Search results for: soluble porphyrin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 495

Search results for: soluble porphyrin

225 Assessment of Microbiological Status of Branded and Street Vended Ice-Cream Offered for Public Consumption: A Comparative Study in Tangail Municipality, Bangladesh

Authors: Afroza Khatun, Masuma, Md. Younus Mia, Kamal Kanta Das

Abstract:

Analysis of the microbial status and physicochemical parameters of some branded and street vended ice cream showed that total viable bacteria in branded ice cream ranged from 4.8×10³ to 1.10×10⁵ cfu/ml, and in street vended ice-cream ranged from 7.5×10⁴ to 1.6×10⁸ cfu/ml. Total coliform bacteria present up to 9.20×10³ cfu/ml in branded ice cream and 5.3×10³ to 9.6×10⁶ cfu/ml observed in street vended ice cream. Total E. coli were found to be present within a range from 0 to 4.5×10³ cfu/ml in branded and 4.1×10² to 7.5×10⁴ cfu/ml in street ice cream. The ranges of Staphylococcus aureus count were 1.8×10² to 2.9×10⁴ cfu/ml (branded) and 3.9×10⁴ to 7.9×10⁶ cfu/ml (street). The pH of both types of ice cream showed acidic to neutral conditions where the concentration of pH for branded ice cream was 5.5 to 6.9, as well as the value of pH in street ice cream, was 6.2 to 7.0. The range of Total soluble solids in several branded ice creams was 26 to 29%, and the value of TSS obtained in street-vended ice-creams ranged from 5 to 10%. The overall results of this research demonstrated that the microbial quality in all street ice creams exceeded the BSTI standard and exhibited lower quality than the industrially produced branded ice creams due to comparatively faulty manufacturing processes and poor hygiene practices. The presence of pathogenic microbes was also observed in branded ice creams which was quite alarming for public health. So it is suggested that the government authorized organization should conduct the proper monitoring system to ensure that both branded and street vended ice-creams are microbiologically safe to prevent public health hazards.

Keywords: food safety, microbiological analysis, physicochemical, ice-cream, E. coli, Staphylococcus aureus

Procedia PDF Downloads 51
224 Inhibitory Effects of Crocin from Crocus sativus L. on Cell Proliferation of a Medulloblastoma Human Cell Line

Authors: Kyriaki Hatziagapiou, Eleni Kakouri, Konstantinos Bethanis, Alexandra Nikola, Eleni Koniari, Charalabos Kanakis, Elias Christoforides, George Lambrou, Petros Tarantilis

Abstract:

Medulloblastoma is a highly invasive tumour, as it tends to disseminate throughout the central nervous system early in its course. Despite the high 5-year-survival rate, a significant number of patients demonstrate serious long- or short-term sequelae (e.g., myelosuppression, endocrine dysfunction, cardiotoxicity, neurological deficits and cognitive impairment) and higher mortality rates, unrelated to the initial malignancy itself but rather to the aggressive treatment. A strong rationale exists for the use of Crocus sativus L (saffron) and its bioactive constituents (crocin, crocetin, safranal) as pharmaceutical agents, as they exert significant health-promoting properties. Crocins are water soluble carotenoids. Unlike other carotenoids, crocins are highly water-soluble compounds, with relatively low toxicity as they are not stored in adipose and liver tissues. Crocins have attracted wide attention as promising anti-cancer agents, due to their antioxidant, anti-inflammatory, and immunomodulatory effects, interference with transduction pathways implicated in tumorigenesis, angiogenesis, and metastasis (disruption of mitotic spindle assembly, inhibition of DNA topoisomerases, cell-cycle arrest, apoptosis or cell differentiation) and sensitization of cancer cells to radiotherapy and chemotherapy. The current research aimed to study the potential cytotoxic effect of crocins on TE671 medulloblastoma cell line, which may be useful in the optimization of existing and development of new therapeutic strategies. Crocins were extracted from stigmas of saffron in ultrasonic bath, using petroleum-ether, diethylether and methanol 70%v/v as solvents and the final extract was lyophilized. Identification of crocins according to high-performance liquid chromatography (HPLC) analysis was determined comparing the UV-vis spectra and the retention time (tR) of the peaks with literature data. For the biological assays crocin was diluted to nuclease and protease free water. TE671 cells were incubated with a range of concentrations of crocins (16, 8, 4, 2, 1, 0.5 and 0.25 mg/ml) for 24, 48, 72 and 96 hours. Analysis of cell viability after incubation with crocins was performed with Alamar Blue viability assay. The active ingredient of Alamar Blue, resazurin, is a blue, nontoxic, cell permeable compound virtually nonfluorescent. Upon entering cells, resazurin is reduced to a pink and fluorescent molecule, resorufin. Viable cells continuously convert resazurin to resorufin, generating a quantitative measure of viability. The colour of resorufin was quantified by measuring the absorbance of the solution at 600 nm with a spectrophotometer. HPLC analysis indicated that the most abundant crocins in our extract were trans-crocin-4 and trans-crocin-3. Crocins exerted significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72 and 96 hours versus cells not exposed); as their concentration and time of exposure increased, the reduction of resazurin to resofurin decreased, indicating reduction in cell viability. IC50 values for each time point were calculated ~3.738, 1.725, 0.878 and 0.7566 mg/ml at 24, 48, 72 and 96 hours, respectively. The results of our study could afford the basis of research regarding the use of natural carotenoids as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgements: The research was funded by Fellowships of Excellence for Postgraduate Studies IKY-Siemens Programme.

