Search results for: screened heat pipes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3567

Search results for: screened heat pipes

3447 Enhanced Boiling Heat Transfer Using Wettability Patterned Surfaces

Authors: Dong Il Shim, Geehong Choi, Donghwi Lee, Namkyu Lee, Hyung Hee Cho

Abstract:

Effective cooling technology is required to secure thermal stability in extreme heat generated systems such as integrated electronic devices and power generated systems. Pool boiling heat transfer is one of the powerful cooling mechanisms using phase change phenomena. Critical heat flux (CHF) and heat transfer coefficient (HTC) are main factors to evaluate the performance of boiling heat transfer. CHF is the limitation of boiling heat transfer before film boiling which occurs thermal failure. Surface wettability is an important surface characteristic of boiling heat transfer. A hydrophilic surface has higher CHF through effective working fluid supply to local hot spots. A hydrophobic surface promotes the onset of nucleate boiling (ONB) to enhance HTC. In this study, superbiphilic surfaces, which is combined with superhydrophillic and superhydrophobic, are applied on boiling experiments to maximize boiling performance. We conducted pool boiling heat transfer using DI water at a saturated temperature and recorded bubble dynamics using a high-speed camera with 2000 fps. As a result, superbiphilic patterned surfaces promote ONB and enhance both CHF and HTC. This study demonstrates the enhanced boiling performance using superbiphilic surfaces by effective nucleation and separation of liquid/vapor pathway. We expect that further enhancement of heat transfer could be achieved in future work using optimized patterned surfaces.

Keywords: boiling heat transfer, wettability, critical heat flux, heat transfer coefficient

Procedia PDF Downloads 299
3446 Intensification of Heat Transfer in Magnetically Assisted Reactor

Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy

Abstract:

The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.

Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile

Procedia PDF Downloads 164
3445 Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)

Authors: C. Amrane, D. Haman

Abstract:

Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different.

Keywords: Al-Mg alloys, precipitation, hardness, heat treatments

Procedia PDF Downloads 351
3444 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 347
3443 Exergy Losses Relation with Driving Forces in Heat Transfer Process

Authors: S. Ali Ashrafizadeh, M. Amidpour, N. Hedayat

Abstract:

Driving forces along with transfer coefficient affect on heat transfer rate, on the other hand, with regard to the relation of these forces with irriversibilities they are effective on exergy losses. Therefore, the driving forces can be used as a relation between heat transfer rate, transfer coefficients and exergy losses. In this paper, first, the relation of the exergetic efficiency and resistant forces is obtained, next the relation between exergy efficiency, relative driving force, heat transfer rate and heat resistances is considered. In all cases, results are argued graphically. Finally, a case study inspected by obtained results.

Keywords: heat transfer, exergy losses, exergetic efficiency, driving forces

Procedia PDF Downloads 578
3442 Solar Cell Packed and Insulator Fused Panels for Efficient Cooling in Cubesat and Satellites

Authors: Anand K. Vinu, Vaishnav Vimal, Sasi Gopalan

Abstract:

All spacecraft components have a range of allowable temperatures that must be maintained to meet survival and operational requirements during all mission phases. Due to heat absorption, transfer, and emission on one side, the satellite surface presents an asymmetric temperature distribution and causes a change in momentum, which can manifest in spinning and non-spinning satellites in different manners. This problem can cause orbital decays in satellites which, if not corrected, will interfere with its primary objective. The thermal analysis of any satellite requires data from the power budget for each of the components used. This is because each of the components has different power requirements, and they are used at specific times in an orbit. There are three different cases that are run, one is the worst operational hot case, the other one is the worst non-operational cold case, and finally, the operational cold case. Sunlight is a major source of heating that takes place on the satellite. The way in which it affects the spacecraft depends on the distance from the Sun. Any part of a spacecraft or satellite facing the Sun will absorb heat (a net gain), and any facing away will radiate heat (a net loss). We can use the state-of-the-art foldable hybrid insulator/radiator panel. When the panels are opened, that particular side acts as a radiator for dissipating the heat. Here the insulator, in our case, the aerogel, is sandwiched with solar cells and radiator fins (solar cells outside and radiator fins inside). Each insulated side panel can be opened and closed using actuators depending on the telemetry data of the CubeSat. The opening and closing of the panels are dependent on the special code designed for this particular application, where the computer calculates where the Sun is relative to the satellites. According to the data obtained from the sensors, the computer decides which panel to open and by how many degrees. For example, if the panels open 180 degrees, the solar panels will directly face the Sun, in turn increasing the current generator of that particular panel. One example is when one of the corners of the CubeSat is facing or if more than one side is having a considerable amount of sun rays incident on it. Then the code will analyze the optimum opening angle for each panel and adjust accordingly. Another means of cooling is the passive way of cooling. It is the most suitable system for a CubeSat because of its limited power budget constraints, low mass requirements, and less complex design. Other than this fact, it also has other advantages in terms of reliability and cost. One of the passive means is to make the whole chase act as a heat sink. For this, we can make the entire chase out of heat pipes and connect the heat source to this chase with a thermal strap that transfers the heat to the chassis.

