Search results for: sandfish flesh powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 967

Search results for: sandfish flesh powder

757 Effect of Ethanol Concentration and Enzyme Pre-Treatment on Bioactive Compounds from Ginger Extract

Authors: S. Lekhavat, T. Kajsongkram, S. Sang-han

Abstract:

Dried ginger was extracted and investigated the effect of ethanol concentration and enzyme pre-treatment on its bioactive compounds in solvent extraction process. Sliced fresh gingers were dried by oven dryer at 70 °C for 24 hours and ground to powder using grinder which their size were controlled by passing through a 20-mesh sieve. In enzyme pre-treatment process, ginger powder was sprayed with 1 % (w/w) cellulase and then was incubated at 45 °C for 2 hours following by extraction process using ethanol at concentration of 0, 20, 40, 60 and 80 % (v/v), respectively. The ratio of ginger powder and ethanol are 1:9 and extracting conditions were controlled at 80 °C for 2 hours. Bioactive compounds extracted from ginger, either enzyme-treated or non enzyme-treated samples, such as total phenolic content (TPC), 6-Gingerol (6 G), 6-Shogaols (6 S) and antioxidant activity (IC50 using DPPH assay), were examined. Regardless of enzyme treatment, the results showed that 60 % ethanol provided the highest TPC (20.36 GAE mg /g. dried ginger), 6G (0.77%), 6S (0.036 %) and the lowest IC50 (625 μg/ml) compared to other ratios of ethanol. Considering the effect of enzyme on bioactive compounds and antioxidant activity, it was found that enzyme-treated sample has more 6G (0.17-0.77 %) and 6S (0.020-0.036 %) than non enzyme-treated samples (0.13-0.77 % 6G, 0.015-0.036 % 6S). However, the results showed that non enzyme-treated extracts provided higher TPC (6.76-20.36 GAE mg /g. dried ginger) and Lowest IC50 (625-1494 μg/ml ) than enzyme-treated extracts (TPC 5.36-17.50 GAE mg /g. dried ginger, IC50 793-2146 μg/ml).

Keywords: antioxidant activity, enzyme, extraction, ginger

Procedia PDF Downloads 221
756 From Private Bodies to a Shareable Body Politic. A Theological Solution to a Foundational Political Problem.

Authors: Patrick Downey

Abstract:

The political problem besetting all nations, tribes, and families, as illuminated by Plato in the fifth book of his Republic, is the problem of our own private body with its own particular pleasures and pains. This problem we might label the “irrational love of one’s own.” The reasonable philosopher loves reality just because it is, but we love things only if we can convince ourselves that they are “ours” or an imaginative extension of “ours.” The resulting problem, that can only be medicated, but not cured, is that the “body private,” whether our own, our family, tribe, or nation, always lies underneath any level of “body politic” and threatens the bloodshed and disintegration of civil war. This is also the political problem the Bible deals with throughout, beginning with Adam and Eve’s fall from rationally shareable bodies (“the two were one flesh”) into unshareable bodies whose now shameful “privacy” must be hid behind a bloody rather than bloodless veil. The blood is the sign of always threatening civil war, whether murder between brothers, feuds within tribes, or later, war between nations. The scarlet thread of blood tying the entire Bible together, Old and New Testament, reminds us that however far our loves are pushed out beyond our private body to family, tribe or nation, they remain irrational because unshareable. Only by loving the creator God who first loved us, can we rationally love anything of our own, but it must be loved as gift rather than as a possession. Such a love renders all bodies and nations truly shareable, and achieving this shareability is the paradoxical plot of the Bible, wherein the Word becomes flesh in a particular body amidst a particular people and nation. Yet even with His own nation and His own Son, this Lord is not “partial” and demands justice towards widows, orphans, and sojourners, because the irrational love of only our own can become rational solely through the resurrection of this particular body, king of this particular nation and these particular people. His body, along with all other bodies, can thus now retain their particular wounds and history, while yet remaining shareable. Likewise, all nations will share in the nation of Israel, in the same way all distinct languages will share an understanding through the inner rational word that we see illustrated in Pentecost. Without the resurrection, however, this shareability of bodies and nations remains merely a useful fiction, as Plato saw, and the equally fictitious “rationality” of some sort of deductive universalism will not go away. Reading Scripture in terms of Plato’s “irrational love of one’s own” therefore raises questions for both a Protestant and Catholic understanding of nations, questions that neither can answer adequately without this philosophical and exegetical attention.

