Search results for: river runoff
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1196

Search results for: river runoff

1136 Runoff Estimates of Rapidly Urbanizing Indian Cities: An Integrated Modeling Approach

Authors: Rupesh S. Gundewar, Kanchan C. Khare

Abstract:

Runoff contribution from urban areas is generally from manmade structures and few natural contributors. The manmade structures are buildings; roads and other paved areas whereas natural contributors are groundwater and overland flows etc. Runoff alleviation is done by manmade as well as natural storages. Manmade storages are storage tanks or other storage structures such as soakways or soak pits which are more common in western and European countries. Natural storages are catchment slope, infiltration, catchment length, channel rerouting, drainage density, depression storage etc. A literature survey on the manmade and natural storages/inflow has presented percentage contribution of each individually. Sanders et.al. in their research have reported that a vegetation canopy reduces runoff by 7% to 12%. Nassif et el in their research have reported that catchment slope has an impact of 16% on bare standard soil and 24% on grassed soil on rainfall runoff. Infiltration being a pervious/impervious ratio dependent parameter is catchment specific. But a literature survey has presented a range of 15% to 30% loss of rainfall runoff in various catchment study areas. Catchment length and channel rerouting too play a considerable role in reduction of rainfall runoff. Ground infiltration inflow adds to the runoff where the groundwater table is very shallow and soil saturates even in a lower intensity storm. An approximate percent contribution through this inflow and surface inflow contributes to about 2% of total runoff volume. Considering the various contributing factors in runoff it has been observed during a literature survey that integrated modelling approach needs to be considered. The traditional storm water network models are able to predict to a fair/acceptable degree of accuracy provided no interaction with receiving water (river, sea, canal etc), ground infiltration, treatment works etc. are assumed. When such interactions are significant then it becomes difficult to reproduce the actual flood extent using the traditional discrete modelling approach. As a result the correct flooding situation is very rarely addressed accurately. Since the development of spatially distributed hydrologic model the predictions have become more accurate at the cost of requiring more accurate spatial information.The integrated approach provides a greater understanding of performance of the entire catchment. It enables to identify the source of flow in the system, understand how it is conveyed and also its impact on the receiving body. It also confirms important pain points, hydraulic controls and the source of flooding which could not be easily understood with discrete modelling approach. This also enables the decision makers to identify solutions which can be spread throughout the catchment rather than being concentrated at single point where the problem exists. Thus it can be concluded from the literature survey that the representation of urban details can be a key differentiator to the successful understanding of flooding issue. The intent of this study is to accurately predict the runoff from impermeable areas from urban area in India. A representative area has been selected for which data was available and predictions have been made which are corroborated with the actual measured data.

Keywords: runoff, urbanization, impermeable response, flooding

Procedia PDF Downloads 227
1135 The Effects of Some Organic Amendments on Sediment Yield, Splash Loss, and Runoff of Soils of Selected Parent Materials in Southeastern Nigeria

Authors: Leonard Chimaobi Agim, Charles Arinzechukwu Igwe, Emmanuel Uzoma Onweremadu, Gabreil Osuji

Abstract:

Soil erosion has been linked to stream sedimentation, ecosystem degradation, and loss of soil nutrients. A study was conducted to evaluate the effect of some organic amendment on sediment yield, splash loss, and runoff of soils of selected parent materials in southeastern Nigeria. A total of 20 locations, five from each of four parent materials namely: Asu River Group (ARG), Bende Ameki Group (BAG), Coastal Plain Sand (CPS) and Falsebedded Sandstone (FBS) were used for the study. Collected soil samples were analyzed with standard methods for the initial soil properties. Rainfall simulation at an intensity of 190 mm hr-1was conducted for 30 minutes on the soil samples at both the initial stage and after amendment to obtain erosion parameters. The influence of parent material on sediment yield, splash loss and runoff based on rainfall simulation was tested for using one way analyses of variance, while the influence of organic material and their combinations were a factorially fitted in a randomized complete block design. The organic amendments include; goat dropping (GD), poultry dropping (PD), municipal solid waste (MSW) and their combinations (COA) applied at four rates of 0, 10, 20 and 30 t ha-1 respectively. Data were analyzed using analyses of variance suitable for a factorial experiment. Significant means were separated using LSD at 5 % probability levels. Result showed significant (p ≤ 0.05) lower values of sediment yield, splash loss and runoff following amendment. For instance, organic amendment reduced sediment yield under wet and dry runs by 12.91 % and 26.16% in Ishiagu, 40.76% and 45.67%, in Bende, 16.17% and 50% in Obinze and 22.80% and 42.35% in Umulolo respectively. Goat dropping and combination of amendment gave the best results in reducing sediment yield.