Keywords: crocetin, crocin, medulloblastoma, saffron

Procedia PDF Downloads 184
223 Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage

Authors: Azizza Mala, Babo Fadlalla, Elnour Mohamed, Siran Wang, Junfeng Li, Tao Shao

Abstract:

Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents.

Keywords: fermentation, lactobacillus plantarum, lactic acid bacteria, pediococcus acidilactic, sweet sorghum

Procedia PDF Downloads 49
222 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango

Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree

Abstract:

Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.

Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4

Procedia PDF Downloads 179
221 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh

Abstract:

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.

Keywords: β-galactosidase, fungus, yeast, whey

Procedia PDF Downloads 290
220 Evaluation of Different High Tunnel Protection Methods for Quality Banana Production in Bangladesh

Authors: Shormin Choudhury, Nazrul Islam, Atiqur Rahman Shaon

Abstract:

High tunnels can provide several benefits to horticultural crops, including environmental stress protection such as hail, frost, excessive rainfall, and high wind. In hot and sunny areas, high tunnel is one of the cooling ways for modifying the microclimate and maximizing crop development. Present study was carried out to assess the effect of different type of high tunnels on banana growth, yield, and fruit quality characteristics. Net houses, poly net houses, UV poly shed houses, and open field (control) conditions are among the experimental treatments. The results revealed that the plants produced in the poly net house condition had maximum pseudo stem height (171.00cm), stem girth (68.66 cm), chlorophyll content (57.63), number of fruits (140), number of hands (9.66), individual fruit weight (125.00) and pulp: peel ratio (3.35) of bananas as compared to the other treatments. Quality parameters like total soluble solid (21.78°Brix), ascorbic acid (10.24 mg/100g), total sugar (25.44%), and reducing sugar (15.75%) were higher in fruits grown in poly net house. The study revealed that the poly net house is the best growing environment for bananas in terms of growth, yield, and quality attributes.

Keywords: shed houses, banana, chlorophyll content, fruit yield, quality

Procedia PDF Downloads 52
219 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 95
218 Upregulation of CD40/CD40L System in Rheumatic Mitral Stenosis With or Without Atrial Fibrillation

Authors: Azzam H., Abousamra N. K., Wafa A. A., Hafez M. M., El-Gilany A. H.

Abstract:

Platelet activation occurs in peripheral blood of patients with rheumatic mitral stenosis (MS) and atrial fibrillation (AF) and could be related to abnormal thrombogenesis. The CD40/CD40 ligand (CD40L) which reflects platelet activation, mediate a central role in thrombotic diseases. However, the role of CD40/CD40L system in rheumatic MS with or without AF remains unclear. Expressions of CD40 on monocytes and CD40L on platelets were determined by whole blood flow cytometry and serum levels of soluble CD40L were measured by enzyme-linked immunosorbent assay in group 1 (19 patients with MS) and group 2 (20 patients with MS and AF) compared to group 3 (10 controls). Patients with groups 1 and 2 had a significant increase in expression of CD40 on monocytes (P1 and P2 = 0.000) and serum levels of sCD40L (P1 = 0.014 and P2 = 0.033, respectively), but nonsignificant increase in expression of CD40L on platelets (P1 = 0.109 and P2 = 0.060, respectively) as compared to controls. There were no significant difference in all the parameters in group 1 compared to group 2. Correlation analysis demonstrated that there was a significant direct relationship between the severity of MS and serum levels of sCD40L (r = -0.469, p = 0.043). In conclusion, rheumatic MS patients with or without AF had upregulation of the CD40/CD40L system as well as elevated sCD40L levels. The levels of sCD40L had a significantly direct relationship with the severity of MS and it was the stenotic mitral valve, not AF, that had a significant impact on platelet activation.

Keywords: CD40, CD40L, mitral stenosis, atrial fibrillation

Procedia PDF Downloads 66
217 Removal of Heavy Metals Pb, Zn and Cu from Sludge Waste of Paper Industries Using Biosurfactant

Authors: Nurul Hidayati

Abstract:

Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as metals. Sludge waste of paper industries as toxic and hazardous material from specific source contains Pb, Zn, and Cu metal from waste soluble ink. An alternative and eco-friendly method of remediation technology is the use of biosurfactants and biosurfactant-producing microorganisms. Soil washing is among the methods available to remove heavy metal from sediments. The purpose of this research is to study effectiveness of biosurfactant with concentration = CMC for the removal of heavy metals, lead, zinc and copper in batch washing test under four different biosurfactant production by microbial origin. Pseudomonas putida T1(8), Bacillus subtilis 3K, Acinetobacter sp, and Actinobacillus sp was grown on mineral salt medium that had been already added with 2% concentration of molasses that it is a low cost application. The samples were kept in a shaker 120 rpm at room temperature for 3 days. Supernatants and sediments of sludge were separated by using a centrifuge and samples from supernatants were measured by atomic absorption spectrophotometer. The highest removal of Pb was up to 14,04% by Acinetobacter sp. Biosurfactant of Pseudomonas putida T1(8) have the highest removal for Zn and Cu up to 6,5% and 2,01% respectively. Biosurfactants have a role for removal process of the metals, including wetting, contact of biosurfactant to the surface of the sediments and detachment of the metals from the sediment. Biosurfactant has proven its ability as a washing agent in heavy metals removal from sediments, but more research is needed to optimize the process of removal heavy metals.