Keywords: passive cooling, CubeSat, efficiency, satellite, stationary satellite

Procedia PDF Downloads 60
3441 Effect of Variation of Temperature Distribution on Mechanical Properties of Shield Metal Arc Welded Duplex Stainless Steel

Authors: Arvind Mittal, Rajesh Gupta

Abstract:

Influence of heat input on the micro structure and mechanical properties of shield metal arc welded of duplex stainless steel UNSNO.S-31803 has been investigated. Three heat input combinations designated as low heat (0.675 KJ/mm), medium heat (0.860 KJ/mm) and high heat (1.094 KJ/mm) and weld joints made using these combinations were subjected to micro structural evaluations and tensile and impact testing so as to analyze the effect of thermal arc energy on the micro structure and mechanical properties of these joints. The result of this investigation shows that the joints made using low heat input exhibited higher tensile strength than those welded with medium and high heat input. Heat affected zone of welded joint made with medium heat input has austenitic ferritic grain structure with some patchy austenite provide high toughness. Significant grain coarsening was observed in the heat affected zone (HAZ) of medium and high heat input welded joints, whereas low heat input welded joint shows the fine grain structure in the heat affected zone with small amount of dendritic formation and equiaxed grain structure where inner zone indicates slowly cooled grains in the direction of heat dissipation. This is the main reason for the observable changes of tensile properties of weld joints welded with different arc energy inputs.

Keywords: microstructure, mechanical properties, shield metal arc welded, duplex stainless steel

Procedia PDF Downloads 256
3440 Heat Transfer Investigation in a Dimple Plate Heat Exchanger Using Ionic Liquid and Ionanofluid

Authors: Divya P. Soman, S. Karthika, P. Kalaichelvi, T. K. Radhakrishnan

Abstract:

Heat transfer characteristics of ionic liquid solution as cold fluid in plate heat exchanger with dimple plate geometry was studied. The ionic liquid solution used in this study was 1-butyl-3-methylimidazolium bromide in water. The present experimental study is to understand the heat transfer behavior of different 1-butyl-3-methylimidazolium bromide concentrations (0.1 and 0.2% w/w) in water. In addition, the heat transfer activity of ionanofluid as cold fluid was investigated. The ionanofluid was prepared by dispersing 0.3% w/w Al2O3 in the ionic liquid solution as base fluid. Experiments were also conducted to determine thermophysical properties of ionanofluid. The empirical correlations as a function of temperature were developed to predict the thermophysical properties. Finally, the heat transfer performance of ionic liquid solution, ionanofluid, nanofluid and water were compared. The impact of hot fluid’s (water) Reynolds number on overall heat transfer coefficient and Nusselt number of cold fluids were analyzed. The nanofluid and ionanofluid were found to possess better heat transfer behavior than water and ionic liquid solution. Heat transfer augmentation was observed for ionanofluid when compared with the base fluid (0.1% w/w ionic liquid solution).

Keywords: ionic liquid, nanofluid, ionanofluid, dimple plate heat exchanger, Nusselt number, overall heat transfer coefficient

Procedia PDF Downloads 107
3439 Numerical Study of Natural Convection of a Localized Heat Source at the up of a Nanofluid-Filled Enclosure

Authors: Marziyeh Heydari, Hossein Shokouhmand

Abstract:

This article presents a numerical study of natural convection of a heat source embedded on the up wall of an enclosure filled with nanofluid. The bottom and vertical walls of the enclosure are maintained at a relatively low temperature. The type of nanofluid and solid volume fraction of nanoparticle on the heat transfer performance is studied. The results indicated that adding nanoparticle into pure paraffin improves heat transfer. The results are presented over a wide range of Rayleigh numbers(Ra=〖10〗^3 〖-10〗^5), the volume fraction of nanoparticles (0≤ɸ≤0.4%). For an enclosure, the Nusselt number of a cu-paraffin nanofluid was reduced by increasing the volume fraction of nanoparticles above 0.2%.

Keywords: nanofluid, heat transfer, heat source, enclosure

Procedia PDF Downloads 276
3438 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing

Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang

Abstract:

With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.

Keywords: heat island effect, neural network, comprehensive evaluation, visualization

Procedia PDF Downloads 105
3437 Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software

Authors: Aakash Kumar R. G., Anees K. Ahamed, Raj M. Mohan

Abstract:

Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software.