Keywords: body private, nations, shareability, body politic

Procedia PDF Downloads 40
755 Utilization of Waste Glass Powder in Mortar

Authors: Suhaib Salahuddin Alzubair Suliman

Abstract:

This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.

Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar

Procedia PDF Downloads 32
754 Adsorption Performance of Hydroxyapatite Powder in the Removal of Dyes in Wastewater

Authors: Aderonke A. Okoya, Oluwaseun A. Somoye, Omotayo S. Amuda, Ifeanyi E. Ofoezie

Abstract:

This study assessed the efficiency of Hydroxyapatite Powder (HAP) in the removal of dyes in wastewater in comparison with Commercial Activated Carbon (CAC). This was with a view to developing cost effective method that could be more environment friendly. The HAP and CAC were used as adsorbent while Indigo dye was used as the adsorbate. The batch adsorption experiment was carried out by varying initial concentrations of the indigo dye, contact time and adsorbent dosage. Adsorption efficiency was classified by adsorption Isotherms using Langmuir, Freundlich and D-R isotherm models. Physicochemical parameters of a textile industry wastewater were determined before and after treatment with the adsorbents. The results from the batch experiments showed that at initial concentration of 125 mg/L of adsorbate in simulated wastewater, 0.9276 ± 0.004618 mg/g and 3.121 ± 0.006928 mg/g of indigo adsorbed per unit time (qt) of HAP and CAC respectively. The ratio of HAP to CAC required for the removal of indigo dye in simulated wastewater was 2:1. The isotherm model of the simulated wastewater fitted well to Freundlich model, the adsorption intensity (1/n) presented 1.399 and 0.564 for HAP and CAC, respectively. This revealed that the HAP had weaker bond than the electrostatic interactions which were present in CAC. The values of some physicochemical parameters (acidity, COD, Cr, Cd) of textile wastewater when treated with HAP decreased. The study concluded that HAP, an environment-friendly adsorbent, could be effectively used to remove dye from textile industrial wastewater with added advantage of being regenerated.

Keywords: adsorption isotherm, commercial activated carbon, hydroxyapatite powder, indigo dye, textile wastewater

Procedia PDF Downloads 197
753 Producing Lutein Powder from Algae by Extraction and Drying

Authors: Zexin Lei, Timothy Langrish

Abstract:

Lutein is a type of carotene believed to be beneficial to the eyes. This study aims to explore the possibility of using a closed cycle spray drying system to produce lutein. The system contains a spray dryer, a condenser, a heater, and a pressure seal. Hexane, ethanol, and isopropanol will be used as organic solvents to compare the extraction effects. Several physical and chemical methods of cell disruption will be compared. By continuously sweeping the system with nitrogen, the oxygen content will be controlled below 2%, reducing the concentration of organic solvent below the explosion limit and preventing lutein from being oxidized. Lutein powder will be recovered in the collection device. The volatile organic solvent will be cooled in the condenser and deposited in the bottom until it is discharged from the bottom of the condenser.