Keywords: biosurfactant, removal of heavy metals, sludge waste, paper industries

Procedia PDF Downloads 293
216 Role of Vitamin D in Osseointegration of Dental Implant

Authors: Pouya Khaleghi

Abstract:

Dental implants are a successful treatment modality for restoring both function and aesthetics. Dental implant treatment has predictive results in the replacement of the lost teeth and has a high success rate even in the long term. The most important factor which is responsible for the positive course of implant treatment is the process of osseointegration between the implant structure and the host’s bone tissue. During recent years, many studies have focused on surgical and prosthetic factors, as well as the implant-related factors. However, implant failure still occurs despite the improvements that have led to the increased survival rate of dental implants, which suggests the possible role of some host-related risk factors. Vitamin D is a fat-soluble vitamin regulating calcium and phosphorus metabolism in tissues. The role of vitamin D in bone healing has been under investigation for several years. Vitamin D deficiency has also been associated with impaired and delayed callus formation and fractures healing; however, the role of vitamin D has not been clarified. Therefore, it is extremely important to study the phenomenon of a connection formed between bone tissue and the surface of a titanium implant and find correlations between the 25- hydroxycholecalciferol concentration in blood serum and the course of osseointegration. Because the processes of bone remodeling are very dynamic in the period of actual osseointegration, it is necessary to obtain the correct concentration of vitamin D3 metabolites in blood serum. In conclusion, the correct level of 25-hydroxycholecalciferol on the day of surgery and vitamin D deficiency treatment have a significant influence on the increase in the bone level at the implant site during the process of osseointegration assessed radiologically.

Keywords: implant, osseointegration, vitamin d, dental

Procedia PDF Downloads 143
215 Determination of in Situ Degradation Kinetics of Some Legumes Waste Unused for Human Consumption

Authors: Şevket Evci, Mehmet Akif Karsli

Abstract:

The aim of this study is to determine nutrient contents, in situ ruminal degradation kinetics and protein fractions of screenings bean (B), chick pea (ChP), red lentil (RL) and green lentil (GL) that is used as residue in grain legume packing industry. For this purpose, four samples of each legumes species-a total of 16 samples, collected from different parts of our country were utilized. Feedstuffs used in the experiment were incubated for 0, 2 4, 8, 12, 24, and 48 hours in the rumen of 3 ruminally cannulated Akkaraman rams as duplicate. The nutrient contents, in situ ruminal dry matter (DM), organic matter (OM) and crude protein (CP) degradabilities and fractions, and escape protein contents were evaluated. The highest OM and CP contents were observed in RL (P<0.05). Chick pea had the highest ether extract (EE) content and EE values were 3.47, 6.72, 2.26, 8.66 % for RL, B, GL and ChP, respectively (P<0.05). Crude fiber (CF), ADF, and NDF contents were the highest in RL and the lowest in ChP. CF values were 24.03, 10.80, 4.09 and 3.57 % for RL, GL, B and ChP (P<0.05). Acid detergent insoluble nitrogen content of samples did not differ. Escape protein content was the highest in RL and the lowest in B (P<0.05). After 48 h incubation, the lowest OM and CP degradabilities were observed in RL. While the highest OM degradability was seen in ChP the highest CP degradability was observed in B (P<0.05). The lowest water soluble OM and CP contents were observed in RL whereas the highest potentially degradable OM and CP contents were seen in B and ChP (P<0.05). Both rate of OM and CP degradations (k-1) did not differ among samples (P>0.05). In conclusion, it was noted that feedstuffs (GL, ChP and B) used in the experiment except RL had a greater ruminal degradibilities of both OM and CP and moreover, had a higher escape protein contents, except B. It was thought that these feedstuffs can be substituted with some of common protein sources used in animal nutrition.

Keywords: in situ, nutrient contents, ruminant, subsieve

Procedia PDF Downloads 451
214 Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment

Authors: Tapas Goswami, Debabrata Goswami

Abstract:

We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule.