Keywords: fins, heat transfer, perforated fins, thermal analysis, thermal flux

Procedia PDF Downloads 346
3436 Experimental and Numerical Investigation of Heat Transfer in THTL Test Loop Shell and Tube Heat Exchanger

Authors: M. Moody, R. Mahmoodi, A. R. Zolfaghari, A. Aminottojari

Abstract:

In this study, flow inside the shell side of a shell-and-tube heat exchanger is simulated numerically for laminar and turbulent flows in both steady state and transient mode. Governing equations of fluid flow are discrete using finite volume method and central difference scheme and solved with simple algorithm which is staggered grid by using MATLAB programming language. The heat transfer coefficient is obtained using velocity field from equation Dittus-Bolter. In comparison with, heat exchanger is simulated with ANSYS CFX software and experimental data measured in the THTL test loop. Numerical results obtained from the study show good agreement with experimental data and ANSYS CFX results. In addition, by deliberation the effect of the baffle spacing and the baffle cut on the heat transfer rate for turbulent flow, it is illustrated that the heat transfer rate depends on the baffle spacing and the baffle cut directly. In other word in spied of large turbulence, if these two parameters are not selected properly in the heat exchanger, the heat transfer rate can reduce.

Keywords: shell-and-tube heat exchanger, flow and heat transfer, laminar and turbulence flow, turbulence model, baffle spacing, baffle cut

Procedia PDF Downloads 516
3435 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, When examined in minutes scale, (ii) H2S and CO2 have an identical hourly pattern, (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid

Procedia PDF Downloads 283
3434 CFD Simulation of Forced Convection Nanofluid Heat Transfer in the Automotive Radiator

Authors: Sina Movafagh, Younes Bakhshan

Abstract:

Heat transfer of coolant flow through the automobile radiators is of great importance for the optimization of fuel consumption. In this study, the heat transfer performance of the automobile radiator is evaluated numerically. Different concentrations of nanofluids have been investigated by the addition of Al2O3 nano-particles into the water. Also, the effect of the inlet temperature of nanofluid on the performance of radiator is studied. Results show that with an increase of inlet temperature the outlet temperature and pressure drop along the radiator increase. Also, it has been observed that increase of nono-particle concentration will result in an increase in heat transfer rate within the radiator.

Keywords: heat transfer, nanofluid, car radiator, CFD simulation

Procedia PDF Downloads 276
3433 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System

Authors: Tu Shuyang, Zhang Xu, Zhou Xiang

Abstract:

The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.

Keywords: capacity, energy efficiency, GSHP, heat exchange

Procedia PDF Downloads 314
3432 Heat Distribution Simulation on Transformer Using FEMM Software

Authors: N. K. Mohd Affendi, T. A. R. Tuan Abdullah, S. A. Syed Mustaffa

Abstract:

In power industry transformer is an important component and most of us familiar by the functioning principle of a transformer electrically. There are many losses occur during the operation of a transformer that causes heat generation. This heat, if not dissipated properly will reduce the lifetime and effectiveness of the transformer. Transformer cooling helps in maintaining the temperature rise of various paths. This paper proposed to minimize the ambient temperature of the transformer room in order to lower down the temperature of the transformer. A simulation has been made using finite element methods programs called FEMM (Finite Elements Method Magnetics) to create a virtual model based on actual measurement of a transformer. The generalization of the two-dimensional (2D) FEMM results proves that by minimizing the ambient temperature, the heat of the transformer is decreased. The modeling process and of the transformer heat flow has been presented.

Keywords: heat generation, temperature rise, ambient temperature, FEMM

Procedia PDF Downloads 356
3431 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: turbulators, heat exchanger, nanofluids, heat transfer enhancement

Procedia PDF Downloads 371
3430 Heat Capacity of a Soluble in Water Protein: Equilibrium Molecular Dynamics Simulation

Authors: A. Rajabpour, A. Hadizadeh Kheirkhah

Abstract:

Heat transfer is of great importance to biological systems in order to function properly. In the present study, specific heat capacity as one of the most important heat transfer properties is calculated for a soluble in water Lysozyme protein. Using equilibrium molecular dynamics (MD) simulation, specific heat capacities of pure water, dry lysozyme, and lysozyme-water solution are calculated at 300K for different weight fractions. It is found that MD results are in good agreement with ideal binary mixing rule at small weight fractions. Results of all simulations have been validated with experimental data.

Keywords: specific heat capacity, molecular dynamics simulation, lysozyme protein, equilibrium

Procedia PDF Downloads 276
3429 Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism

Authors: Renu Yadav, Sanjeev Kumar

Abstract:

In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors.