Keywords: closed cycle spray drying system, Chlorella vulgaris, organic solvent, solvent recovery

Procedia PDF Downloads 109
752 Development of Ready Reckoner Charts for Easy, Convenient, and Widespread Use of Horrock’s Apparatus by Field Level Health Functionaries in India

Authors: Gumashta Raghvendra, Gumashta Jyotsna

Abstract:

Aim and Objective of Study : The use of Horrock’s Apparatus by health care worker requires onsite mathematical calculations for estimation of ‘volume of water’ and ‘amount of bleaching powder’ necessary as per the serial number of first cup showing blue coloration after adding freshly prepared starch-iodide indicator solution. In view of the difficulties of two simultaneous calculations required to be done, the use of Horrock’s Apparatus is not routinely done by health care workers because it is impractical and inconvenient Material and Methods: Arbitrary use of bleaching powder in wells results in hyper-chlorination or hypo-chlorination of well defying the purpose of adequate chlorination or non-usage of well water due to hyper-chlorination. Keeping this in mind two nomograms have been developed, one to assess the volume of well using depth and diameter of well and the other to know the quantity of bleaching powder to b added using the number of the cup of Horrock’s apparatus which shows the colour indication. Result & Conclusion: Out of thus developed two self-speaking interlinked easy charts, first chart will facilitate bypassing requirement of formulae ‘πr2h’ for water volume (ready reckoner table with depth of water shown on ‘X’ axis and ‘diameter of well’ on ‘Y’ axis) and second chart will facilitate bypassing requirement formulae ‘2ab/455’ (where ‘a’ is for ‘serial number of cup’ and ‘b’ is for ‘water volume’, while ready reckoner table showing ‘water volume’ shown on ‘X’ axis and ‘serial number of cup’ on ‘Y’ axis). The use of these two charts will help health care worker to immediately known, by referring the two charts, about the exact requirement of bleaching powder. Thus, developed ready reckoner charts will be easy and convenient to use for ensuring prevention of water-borne diseases occurring due to hypo-chlorination, especially in rural India and other developing countries.

Keywords: apparatus, bleaching, chlorination, Horrock’s, nomogram

Procedia PDF Downloads 439
751 Synthesis of Hard Magnetic Material from Secondary Resources

Authors: M. Bahgat, F. M. Awan, H. A. Hanafy, O. N. Alzeghaibi

Abstract:

Strontium hexaferrite (SrFe12O19; Sr-ferrite) is one of the well-known materials for permanent magnets. In this study, M-type strontium ferrite was prepared by following the conventional ceramic method from steelmaking by-product. Initial materials; SrCO3 and by-product, were mixed together in the composition of SrFe12O19 in different Sr/Fe ratios. The mixtures of these raw materials were dry-milled for 6h. The blended powder was pre-sintered (i.e. calcination) at 1000°C for different times periods, then cooled down to room temperature. These pre-sintered samples were re-milled in a dry atmosphere for 1h and then fired at different temperatures in atmospheric conditions, and cooled down to room temperature. The produced magnetic powder has a dense hexagonal grain shape structure. The calculated energy product values for the produced samples ranged from 0.3 to 2.4 MGOe.

Keywords: hard magnetic materials, ceramic route, strontium ferrite, synthesis

Procedia PDF Downloads 293
750 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine

Authors: Hanbey Hazar

Abstract:

An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.

Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating

Procedia PDF Downloads 244
749 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN.  Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.

Keywords: magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR

Procedia PDF Downloads 340
748 An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent

Authors: Aylin Sahin, Recep Artir, Mustafa Kara

Abstract:

Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures.

Keywords: foam glass, foaming, waste glass, silicon carbide

Procedia PDF Downloads 339
747 Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry

Authors: K. Jarmkom, P. Eakwaropas, W. Khobjai, S. Techaeoi

Abstract:

Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time.

Keywords: GC-MS analysis, essential oils, stability, Pang-Rum

Procedia PDF Downloads 231
746 Production of Chromium Matrix Composite Reinforced by WC by Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Intermetallic materials advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %80Cr-%10Ti and %10WC powders were investigated using specimens produced by tube furnace sintering at 1000-1400°C temperature. A composite consisting of ternary additions, a metallic phase, Ti,Cr and WC have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %80Cr-%10Ti and %10WC at 1400°C suggest that the best properties as 292HV and 5,34g/cm3 density were obtained at 1400°C.