Keywords: organic amendment, parent material, rainfall simulation, soil erosion

Procedia PDF Downloads 321
1134 A Fuzzy Control System for Reducing Urban Stormwater Runoff by a Stormwater Storage Tank

Authors: Pingping Zhang, Yanpeng Cai, Jianlong Wang

Abstract:

Stormwater storage tank (SST) is a popular low impact development technology for reducing stormwater runoff in the construction of sponge city. At present, it is difficult to perform the automatic control of SST for reducing peak flow. In this paper, fuzzy control was introduced into the peak control of SST to improve the efficiency of reducing stormwater runoff. Firstly, the design of SST was investigated. A catchment area and a return period were assumed, a SST model was manufactured, and then the storage capacity of the SST was verified. Secondly, the control parameters of the SST based on reducing stormwater runoff were analyzed, and a schematic diagram of real-time control (RTC) system based on peak control SST was established. Finally, fuzzy control system of a double input (flow and water level) and double output (inlet and outlet valve) was designed. The results showed that 1) under the different return periods (one year, three years, five years), the SST had the effect of delayed peak control and storage by increasing the detention time, 2) rainfall, pipeline flow, the influent time and the water level in the SST could be used as RTC parameters, and 3) the response curves of flow velocity and water level fluctuated very little and reached equilibrium in a short time. The combination of online monitoring and fuzzy control was feasible to control the SST automatically. This paper provides a theoretical reference for reducing stormwater runoff and improving the operation efficiency of SST.

Keywords: stormwater runoff, stormwater storage tank, real-time control, fuzzy control

Procedia PDF Downloads 169
1133 A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train

Authors: N. A. Ahmad Zubairi, H. Takaijudin, K. W. Yusof

Abstract:

Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants' growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive.

Keywords: pesticides, heavy metal, agricultural runoff, bioretention, mechanism removal, treatment train

Procedia PDF Downloads 122
1132 Interaction between River and City Morphology

Authors: Ehsan Abshirini

Abstract:

Rivers as one of the most important topographic factors have played a strategic role not only on the appearance of cities but they also affect the structure and morphology of cities. In this paper author intends to find out how a city in its physical network interacts with a river flowing inside. The pilot study is Angers, a city in western France, in which it is influenced by the Maine River. To this purpose space syntax method integrating with GIS is used to extract the properties of physical form of cities in terms of global and local integration value, accessibility and choice value. Simulating the state of absence of river in this city and comparing the result to the current state of city according to the effect of river on the morphology of areas located in different banks of river is also part of interest in this paper. The results show that although a river is not comparable to the city based on size and the area occupied by, it has a significant effect on the form of the city in both global and local properties. In addition, this study endorses that tracking the effect of river-cities and their interaction to rivers in a hybrid of space syntax and GIS may lead researchers to improve their interpretation of physical form of these types of cities.

Keywords: river-cities, Physical form, space syntax properties, GIS, topographic factor

Procedia PDF Downloads 400
1131 Antioxidant Responses and Malondialdehyde Levels in African Cat Fish (Clarias gariepinus) from Eleyele River in Nigeria

Authors: Oluwatosin Adetola Arojojoye, Olajumoke Olufunlayo Alao, Philip Odigili

Abstract:

This study investigated the extent of pollution in Eleyele River in Oyo State, Nigeria by investigating the antioxidant status and malondialdehyde levels (index of lipid peroxidation) in the organs of African Catfish, Clarias gariepinus from the river. Clarias gariepinus weighing between 250g-400g were collected from Eleyele River (a suspected polluted river) and Clarias gariepinus from a clean fish farm (Durantee fisheries) were used as the control. Levels of malondialdehyde, glutathione concentration (GSH) and activities of antioxidant enzymes - superoxide dismutase, catalase and glutathione-S-transferase (GST) were evaluated in the post-mitochondrial fractions of the liver, kidney and gills of the fishes. From the results, there were increases in malondialdehyde level and GSH concentration in the liver, kidney and gills of Clarias gariepinus from Eleyele River when compared with control. Glutathione-S-transferase activity was induced in the liver and kidney of Clarias gariepinus from Eleyele River when compared with control. However, the activity of this enzyme was depleted in the gills of fishes from Eleyele River compared with control. Also there was an induction in SOD activity in the liver of Clarias gariepinus from Eleyele River when compared with control but there was a decrease in the activity of this enzyme in the kidney and gills of fishes from Eleyele River compared with control. Increase in lipid peroxidation and alterations in antioxidant system in Clarias gariepinus from Eleyele River show that the fishes were under oxidative stress. These suggest that the river is polluted probably as a result of industrial, domestic and agricultural wastes frequently discharged into the river. This could pose serious health risks to consumers of water and aquatic organisms from the river.

Keywords: antioxidant, lipid peroxidation, Clarias gariepinus, Eleyele River

Procedia PDF Downloads 497
1130 Analysis of the Probable Maximum Flood in Hydrologic Design Using Different Functions of Rainfall-Runoff Transformation

Authors: Evangelos Baltas, Elissavet Feloni, Dimitrios Karpouzos

Abstract:

A crucial issue in hydrologic design is the sizing of structures and flood-control works in areas with limited data. This research work highlights the significant variation in probable maximum flood (PMF) for a design hyetograph, using different theoretical functions of rainfall-runoff transformation. The analysis focuses on seven subbasins with different characteristics in the municipality of Florina, northern Greece. This area is a semi-agricultural one which hosts important activities, such as the operation of one of the greatest fields of lignite for power generation in Greece. Results illustrate the notable variation in estimations among the methodologies used for the examined subbasins.

Keywords: rainfall, runoff, hydrologic design, PMF

Procedia PDF Downloads 236
1129 Flow Duration Curve Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil, Iran

Authors: Mehdi Fuladipanah, Mehdi Jorabloo

Abstract:

Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of river ecosystem. Then, it is very serious to determine ecosystem flow requirement. In this paper, flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude were determined as 1-day, 3-day, 7-day, and 30 day. According the second method, hydraulic alteration indices often had low and medium range. In order to maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m3.s-1.

Keywords: ardabil, environmental flow, flow duration curve, Gharasou river

Procedia PDF Downloads 649
1128 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh

Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain

Abstract:

Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.

Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS

Procedia PDF Downloads 49
1127 Monitoring the Change of Padma River Bank at Faridpur, Bangladesh Using Remote Sensing Approach

Authors: Ilme Faridatul, Bo Wu

Abstract:

Bangladesh is often called as a motherland of rivers. It contains about 700 rivers among all these the Padma River is one of the largest rivers of Bangladesh. The change of river bank and erosion has become a common environmental natural hazard in Bangladesh. The river banks are under intense pressure from natural processes such as erosion and accretion as well as anthropogenic processes such as urban growth and pollution. The Padma River is flowing along ten districts of Bangladesh among all these Faridpur district is most vulnerable to river bank erosion. The severity of the river erosion is so high that each year a thousand of populations become homeless and lose their agricultural lands. Though the Faridpur district is most vulnerable to river bank erosion no specific research has been conducted to identify the changing pattern of river bank along this district. The outcome of the research may serve as guidance to prepare river bank monitoring program and management. This research has utilized integrated techniques of remote sensing and geographic information system to monitor the changes from 1995 to 2015 at Faridpur district. To discriminate the land water interface Modified Normalized Difference Water Index (MNDWI) algorithm is applied and on screen digitization approach is used over MNDWI images of 1995, 2002 and 2015 for river bank line extraction. The extent of changes in the river bank along Faridpur district is estimated through overlaying the digitized maps of all three years. The river bank lines are highlighted to infer the erosion and accretion and the changes are calculated. The result shows that the middle of the river is gaining land through sedimentation and the both side river bank is shifting causing severe erosion that consequently resulting the loss of farmland and homestead. Over the study period from 1995 to 2015 it witnessed huge erosion and accretion that played an active role in the changes of the river bank.