Keywords: chickpea, combinatorial stress, heat stress, oxidative stress, priming, RT-PCR

Procedia PDF Downloads 125
3428 Experimental Study of Heat Transfer in Pulsation Mist Flow in Rectanglar Duct Partially Filled with a Porous Medium

Authors: Hosein Shokoohmand, Mohamad Esmaeil Jomeh

Abstract:

The present thesis studies the effect of different factors such as frequency of oscillatory flow, change in constant wall heat flux and two-phase current state, on heat transfer in a pipe in presence of porous medium. In this experimental study is conducted for Reynolds numbers in a range of Re=850 to Re=10000 and oscillatory frequencies of 5, 20, 10, 30 and 40 Hz with constant heat flux of 585 w/m2 and 819 w/m2. The results indicate that increase in oscillation frequency in higher frequencies for heat flux of 585 w/m2 leads to an increase in heat transfer; however, in the rest of tests it results in a heat transfer decrease. Increasing Reynolds number in a pulsation mist flow causes an increase in average Nusselt number values. The effect of oscillation frequencies in a pulsation mist flow for different Reynolds numbers has revealed different results, in a way that for some Reynolds numbers an increase of frequency has led to a heat transfer decrease.

Keywords: Reynolds numbers, frequency of oscillatory flow, constant heat flux, mist flow

Procedia PDF Downloads 467
3427 A Novel Comparison Scheme for Thermal Conductivity Enhancement of Heat Transfer

Authors: Islam Tarek, Moataz Soliman

Abstract:

With the amazing development of nanoscience’s and the discovery of the unique properties of nanometric materials, the ideas of scientists and researchers headed to take advantage of this progress in various fields, and one of the most important of these areas is the field of heat transfer and benefit from it in saving energy used for heat transfer, so nanometric materials were used to improve the properties of heat transfer fluids and increase the efficiency of the liquid. In this paper, we will compare two types of heat transfer fluid, one industrial type (the base fluid is a mix of ethylene glycol and deionized water ) and another natural oils(the base fluid is a mix of jatropha oil and expired olive oil), explaining the method of preparing each of them, starting from the method of preparing CNT, collecting and sorting jatropha seeds, and the most appropriate method for extracting oil from them, and characterization the both of two fluids and when to use both.

Keywords: nanoscience, heat transfer, thermal conductivity, jatropha oil

Procedia PDF Downloads 185
3426 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials

Authors: M. Zafar, S. Rasheed, Imran Hashmi

Abstract:

Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.

Keywords: biofilm, DWDs, pipe material, bacterial population

Procedia PDF Downloads 322
3425 Condensation of Vapor in the Presence of Non-Condensable Gas on a Vertical Tube

Authors: Shengjun Zhang, Xu Cheng, Feng Shen

Abstract:

The passive containment cooling system (PCCS) is widely used in the advanced nuclear reactor in case of the loss of coolant accident (LOCA) and the main steam line break accident (MSLB). The internal heat exchanger is one of the most important equipment in the PCCS and its heat transfer characteristic determines the performance of the system. In this investigation, a theoretical model is presented for predicting the heat and mass transfer which accompanies condensation. The conduction through the liquid condensate is considered and the interface temperature is defined by iteration. The parameter in the correlation to describe the suction effect should be further determined through experimental data.

Keywords: non-condensable gas, condensation, heat transfer coefficient, heat and mass transfer analogy

Procedia PDF Downloads 315
3424 Analysis of the Environmental Impact of Selected Small Heat and Power Plants Operating in Poland

Authors: M. Stelmachowski, M. Wojtczak

Abstract:

The aim of the work was to assess the environmental impact of the selected small and medium-sized companies supplying heat and electricity to the cities with a population of about 50,000 inhabitants. Evaluation and comparison of the impact on the environment have been carried out for the three plants producing heat and two CHP plants with particular attention to emissions into the atmosphere and the impact of introducing a system of trading carbon emissions of these companies.

Keywords: CO2 emission, district heating, heat and power plant, impact on environment

Procedia PDF Downloads 447
3423 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules

Authors: BenedictI Ita, Etido P. Inyang

Abstract:

In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.

Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules

Procedia PDF Downloads 59
3422 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Fourier number, Nusselt number, Rayleigh number, steady state, transient

Procedia PDF Downloads 327
3421 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow

Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes

Abstract:

An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of  50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.

Keywords: finned-tube heat exchangers, heat transfer correlations, pulsatile flow, computer radiators

Procedia PDF Downloads 480
3420 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 331
3419 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle

Procedia PDF Downloads 220
3418 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop

Authors: R. Mahmoodi, A. R. Zolfaghari

Abstract:

In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.

Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA

Procedia PDF Downloads 405