of calix[4]pyrrole in moderate to excellent yields by the one pot condensation of different ketones and pyrrole. The catalyst was easily recovered using external magnet and reused over several cycles without losing its catalytic activity.

Keywords: calix[4]pyrrole, magnetic, Fe3O4 nanoparticles, catalysis

Procedia PDF Downloads 404
2141 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii

Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan

Abstract:

Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.

Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle

Procedia PDF Downloads 421
2140 Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant

Authors: Uma Shanker, Vidhisha Jassal

Abstract:

A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm.

Keywords: metal hexacyanoferrates, natural surfactant, Sapindus mukorossias, nanoparticles

Procedia PDF Downloads 495
2139 Statistically Significant Differences of Carbon Dioxide and Carbon Monoxide Emission in Photocopying Process

Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana

Abstract:

Experimental results confirmed the temporal variation of carbon dioxide and carbon monoxide concentration during the working shift of the photocopying process in a small photocopying shop in Novi Sad, Serbia. The statistically significant differences of target gases were examined with two-way analysis of variance without replication followed by Scheffe's post hoc test. The existence of statistically significant differences was obtained for carbon monoxide emission which is pointed out with F-values (12.37 and 31.88) greater than Fcrit (6.94) in contrary to carbon dioxide emission (F-values of 1.23 and 3.12 were less than Fcrit).  Scheffe's post hoc test indicated that sampling point A (near the photocopier machine) and second time interval contribute the most on carbon monoxide emission.

Keywords: analysis of variance, carbon dioxide, carbon monoxide, photocopying indoor, Scheffe's test

Procedia PDF Downloads 293
2138 Iron Oxide Nanoparticles: Synthesis, Properties, and Environmental Application

Authors: Shalini Rajput, Dinesh Mohan

Abstract:

Water is the most important and essential resources for existing of life on the earth. Water quality is gradually decreasing due to increasing urbanization and industrialization and various other developmental activities. It can pose a threat to the environment and public health therefore it is necessary to remove hazardous contaminants from wastewater prior to its discharge to the environment. Recently, magnetic iron oxide nanoparticles have been arise as significant materials due to its distinct properties. This article focuses on the synthesis method with a possible mechanism, structure and application of magnetic iron oxide nanoparticles. The various characterization techniques including X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray, Fourier transform infrared spectroscopy and vibrating sample magnetometer are useful to describe the physico-chemical properties of nanoparticles. Nanosized iron oxide particles utilized for remediation of contaminants from aqueous medium through adsorption process. Due to magnetic properties, nanoparticles can be easily separate from aqueous media. Considering the importance and emerging trend of nanotechnology, iron oxide nanoparticles as nano-adsorbent can be of great importance in the field of wastewater treatment.

Keywords: nanoparticles, adsorption, iron oxide, nanotechnology

Procedia PDF Downloads 533
2137 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe

Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud

Abstract:

In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.

Keywords: Ti5Al-2.5Fe, mechanical alloying, hot pressing, sintering

Procedia PDF Downloads 251
2136 Effect of Impurities in the Chlorination Process of TiO2

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With the increasing interest on Ti alloys, the extraction process of Ti from its typical ore, TiO2, has long been and will be important issue. As an intermediate product for the production of pigment or titanium metal sponge, tetrachloride (TiCl4) is produced by fluidized bed using high TiO2 feedstock. The purity of TiCl4 after chlorination is subjected to the quality of the titanium feedstock. Since the impurities in the TiCl4 product are reported to final products, the purification process of the crude TiCl4 is required. The purification process includes fractional distillation and chemical treatment, which depends on the nature of the impurities present and the required quality of the final product. In this study, thermodynamic analysis on the impurity effect in the chlorination process, which is the first step of extraction of Ti from TiO2, has been conducted. All thermodynamic calculations were performed using the FactSage thermodynamical software.

Keywords: rutile, titanium, chlorination process, impurities, thermodynamic calculation, FactSage

Procedia PDF Downloads 279