Keywords: excited state, ground state recovery, solvation, transient absorption

Procedia PDF Downloads 258
213 Synthetic Access to Complex Metal Carbonates and Hydroxycarbonates via Sol-Gel Chemistry

Authors: Schirin Hanf, Carlos Lizandara-Pueyo, Timmo P. Emmert, Ivana Jevtovikj, Roger Gläser, Stephan A. Schunk

Abstract:

Metal alkoxides are very versatile precursors for a broad array of complex functional materials. However, metal alkoxides, especially transition metal alkoxides, tend to form oligomeric structures due to the very strong M–O–M binding motif. This fact hinders their facile application in sol-gel-processes and complicates access to complex carbonate or oxidic compounds after hydrolysis of the precursors. Therefore, the development of a synthetic alternative with the aim to grant access to carbonates and hydroxycarbonates from simple metal alkoxide precursors via hydrolysis is key to this project. Our approach involves the reaction of metal alkoxides with unsaturated isoelectronic molecules, such as carbon dioxide. Subsequently, a stoichiometric insertion of the CO₂ into the alkoxide M–O bond takes place and leads to the formation of soluble metal alkyl carbonates. This strategy is a very elegant approach to solubilize metal alkoxide precursors to make them accessible for sol-gel chemistry. After hydrolysis of the metal alkyl carbonates, crystalline metal carbonates, and hydroxycarbonates can be obtained, which were then utilized for the synthesis of Cu/Zn based bulk catalysts for methanol synthesis. Using these catalysts, a comparable catalytic activity to commercially available MeOH catalysts could be reached. Based on these results, a complement for traditional precipitation techniques, which are usually utilized for the synthesis of bulk methanol catalysts, have been found based on an alternative solubilization strategy.

Keywords: metal alkoxides, metal carbonates, metal hydroxycarbonates, CO₂ insertion, solubilization

Procedia PDF Downloads 152
212 Development of Self Emulsifying Drug Delivery Systems (SEDDS) of Anticancer Agents Used in AYUSH System of Medicine for Improved Oral Bioavailability Followed by Their Pharmacological Evaluation Using Biotechnological Techniques

Authors: Meenu Mehta, Munish Garg

Abstract:

The use of oral anticancer drugs from AYUSH system of medicine is widely increased among the society due to their low cost, enhanced efficacy, increased patient preference, lack of inconveniences related to infusion and they provide an opportunity to develop chronic treatment regimens. However, oral delivery of these drugs usually laid down by the limited bioavailability of the drug, which is associated with a wide variation. As most of the cytotoxic agents have a narrow therapeutic window and are dosed at or near the maximum tolerated dose, a wide variability in the bioavailability can negatively affect treatment result. It is estimated that 40% of active substances are poorly soluble in water. The improvement of bio-availability of drugs with such properties presents one of the greatest challenges in drug formulations. There are several techniques reported in literature. Among all these Self Emulsifying Drug Delivery System (SEDDS) has gained more attention due to enhanced oral bio-availability enabling a reduction in dose. Thus, SEDDS anticancer drugs will have the increased bioavailability and efficacy. These dosage form will provide societal benefit in a cost-effective manner as compared to other oral dosage forms. Present study reflects on the formulation strategies as SEDDS for oral anticancer agents of AYUSH system for enhanced bioavailability with proven efficacy by cancer cell lines.

Keywords: anticancer agents, AYUSH system, bioavailability, SEDDS

Procedia PDF Downloads 276
211 New Applications of Essential Oils: Edible Packaging Material for Food Supplements

Authors: Roxana Gheorghita, Gheorghe Gutt

Abstract:

Environmental pollution due to non-degradation of packaging from the food and pharmaceutical industry is reaching increasingly alarming levels. The packaging used for food supplements is usually composed of successive layers of synthetic materials, conventional, glue, and paint. The situation is becoming more and more problematic as the population, according to statistics, uses food supplements more and more often. The solution can be represented by edible packaging, completely biodegradable, and compostable. The tested materials were obtained from biopolymers, agar, carrageenan, and alginate, in well-established quantities and plasticized with glycerol. Rosemary, thyme, and oregano essential oils have been added in varying proportions. The obtained films are completely water-soluble in hot liquids (with a temperature of about 80° C) and can be consumed with the product contained. The films were glossy, pleasant to the touch, thin (thicknesses between 32.8 and 52.8 μm), transparent, and with a pleasant smell, specific to the added essential oil. Tested for microbial evaluation, none of the films indicated the presence of E. coli, S. aureus, enterobacteria, coliform bacteria, yeasts, or molds. This aspect can also be helped by the low values of the water activity index (located between 0.546 and 0.576). The mechanical properties indicated that the material became more resistant with the addition of essential oil, the best values being recorded by the addition of oregano. The results obtained indicate the possibility of using biopolymer-based films with the addition of rosemary, thyme, and oregano essential oil, for wrapping food supplements, thus replacing conventional packaging, multilayer, impossible to sort and recycle.