Keywords: ceramic-metal, composites, powder metallurgy, sintering

Procedia PDF Downloads 435
745 Preparedness for Microbial Forensics Evidence Collection on Best Practice

Authors: Victor Ananth Paramananth, Rashid Muniginin, Mahaya Abd Rahman, Siti Afifah Ismail

Abstract:

Safety issues, scene protection, and appropriate evidence collection must be handled in any bio crime scene. There will be a scene or multi-scene to be cordoned for investigation in any bio-incident or bio crime event. Evidence collection is critical in determining the type of microbial or toxin, its lethality, and its source. As a consequence, from the start of the investigation, a proper sampling method is required. The most significant challenges for the crime scene officer would be deciding where to obtain samples, the best sampling method, and the sample sizes needed. Since there could be evidence in liquid, viscous, or powder shape at a crime scene, crime scene officers have difficulty determining which tools to use for sampling. To maximize sample collection, the appropriate tools for sampling methods are necessary. This study aims to assist the crime scene officer in collecting liquid, viscous, and powder biological samples in sufficient quantity while preserving sample quality. Observational tests on sample collection using liquid, viscous, and powder samples for adequate quantity and sample quality were performed using UV light in this research. The density of the light emission varies upon the method of collection and sample types. The best tools for collecting sufficient amounts of liquid, viscous, and powdered samples can be identified by observing UV light. Instead of active microorganisms, the invisible powder is used to assess sufficient sample collection during a crime scene investigation using various collection tools. The liquid, powdered and viscous samples collected using different tools were analyzed using Fourier transform infrared - attenuate total reflection (FTIR-ATR). FTIR spectroscopy is commonly used for rapid discrimination, classification, and identification of intact microbial cells. The liquid, viscous and powdered samples collected using various tools have been successfully observed using UV light. Furthermore, FTIR-ATR analysis showed that collected samples are sufficient in quantity while preserving their quality.

Keywords: biological sample, crime scene, collection tool, UV light, forensic

Procedia PDF Downloads 168
744 Tomato Peels Prevented Margarine and Soya/Sunflower Oils Oxidation

Authors: S. Zidani, A. Benakmoum, A. Mansouri, A. Ammouche

Abstract:

In this research paper, we studied the oxidative stability of table margarine and soya/sunflower oils rich in lycopene with tomato peel powder (TPP). For this 1%, 2%, and 3% (w/w) of TPP was added to oil used in margarine manufacture. Chromatic characteristics of margarine and soya/sunflower oil have been studied using 'Tristimulus Colorimetry' method. The main point of the research was to determine the antioxidant activity and the oxidative resistance of soya/sunflower and margarine with TPP (peroxide index, TBA index, and rancimat test). The sensory and textural properties, overall acceptability of margarine and oil were good, indicating that TPP could be added to oil to produce a margarine enriched in lycopene with excellent stability oxidative.

Keywords: tomato peel powder, lycopene, table margarine, soya/sunflower oils, antioxidant activity, stability oxidative

Procedia PDF Downloads 269
743 Utilization of Brachystegia Spiciformis Leaf Powder in the Removal of Nitrates from Wastewaters: An Equilibrium Study

Authors: Isheanesu Hungwe, Munyaradzi Shumba, Tichaona Nharingo

Abstract:

High levels of nitrates in drinking water present a potential risk to human health for it is responsible for methemoglobinemia in infants. It also gives rise to eutrophication of dams and rivers. It is, therefore, important to find ways of compating the increasing amount of nitrates in the environment. This study explored the bioremediation of nitrates from aqueous solution using Brachystegia spiciformis leaf powder (BSLP). The acid treated leaf powder was characterized using FTIR and SEM before and after nitrate biosorption and desorption experiments. Critical biosorption factors, pH, contact time and biomass dosage were optimized as 4, 30 minutes and 10 g/L respectively. The equilibrium data generated from the investigation of the effect of initial nitrate ion concentration fitted the isotherm models in the order Dudinin-Radushkevich < Halsey=Freundlich < Langmuir < Temkin model based on the correlation of determination (R2). The Freundlich’s adsorption intensity and Langmuir’s separation factors revealed the favorability of nitrate ion sorption onto BSLP biomass with maximum sorption capacity of 87.297 mg/g. About 95% of the adsorbed nitrate was removed from the biomass under alkaline conditions (pH 11) proving that the regeration of the biomass, critical in sorption-desorption cycles, was possible. It was concluded that the BSLP was a multifunctional group material characterised by both micropores and macropores that could be effectively utilised in nitrate ion removal from aqueous solutions.

Keywords: adsorption, brachystegia spiciformis, methemoglobinemia, nitrates

Procedia PDF Downloads 219
742 Effect of Cr2O3 on Mechanical Properties of Aluminum Produced Powder Metallurgy

Authors: Yasin Akgul, Fazil Husem, Memis Isik

Abstract:

In this study, effect of content of chromium (III) oxide on production of Al/Cr203 alloys were investigated. Experimental procedure was started with mixturing of powders in the presence of absolute ethanol, vacuum distillation technique was used for evaporation, by ultrasonic bath and mechanic stirrer. Pressing procedure was achieved by hydrolic press that has 100 tons forcing for production of 25 mm diameter compact green billets. Green bodies were sintered at 600 °C in argon atmosphere. Scanning electron microscope (SEM) analysis for characterization of microstructure, compression test for determination of strength and Vickers test for measuring of hardness of sintered billets were done. End of the study is concluded that, enhancement of physical and mechanical properties is observed by increasing content of chromium (III) oxide.

Keywords: aluminium, chromium (III) oxide, powder metallurgy, sintering

Procedia PDF Downloads 203
741 Effect on Nutritional and Antioxidant Properties of Yellow Alkaline Noodles Substituted with Different Levels of Mangosteen (Garcinia Mangostana) Pericarp Powder

Authors: Mardiana Ahamad Zabidi, Nurain Abdul Karim, Nur Shazrinna Sazali

Abstract:

Mangosteen (Garcinia mangostana) pericarp is considered as agricultural waste and not fully utilized in food products. It is widely reported that mangosteen pericarp contains high antioxidant properties. The objective of this study is to develop novel yellow alkaline noodle (YAN) substituted with different levels of mangosteen pericarp powder (MPP). YAN formulation was substituted with different levels of MPP (0%, 5%, 10% and 15%). The effect on nutritional and antioxidant properties were evaluated. Higher substitution levels of MPP resulted in significant increase (p < 0.05) of ash, fibre, specific mineral elements, and antioxidant properties (total phenolic, total flavonoid, anthocyanin and DPPH) than control sample.

Keywords: antioxidant properties, Mangosteen pericarp, proximate composition, yellow alkaline noodle

Procedia PDF Downloads 395
740 Use of Fish Gelatin Based-Films as Edible Pouch to Extend the Shelf-Life of Dried Chicken Powder and Chicken Oil

Authors: Soottawat Benjakul, Phakawat Tongnuanchan, Thummanoon Prodpran

Abstract:

Edible pouches made from fish gelatin film incorporated without and with palm oil (PO), basil essential oil (BEO) or oil mixture (M) were prepared and used to store chicken powder and chicken skin oil in comparison with nylon/low-density polyethylene (Nylon/LDPE) pouch during storage of 15 days. The moisture content of chicken powder packaged in pouches from fish gelatin films incorporated without and with various oils increased during 15 days of storage (p > 0.05). However, there was a non-significant change in moisture content of sample packaged in Nylon/LDPE pouch (p > 0.05). Samples packaged in pouches from fish gelatin films incorporated with oils had lower moisture content than those stored in pouch from gelatin film without oil added throughout the storage (p < 0.05). This coincided with the higher increases in darkness and yellowness for the latter. All samples packaged in pouches made from all films had the slight increase in PV, whereas a drastic increase in TBARS was observed for all samples during 15 days of storage. During 15 days of storage, chicken skin oil packaged in Nylon/LDPE pouch had higher TBARS and p-anisidine value than those stored in pouches made from fish gelatin, regardless of oil incorporated (p< 0.05). Therefore, pouches from gelatin film incorporated with oils could lower water migration and lipid oxidation in fat containing foods and oils.

Keywords: edible pouch, fish gelatin, quality changes, storage stability

Procedia PDF Downloads 213
739 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 46
738 Behavior of Composite Construction Precast Reactive Powder RC Girder and Ordinary RC Deck Slab

Authors: Nameer A. Alwash, Dunia A. Abd AlRadha, Arshed M. Aljanaby

Abstract:

This study present an experimental investigation of composite behavior for hybrid reinforced concrete slab on girder from locale material in Iraq, ordinary concrete, NC, in slab and reactive powder concrete in girder ,RPC, with steel fibers of different types(straight, hook, and mix between its), tested as simply supported span subjected under two point loading, also study effects on overall behavior such as the ultimate load, crack width and deflection. The result shows that the most suitable for production girder from RPC by using 2% micro straight steel fiber, in terms of ultimate strength and min crack width. Also the results shows that using RPC in girder of composite section increased ultimate load by 79% when compared with same section made of NC, and increased the shear strength which erased the effect of changing reinforcement in shear, and using RPC in girder and epoxy (in shear transfer between composite section) (meaning no stirrups) equivalent presence of shear reinforcement by 90% when compared with same section using Φ8@100 as shear reinforcement. And the result shows that changing the cross section girder shape of the composite section to inverted T, with same section area, increased the ultimate load by 5% when compared with same section of rectangular shape girder.

Keywords: reactive powder concrete, RPC, hybrid concrete, composite section, RC girder, RC slab, shear connecters, inverted T section, shear reinforcment, shear span over effective depth

Procedia PDF Downloads 324
737 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 39
736 Surface Temperature of Asphalt Pavements with Colored Cement-Based Grouting Materials Containing Ceramic Waste Powder and Zeolite

Authors: H. Higashiyama, M. Sano, F. Nakanishi, M. Sugiyama, M. Kawanishi, S. Tsukuma

Abstract:

The heat island phenomenon and extremely hot summer climate are becoming environmental problems in Japan. Cool pavements reduce the surface temperature compared to conventional asphalt pavements in the hot summer climate and improve the thermal environment in the urban area. The authors have studied cement–based grouting materials poured into voids in porous asphalt pavements to reduce the road surface temperature. For the cement–based grouting material, cement, ceramic waste powder, and natural zeolite were used. This cement–based grouting material developed reduced the road surface temperature by 20 °C or more in the hot summer season. Considering the urban landscape, this study investigates the effect of surface temperature reduction of colored cement–based grouting materials containing pigments poured into voids in porous asphalt pavements by measuring the surface temperature of asphalt pavements outdoors. The yellow color performed the same as the original cement–based grouting material containing no pigment and was thermally better performance than the other color. However, all the tested cement–based grouting materials performed well for reducing the surface temperature and for creating the urban landscape.

