Influence of La³⁺ on Structural, Magnetic, Optical and Dielectric Properties in CoFe₂O₄ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Combustion Method

Authors : Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract : Herein, we reported the influence of La^{3+} substitution on structural, magnetic and dielectric properties of $CoFe_2O_4$ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of La^{3+} ions doped $CoFe_2O_4$ nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of La^{3+} substituted $CoFe_2O_4$ nanoparticles. The field emission scanning electron microscopy study revealed that La^{3+} substituted $CoFe_2O_4$ nanoparticles were in the range of 10-40 nm. The magnetic properties of La^{3+} substituted $CoFe_2O_4$ nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with La^{3+} concentration in $CoFe_2O_4$ nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ , and AC conductivity were studied with change of concentration of La^{3+} ions in $CoFe_2O_4$ nanoparticles. The variation in optical properties was studied via UV-Vis absorption spectroscopy. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords : starch, sol-gel combustion method, nanoparticles, magnetic properties, dielectric properties

Conference Title : ICACMT 2016 : International Conference on Advanced Composites and Materials Technologies **Conference Location :** Venice, Italy

Conference Dates : November 07-08, 2016

1