Keywords: edible films, food supplements, oregano, rosemary, thyme

Procedia PDF Downloads 104
210 Agriculture Water Quality Evaluation in Minig Basin

Authors: Ben Salah Nahla

Abstract:

The problem of water in Tunisia affects the quality and quantity. Tunisia is in a situation of water shortage. It was estimated that 4.6 Mm3/an. Moreover, the quality of water in Tunisia is also mediocre. In fact, 50% of the water has a high salinity (> 1.5g/l). There are several parameters which affect water quality such as sodium, fluoride. An excess of this parameter may induce some human health. Furthermore, the mining basin area has a problem of industrial waste. This problem may affect the water quality of the groundwater. Therefore, the purpose of this work is to assess the water quality in Basin Mining and the impact of fluorine. For this research, some water samples were done in the field and specific water analysis was implemented in the laboratory. Sampling is carried out on eight drilling in the area of the mining region. In the following, we will look at water view composition, physical and chemical quality. A physical-chemical analysis of water from a survey of the Mining area of Tunisia was performed and showed an excess for the following items: fluorine, sodium, sulfate. So many chemicals may be present in water. However, only a small number of them immediately concern in terms of health in all circumstances. Fluorine (F) is one particular chemical that is considered both necessary for the human body, but an excess of the rate of this chemical causes serious diseases. Sodium fluoride and sodium silicofluoride are more soluble and may spread in animals and plants where their toxicity largest organizations. The more complex particles such as cryolite and fluorite, almost insoluble, are more stable and less toxic. Thereafter, we will study the problem of excess fluorine in the water. The latter intended for human consumption must always comply with the limits for microbiological quality parameters and physical-chemical parameters defined by European standards (1.5 mg/l) and Tunisian (2 mg/l).

Keywords: water, minier basin, fluorine, silicofluoride

Procedia PDF Downloads 552
209 Colour Formation and Maillard Reactions in Spray-Dried Milk Powders

Authors: Zelin Zhou, Timothy Langrish

Abstract:

Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed.

Keywords: colour formation, Maillard reactions, spray drying, skim milk powder

Procedia PDF Downloads 152
208 Molluscicidal Activity of Some Aqueous and Organic Extract from Some Asteraceae

Authors: Lineda Rouissat-Dahane, Abdelkrim Cheriti, Abbderazak Marouf, Reddy Kandappa H., Govender Patrick

Abstract:

Natural phytochemicals extracted from folk herbal have drawn much attention in complementary and alternative medicine, and the plant kingdom is considered for developing new molluscicide. The aqueous and acetone extract of the aerial parts of some Asteraceae (Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis and Warionia saharae) were investigated for its molluscicidal activity against Lymnaea acuminata showed significant molluscicidal activity with a median lethal concentration (LC50) of aqueous extract (8,178mg/ml) and organic extract 0.002μg/mL, which was indicated higher potency than the positive control, (LC50=100mg /mL for aqueous extract ; LC50=11.6 μg/mL for organic extract). Among the extract and their fractions, those of aerial parts of Launaea nudicaulis and Warionia saharae were found to exhibit significant molluscicidal activities. Among different solvent fractions of the acetone extract of Warionia saharae, the dichloromethane (DCM) soluble fraction showed the most potent molluscicidal activity against Lymnaea acuminata. Plants in species Anvillea radiata, Bubonium graveolens, Launaea arborescens, Launaea nudicaulis, and Warionia saharae produce a great variety of Flavonoids, Glucoside flavonoids, and Saponins that confer natural resistance against several pests. Most extracts were found to exhibit significant molluscicidal activity.

Keywords: acetone extract, aqueous extract, Asteraceae, molluscicidal activity, Lymnaea acuminata

Procedia PDF Downloads 83
207 Amelioration of Salinity Stress in Spinach (Spinace oleracae) by Exogenous Application of Triacontanol

Authors: Ameer Khan, Iffat Jamal, Ambreen Azam

Abstract:

An experiment was conducted in the Department of Botany, University of Sargodha to observe the amelioration of salinity stress in spinach (Spinacia oleracea) by exogenous application of Triacontanol. Two spinach cultivars (Spinacea oleracea and Rumax dentatus) were obtained from the Agriculture Research institute, Faisalabad. This experiment was conducted in pots. Each pot was filled with 9kg mixture of (sand + soil). Different salinity levels (0mM, 60mM, and 120mM) were created with NaCl according to the saturation percentage of soil after two weeks of seed germination. After the two weeks of salinity treatment, different levels of Triacontanol (0µM, 10µM, 20µM) were applied as foliar spray. Triacontanol was applied along with Tween 80 as surfactant. After the two weeks of Triacontanol application different growth, physiological and biochemical parameters were collected from the experimental study. Both treatments of Triacontanol (10µM, 20µM) were effective to ameliorate the effect of salinity, but 20µM Triacontanol was more effective to increase the shoot length, shoot, root fresh and dry weight. Chlorophyll contents were (chl a, chl b, total chl). Different biochemical parameters were also collected from experimental study. Saline growth medium increased the accumulation of protein and decreased the total free amino acids, and total soluble sugar under salt stress. Application of Triacontanol increased the protein contents. Overall, Application of triacontanol mitigated the effect of salinity.