Keywords: ceramic waste powder, natural zeolite, road surface temperature, asphalt pavement, urban landscape

Procedia PDF Downloads 287
735 Carbon Coated Silicon Nanoparticles Embedded MWCNT/Graphene Matrix Anode Material for Li-Ion Batteries

Authors: Ubeyd Toçoğlu, Miraç Alaf, Hatem Akbulut

Abstract:

We present a work which was conducted in order to improve the cycle life of silicon based lithium ion battery anodes by utilizing novel composite structure. In this study, carbon coated nano sized (50-100 nm) silicon particles were embedded into Graphene/MWCNT silicon matrix to produce free standing silicon based electrodes. Also, conventional Si powder anodes were produced from Si powder slurry on copper current collectors in order to make comparison of composite and conventional anode structures. Free –standing composite anodes (binder-free) were produced via vacuum filtration from a well dispersion of Graphene, MWCNT and carbon coated silicon powders. Carbon coating process of silicon powders was carried out via microwave reaction system. The certain amount of silicon powder and glucose was mixed under ultrasonication and then coating was conducted at 200 °C for two hours in Teflon lined autoclave reaction chamber. Graphene which was used in this study was synthesized from well-known Hummers method and hydrazine reduction of graphene oxide. X-Ray diffraction analysis and RAMAN spectroscopy techniques were used for phase characterization of anodes. Scanning electron microscopy analyses were conducted for morphological characterization. The electrochemical performance tests were carried out by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy.

Keywords: graphene, Li-Ion, MWCNT, silicon

Procedia PDF Downloads 223
734 Microwave Assisted Foam-Mat Drying of Guava Pulp

Authors: Ovais S. Qadri, Abhaya K. Srivastava

Abstract:

Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.

Keywords: foam mat drying, foam mat guava, guava powder, microwave drying

Procedia PDF Downloads 294
733 Development of a Biomaterial from Naturally Occurring Chloroapatite Mineral for Biomedical Applications

Authors: H. K. G. K. D. K. Hapuhinna, R. D. Gunaratne, H. M. J. C. Pitawala

Abstract:

Hydroxyapatite is a bioceramic which can be used for applications in orthopedics and dentistry due to its structural similarity with the mineral phase of mammalian bones and teeth. In this study, it was synthesized, chemically changing natural Eppawala chloroapatite mineral as a value-added product. Sol-gel approach and solid state sintering were used to synthesize products using diluted nitric acid, ethanol and calcium hydroxide under different conditions. Synthesized Eppawala hydroxyapatite powder was characterized using X-ray Fluorescence (XRF), X-ray Powder Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) in order to find out its composition, crystallinity, presence of functional groups, bonding type, surface morphology, microstructural features, and thermal dependence and stability, respectively. The XRD results reflected the formation of a hexagonal crystal structure of hydroxyapatite. Elementary composition and microstructural features of products were discussed based on the XRF and SEM results of the synthesized hydroxyapatite powder. TGA and DSC results of synthesized products showed high thermal stability and good material stability in nature. Also, FTIR spectroscopy results confirmed the formation of hydroxyapatite from apatite via the presence of hydroxyl groups. Those results coincided with the FTIR results of mammalian bones including human bones. The study concludes that there is a possibility of producing hydroxyapatite using commercially available Eppawala chloroapatite in Sri Lanka.

Keywords: dentistry, Eppawala chlorapatite, hydroxyapatite, orthopedics

Procedia PDF Downloads 212
732 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 262
731 High-Frequency Induction Heat Sintering of Al/SiC/GNS Nanocomposites and Their Tribological Properties

Authors: Mohammad Islam, Iftikhar Ahmad, Hany S. Abdo, Yasir Khalid

Abstract:

High-frequency induction heat sintering (HFIHS) is a fast, efficient powder consolidation technique. In this work, aluminum (Al) powder was mixed with silicon carbide (SiC) and/or graphene nanosheets (GNS) in different proportions and compacted using HFIHS process to produce dense nanocomposites. The nanostructures dispersion was assessed via electron microscopy using both SEM and TEM. Tribological behavior of the nanocomposites was investigated at different loads to determine wear rate and coefficient of friction. The scratch profiles were examined under the microscope to correlate wear properties with the microstructure. While the addition of SiC nanoparticles enhances microhardness values, GNS incorporation promotes dry lubricity with strikingly different wear scratch morphologies. Such Al/SiC/GNS material compositions can be explored for use in automotive brake pad and thermal management applications.

