Search results for: Isheanesu Hungwe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Isheanesu Hungwe

2 Utilization of Brachystegia Spiciformis Leaf Powder in the Removal of Nitrates from Wastewaters: An Equilibrium Study

Authors: Isheanesu Hungwe, Munyaradzi Shumba, Tichaona Nharingo

Abstract:

High levels of nitrates in drinking water present a potential risk to human health for it is responsible for methemoglobinemia in infants. It also gives rise to eutrophication of dams and rivers. It is, therefore, important to find ways of compating the increasing amount of nitrates in the environment. This study explored the bioremediation of nitrates from aqueous solution using Brachystegia spiciformis leaf powder (BSLP). The acid treated leaf powder was characterized using FTIR and SEM before and after nitrate biosorption and desorption experiments. Critical biosorption factors, pH, contact time and biomass dosage were optimized as 4, 30 minutes and 10 g/L respectively. The equilibrium data generated from the investigation of the effect of initial nitrate ion concentration fitted the isotherm models in the order Dudinin-Radushkevich < Halsey=Freundlich < Langmuir < Temkin model based on the correlation of determination (R2). The Freundlich’s adsorption intensity and Langmuir’s separation factors revealed the favorability of nitrate ion sorption onto BSLP biomass with maximum sorption capacity of 87.297 mg/g. About 95% of the adsorbed nitrate was removed from the biomass under alkaline conditions (pH 11) proving that the regeration of the biomass, critical in sorption-desorption cycles, was possible. It was concluded that the BSLP was a multifunctional group material characterised by both micropores and macropores that could be effectively utilised in nitrate ion removal from aqueous solutions.

Keywords: adsorption, brachystegia spiciformis, methemoglobinemia, nitrates

Procedia PDF Downloads 213
1 Suspected Odyssean Malaria Outbreak in Gauteng Province, September 2014

Authors: Patience Manjengwa-Hungwe, Carmen White

Abstract:

Background: Odyssean malaria refers to malaria acquired by infected mosquito bites from malaria endemic to non-endemic regions by mechanical modes of transport, such as airplanes, water vessels, trains and vehicles. Odyssean Malaria is rare and is characterised by absence of travel history to malaria endemic areas. As not anticipated in non-endemic areas, late diagnosis and treatment lead to a high case fatality rate. On 26 September 2014, the Outbreak Response Unit at the National Institute of Communicable Diseases was notified of a suspected death from Odyssean Malaria in Johannesburg, Gauteng Province, a non-endemic area. The main objective of this investigation was to identify the etiological agent's mode and source of transmission. Methods: Epidemiological surveys were conducted with the deceased’s family and clinical details were obtained from doctors who treated the victim in Southrand, Johannesburg. Blood samples were collected prior to death and sent to the National Health Laboratory Services, Johannesburg laboratory for a full blood count, urea electrolytes, creatinine, and C-reactive protein. Environmental assessments and entomological investigations, including collection of mosquito and larvae, were conducted at the deceased’s home and surrounding areas and sent to the laboratory for analysis. Results: Epidemiological surveys revealed no travel history, no mechanical transmission through blood transfusion and no previous possible exposure of the victim to malaria mosquitoes. Laboratory findings indicated that the platelet count was low. A further smear revealed that the malaria parasite was present and malaria antigen for P. falciparum was positive. Entomological findings revealed that none of the six adult or larval mosquitoes collected on site were malaria vectors. Dumping sites found at the back of the house were identified as possible sites where mosquitoes from endemic places could possibly breed. Conclusion: Given that there was no travel history or the possibility of mechanical transmission (blood transfusion or needle), the research team concluded that it is highly probable that the infection was acquired through an infective Anopheles mosquito inadvertently translocated from a Malaria endemic area by mechanical modes of transport. We recommend that clinicians in non-endemic malaria areas be aware of this type of malaria and test for malaria in patients showing malaria-like symptoms.

Keywords: Odyssean Malaria, vector Bourne, malaria, epidemiological surveys

Procedia PDF Downloads 309