Keywords: salinity, triacontanol, spinach, biochemical, physiological

Procedia PDF Downloads 257
206 Functional Expression and Characterization of a Novel Indigenous Endo-Beta 1,4- Glucanase from Apis mellifera

Authors: Amtul Jamil Sami

Abstract:

Apis mellifera is an insect of immense economic importance lives on rich carbohydrate diet including cellulose, nectar, honey and pollen. The carbohydrate metabolism in A mellifera has not been understood fully, as there are no data available, on the functional expression of cellulase gene. The cellulose hydrolyzing enzyme is required for the digestion of pollen cellulose wall, to release the important nutrients (amino acids, minerals, vitamins etc.) from the pollen. A dissection of Apis genome had revealed that there is one gene present for the expression of endo-beta-1,4-glucanase, for cellulose hydrolysis. In the presented work, functional expression of endo-beta-1,4 glucanase gene is reported. Total soluble proteins of the honey bee were isolated and were tested cellulose hydrolyzing enzyme activity, using carboxy-methyl cellulose, as a substrate. A mellifera proteins were able to hydrolyze carboxy-methyl cellulose, confirming its endo- type mode of action. Endo beta-1,4 glucanase enzyme was only present in the gut tissues, no activity was detected in the salivary glands. The pH optima of the enzyme were in the acidic pH range of 4-5-5-0, indicating its metabolic role in the acidic stomach of A mellifera. The reported enzyme is unique, as endo-beta- 1,4 glucanase was able to generate non reducing sugar, as an end product. The results presented, are supportive to the information that the honey bee is capable of producing its novel endo-beta-1,4 glucanase. Further it could be helpful, in understanding, the carbohydrate metabolism in A mellifera.

Keywords: honey bees, Endo-beta 1, 4- glucanase, Apis mellifera, functional expression

Procedia PDF Downloads 367
205 Investigation of Influence of Maize Stover Components and Urea Treatment on Dry Matter Digestibility and Fermentation Kinetics Using in vitro Gas Techniques

Authors: Anon Paserakung, Chaloemphon Muangyen, Suban Foiklang, Yanin Opatpatanakit

Abstract:

Improving nutritive values and digestibility of maize stover is an alternative way to increase their utilization in ruminant and reduce air pollution from open burning of maize stover in the northern Thailand. The present study, 2x3 factorial arrangements in completely randomized design was conducted to investigate the effect of maize stover components (whole and upper stover; cut above 5th node). Urea treatment at levels 0, 3, and 6% DM on dry matter digestibility and fermentation kinetics of maize stover using in vitro gas production. After 21 days of urea treatment, results illustrated that there was no interaction between maize stover components and urea treatment on 48h in vitro dry matter digestibility (IVDMD). IVDMD was unaffected by maize stover components (P > 0.05), average IVDMD was 55%. However, using whole maize stover gave higher cumulative gas and gas kinetic parameters than those of upper stover (P<0.05). Treating maize stover by ensiling with urea resulted in a significant linear increase in IVDMD (P<0.05). IVDMD increased from 42.6% to 53.9% when increased urea concentration from 0 to 3% and maximum IVDMD (65.1%) was observed when maize stover was ensiled with 6% urea. Maize stover treated with urea at levels of 0, 3, and 6% linearly increased cumulative gas production at 96h (31.1 vs 50.5 and 59.1 ml, respectively) and all gas kinetic parameters excepted the gas production from the immediately soluble fraction (P<0.50). The results indicate that maize stover treated with 6% urea enhance in vitro dry matter digestibility and fermentation kinetics. This study provides a practical approach to increasing utilization of maize stover in feeding ruminant animals.

Keywords: maize stover, urea treatment, ruminant feed, gas production

Procedia PDF Downloads 189
204 Comparison of the Effects of Continuous Flow Microwave Pre-Treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: anaerobic digestion, biogas, microwave pre-treatment, sewage sludge

Procedia PDF Downloads 292
203 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 302
202 Evaluation of the Effects of Some Medicinal Plants Extracts on Seed

Authors: Areej Ali Baeshen, Hanaa Kamal Galal, Batoul Mohamed Abdullatif

Abstract:

In the present study, the allelopathic effects of Eruca sativa, Mentha peprinta, and Coriandrum sativum aqueous extracts, prepared by 25 gm and 50 gm of fresh leaves dissolved in 100 ml of double distilled water in addition to the crude extract (100%). The final concentrations were 100 %, 50%, 25% and 0% as control. The extracts were tested for their allelopathic effects on seed germination and other growth parameters of Phaseolous vulgaris. Laboratory experiments were conducted in sterilizes Petri dishes with 5 and 10 day time interval for seed germination and 24 h, 48 h and 72 h for radicle length on an average of 25°C. The effects of different concentrations of aqueous extract were compared to distilled water (0%). 25% and 50% aqueous extracts of Eruca sativa and Coriandrum sativum caused a pronounced inhibitory effect on seed germination and the tested growth parameters of the receptor plant. The inhibitory effect was proportional to the concentration of the extract. Mentha peprinta extracts, on the other hand, caused an increase in germination percentage and other growth parameters in Phaseolous vulgaris. Hence, it could be concluded that the aqueous extracts of Eruca sativa and Coriandrum sativum might contain water-soluble allelochemicals, which could inhibit the seed germination and reduce radicle length of Phaseolous vulgaris. Mentha peprinta has beneficial allelopathic effects on the receptor plant.