Keywords: aluminum nanocomposites, silicon carbide, graphene nanosheets, tribology

Procedia PDF Downloads 273
730 Influence of the Substitution of C for Mg and Ni on the Microstructure and Hydrogen Storage Characteristics of Mg2Ni Alloys

Authors: Sajad Haghanifar, Seyed-Farshid Kashani Bozorg

Abstract:

Nano-crystalline Mg2Ni-based powder was produced by mechanical alloying technique using binary and ternary powder mixtures with stoichiometric compositions of Mg2Ni, Mg1.9C0.1Ni and Mg2C0.1Ni0.9. The structures and morphologies of the milled products were studied by XRD, SEM and HRTEM. Their electrochemical hydrogen storage characteristics were investigated in 6 M KOH solution. X-Ray diffraction, scanning and transmission electron microscopy of the milled products showed the formation of Mg2Ni-based nano-crystallites after 5, 15 and 30 h of milling using the initial powder mixtures of Mg1.9C0.1Ni, Mg2Ni and Mg2C0.1Ni0.9, respectively. It was found that partial substitution of C for Mg has beneficial effect on the formation kinetic of nano-crystalline Mg2Ni. Contrary to this, partial substitution of C for Ni was resulted in retardation of formation kinetic of nano-crystalline Mg2Ni. In addition, the negative electrode made from Mg1.9C0.1Ni ternary milled product after 30 hour of milling exhibited the highest initial discharge capacity and longest discharge life. Thus, partial substitution of C for Mg is beneficial to electrode properties of the Mg2Ni-based crystallites. The relation between the discharge capacity and cycling number of mechanically alloyed products was proposed on the basis of the fact that the degradation of discharge capacity was mainly caused by the oxidation of magnesium and nickel. The experimental data fitted the deduced equation well.

Keywords: Mg2Ni, hydrogen absorbing materials, electrochemical properties, nano-crystalline, amorphous, mechanical alloying, carbon

Procedia PDF Downloads 404
729 Study of the Tribological Behavior of a Pin on Disc Type of Contact

Authors: S. Djebali, S. Larbi, A. Bilek

Abstract:

The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.

Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate

Procedia PDF Downloads 313
728 The Corrosion Resistance of P/M Alumix 431D Compacts

Authors: J. Kazior, A. Szewczyk-Nykiel, T. Pieczonka, M. Laska

Abstract:

Aluminium alloys are an important class of engineering materials for structural applications. This is due to the fact that these alloys have many interesting properties, namely, low density, high ratio of strength to density, good thermal and electrical conductivity, good corrosion resistance as well as extensive capabilities for shaping processes. In case of classical PM technology a particular attention should be paid to the selection of appropriate parameters of compacting and sintering processes and to keeping them. The latter need arises from the high sensitivity of aluminium based alloy powders on any fluctuation of technological parameters, in particular those related to the temperature-time profile and gas flow. Only then the desired sintered compacts with residual porosity may be produced. Except high mechanical properties, the other profitable properties of almost fully dense sintered components could be expected. Among them is corrosion resistance, rarely investigated on PM aluminium alloys. Thus, in the current study the Alumix 431/D commercial, press-ready grade powder was used for this purpose. Sintered compacts made of it in different conditions (isothermal sintering temperature, gas flow rate) were subjected to corrosion experiments in 0,1 M and 0,5 M NaCl solutions. The potentiodynamic curves were used to establish parameters characterising the corrosion resistance of sintered Alumix 431/D powder, namely, the corrosion potential, the corrosion current density, the polarization resistance, the breakdown potential. The highest value of polarization resistance, the lowest value of corrosion current density and the most positive corrosion potential was obtained for Alumix431/D powder sintered at 600°C and for highest protective gas flow rate.

Keywords: aluminium alloys, sintering, corrosion resistance, industry

Procedia PDF Downloads 315