Keywords: Phaseolus vulgaris, Eruca sativa, Mentha peperinta, Coriandrum sativum, medicinal plants, seed germination

Procedia PDF Downloads 371
201 Macrocycles Enable Tuning of Uranyl Electrochemistry by Lewis Acids

Authors: Amit Kumar, Davide Lionetti, Victor Day, James Blakemore

Abstract:

Capture and activation of the water-soluble uranyl dication (UO22+) remains a challenging problem, as few rational approaches are available for modulating the reactivity of this species. Here, we report the divergent synthesis of heterobimetallic complexes in which UO22+ is held in close proximity to a range of redox-inactive metals by tailored macrocyclic ligands. Crystallographic and spectroscopic studies confirm assembly of homologous UVI(μ-OAr)2Mn+ cores with a range of mono-, di-, and trivalent Lewis acids (Mn+). X-ray diffraction (XRD) and cyclic voltammetry (CV) data suggest preferential binding of K+ in an 18-crown-6-like cavity and Na+ in a 15-crown-5-like cavity, both appended to Schiff-base type sites that selectively bind UO22+. CV data demonstrate that the UVI/UV reduction potential in these complexes shifts positive and the rate of electron transfer decreases with increasing Lewis acidity of the incorporated redox-inactive metals. Moreover, spectroelectrochemical studies confirm the formation of [UV] species in the case of monometallic UO22+ complex, consistent with results from prior studies. However, unique features were observed during spectroelectrochemical studies in the presence of the K+ ion, suggesting new insights into electronic structure may be accessible with the heterobimetallic complexes. Overall, these findings suggest that interactions with Lewis acids could be effectively leveraged for rational tuning of the electronic and thermochemical properties of the 5f elements, reminiscent of strategies more commonly employed with 3d transition metals.

Keywords: electrochemistry, Lewis acid, macrocycle, uranyl

Procedia PDF Downloads 110
200 Novel Emulgel of Piroxicam for Topical Application with Mentha and Clove Oil

Authors: S. V. Patil, P. S. Dounde, S. S. Patil

Abstract:

Emulgels have emerged as one of the most interesting topical delivery system as it has dual release control system that is gel and emulsion. The major objective behind this formulation is delivery of hydrophobic drugs to systemic circulation via skin. In fact presence of a gelling agent in water phase converts a classical emulsion in to emulgel. The emulgel for dermatological use has several favorable properties such as being thixotropic, greaseless, easily spreadable, easily removable, emollient, non-staining, water-soluble, longer shelf life, bio-friendly, transparent and pleasing appearance. Various penetration enhancers can potentiate the effect. So this can be used as better topical drug delivery systems over present conventional systems available in market. Piroxicam is a non-steroidal anti-inflammatory drug that has major problems when administered orally; it is an insoluble drug and has irritant effect on gastro intestinal tract lead to ulceration and bleeding. The aim of this study was to overcoming these problems through preparation of topical emulgel of this drug. Emulgel of Piroxicam was prepared using Carbopol 940 along with mentha oil and clove oil as permeation enhancer. The prepared emulgel were evaluated for their physical appearance, pH determination, viscosity, spreadability, in vitro drug release, ex vivo permeation studies. All the prepared formulations showed acceptable physical properties, homogeneity, consistency, spreadability, viscosity and pH value. The emulgel was found to be stable with respect to physical appearance, pH, rheological properties and drug content at all temperature and conditions for three month.

Keywords: emulgel, piroxicam, menthe oil, clove oil

Procedia PDF Downloads 432
199 Schizosaccharomyces pombe, Saccharomyces cerevisiae Yeasts and Acetic Acid Bacteria in Alcoholic and Acetous Fermentations: Effect on Phenolic Acids of Kei-Apple (Dovyalis caffra L.) Vinegar

Authors: Phillip Minnaar, Neil Jolly, Louisa Beukes, Santiago Benito-Saez

Abstract:

Dovyalis caffra is a tree found on the African continent. Limited information exists on the effect of acetous fermentation on the phytochemicals of Kei-apple fruit. The phytochemical content of vinegars is derived from compounds present in the fruit the vinegar is made of. Kei-apple fruit juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation (AF). Acetous fermentation followed AF, using an acetic acid bacteria consortium as an inoculant. Juice had the lowest pH and highest total acidity (TA). The wine had the highest pH and vinegars lowest TA. Total soluble solids and L-malic acid decreased during AF and acetous fermentation. Volatile acidity concentration was not different among vinegars. Gallic, syringic, caffeic, p-coumaric, and chlorogenic acids increased during acetous fermentation, whereas ferulic, sinapic, and protocatechuic acids decreased. Chlorogenic acid was the most abundant phenolic acid in both wines and vinegars. It is evident from this investigation that Kei-apple vinegar is a source of plant-derived phenolics, which evolved through fermentation. However, the AAB selection showed minimal performance with respect to VA production. Acetic acid bacteria selection for acetous fermentation should be reconsidered, and the reasons for the decrease of certain phenolic acids during acetous fermentation needs to be investigated.

Keywords: acetic acid bacteria, acetous fermentation, liquid chromatography, phenolic acids

Procedia PDF Downloads 110
198 Nitrogen, Phosphorus, Potassium (NPK) Hydroxyapatite Nano-Hybrid Slow Release Fertilizer

Authors: Tinomuvonga Manenji Zhou, Eubert Mahofa, Tatenda Crispen Madzokere

Abstract:

The nanostructured formulation can increase fertilizer efficacy and uptake ratio of the soil nutrients in agriculture production and save fertilizer resources. Controlled release modes have properties of both release rate and release pattern of nutrients, for fertilizers that are soluble in water might be correctly controlled. Nanoparticles can reduce the rate at which fertilizer nutrients are in the soil by leaching. A slow release NPK-hydroxyapatite nano hybrid fertilizer was synthesized using exfoliated bentonite as filler material. A simple, scalable method was used to synthesize the nitrogen-phosphorus hydroxyapatite nano fertilizer, where calcium hydroxide, phosphoric acid, and urea were used as precursor material, followed by the incorporation of potassium through a liquid grinding method. The product obtained was an NPK-hydroxyapatite nano hybrid fertilizer. A quantitative analysis was done to determine the percentage of nitrogen, phosphorus, and potassium in the hybrid fertilizer. AAS was used to determine the percentage of potassium in the fertilizer. An accelerated water test was conducted to compare the nutrient release behavior of nutrients between the synthesized NPK-hydroxyapatite nano hybrid fertilizer and commercial NPK fertilizer. The rate of release of Nitrogen, phosphorus, and potassium was significantly lower in the synthesized NPK hydroxyapatite nano hybrid fertilizer than in the convectional NPK fertilizer. The synthesized fertilizer was characterized using XRD. NPK hydroxyapatite nano hybrid fertilizer encapsulated in exfoliated bentonite thus prepared can be used as an environmentally friendly fertilizer formulation which could be extended to solve one of the major problems faced in the global fertilization of low nitrogen, phosphorus, and potassium use efficiency in agriculture.

Keywords: NPK hydroxyapatite nano hybrid fertilizer, bentonite, encapsulation, low release

Procedia PDF Downloads 69
197 Development of Low Glycemic Gluten Free Bread from Barnyard Millet and Lentil Flour

Authors: Hemalatha Ganapathyswamy, Thirukkumar Subramani

Abstract:

Celiac disease is an autoimmune response to dietary wheat gluten. Gluten is the main structure forming protein in bread and hence developing gluten-free bread is a technological challenge. The study aims at using nonwheat flours like barnyard millet and lentil flour to replace wheat in bread formulations. Other characteristics of these grains, such as high protein, soluble fiber, mineral content and bioactive components make them attractive alternatives to traditional gluten-free ingredients in the production of high protein, gluten-free bread. The composite flour formulations for the development of gluten-free bread were optimized using lentil flour (50 to 70 g), barnyard millet flour (0 to 30 g) and corn flour (0 to 30 g) by means of response surface methodology with various independent variables for physical, sensorial and nutritional characteristics. The optimized composite flour which had a desirability value of 0.517, included lentil flour –62.94 g, barnyard millet flour– 24.34 g and corn flour– 12.72 g with overall acceptability score 8.00/9.00. The optimized gluten-free bread formulation had high protein (14.99g/100g) and fiber (1.95g/100g) content. The glycemic index of the gluten-free bread was 54.58 rendering it as low glycemic which enhances the functional benefit of the gluten-free bread. Since the standardised gluten-free bread from barnyard millet and lentil flour are high protein, and gluten-free with low glycemic index, the product would serve as an ideal therapeutic food in the management of both celiac disease and diabetes mellitus with better nutritional value.

Keywords: gluten free bread, lentil, low glycemic index, response surface methodology

Procedia PDF Downloads 160
196 Alleviation of Salt Stress Effects on Solanum lycopersicum (L.) Plants Grown in a Saline Soil by Foliar Spray with Salicylic Acid

Authors: Saad Howladar

Abstract:

Salinity stress is one of the major abiotic stresses, restricting plant growth and crop productivity in different world regions, especially in arid and semi-arid regions, including Saudi Arabia. The tomato plant is proven to be moderately sensitive to salt stress. Therefore, two field experiments were conducted using tomato plants (Hybrid 6130) to evaluate the effect of four concentrations of salicylic acid (SA; 0, 20, 40, and 60 µM) applied as foliar spraying in improving plant tolerance to saline soil conditions. Tomato plant growth, yield, osmoprotectants, chloeophyll fluorescence, and ionic contents were determined. The results of this study displayed that growth and yield components and physiological attributes of water-sprayed plants (the control) grown under saline soil conditions were negatively impacted. However, under the adverse conditions of salinity, SA-treated plants had enhanced growth and yield components of tomato plants compared to the control. Free proline, soluble sugars, chlorophyll fluorescence, relative water content, membrane stability index, and nutrients contents (e.g., N, P, K⁺, and Ca²⁺) were also improved significantly, while Na⁺ content was significantly reduced in SA-applied tomato plants. SA at 40 µM was the best treatment, which could be recommended to use for salt-stressed tomato plants to enable them to tolerate the adverse conditions of saline soils.

Keywords: tomatoes, salt stress, chlorophyll fluorescence, dehydration tolerance, osmoprotectants

Procedia PDF Downloads 78