Keywords: river bank, erosion and accretion, change monitoring, remote sensing

Procedia PDF Downloads 297
1126 Determination of the Runoff Coefficient in Urban Regions, an Example from Haifa, Israel

Authors: Ayal Siegel, Moshe Inbar, Amatzya Peled

Abstract:

This study examined the characteristic runoff coefficient in different urban areas. The main area studied is located in the city of Haifa, northern Israel. Haifa spreads out eastward from the Mediterranean seacoast to the top of the Carmel Mountain range with an elevation of 300 m. above sea level. For this research project, four watersheds were chosen, each characterizing a different part of the city; 1) Upper Hadar, a spacious suburb on the upper mountain side; 2) Qiryat Eliezer, a crowded suburb on a level plane of the watershed; 3) Technion, a large technical research university which is located halfway between the top of the mountain range and the coast line. 4) Keret, a remote suburb, on the southwestern outskirts of Haifa. In all of the watersheds found suitable, instruments were installed to continuously measure the water level flowing in the channels. Three rainfall gauges scattered in the study area complete the hydrological requirements for this research project. The runoff coefficient C in peak discharge events was determined by the Rational Formula. The main research finding is the significant relationship between the intensity of rainfall, and the impervious area which is connected to the drainage system of the watershed. For less intense rainfall, the full potential of the connected impervious area will not be exploited. As a result, the runoff coefficient value decreases as do the peak discharge rate and the runoff yield from the storm event. The research results will enable application to other areas by means of hydrological model to be be set up on GIS software that will make it possible to estimate the runoff coefficient of any given city watershed.

Keywords: runoff coefficient, rational method, time of concentration, connected impervious area.

Procedia PDF Downloads 325
1125 Two-Dimensional Modeling of Seasonal Freeze and Thaw in an Idealized River Bank

Authors: Jiajia Pan, Hung Tao Shen

Abstract:

Freeze and thaw occurs seasonally in river banks in northern countries. Little is known on how the riverbank soil temperature responds to air temperature changes and how freeze and thaw develops in a river bank seasonally. This study presents a two-dimensional heat conduction model for numerical investigations of seasonal freeze and thaw processes in an idealized river bank. The model uses the finite difference method and it is convenient for applications. The model is validated with an analytical solution and a field case with soil temperature distributions. It is then applied to the idealized river bank in terms of partially and fully saturated conditions with or without ice cover influence. Simulated results illustrate the response processes of the river bank to seasonal air temperature variations. It promotes the understanding of freeze and thaw processes in river banks and prepares for further investigation of frost and thaw impacts on riverbank stability.

Keywords: freeze and thaw, riverbanks, 2D model, heat conduction

Procedia PDF Downloads 103
1124 Hydrological Revival Possibilities for River Assi: A Tributary of the River Ganga in the Middle Ganga Basin

Authors: Anurag Mishra, Prabhat Kumar Singh, Anurag Ohri, Shishir Gaur

Abstract:

Streams and rivulets are crucial in maintaining river networks and their hydrology, influencing downstream ecosystems, and connecting different watersheds of urban and rural areas. The river Assi, an urban river, once a lifeline for the locals, has degraded over time. Evidence, such as the presence of paleochannels and patterns of water bodies and settlements, suggests that the river Assi was initially an alluvial stream or rivulet that originated near Rishi Durvasha Ashram near Prayagraj, flowing approximately 120 km before joining the river Ganga at Assi ghat in Varanasi. Presently, a major challenge is that nearly 90% of its original channel has been silted and disappeared, with only the last 8 km retaining some semblance of a river. It is possible that initially, the river Assi branched off from the river Ganga and functioned as a Yazoo stream. In this study, paleochannels of the river Assi were identified using Landsat 5 imageries and SRTM DEM. The study employed the Normalized Difference Vegetation Seasonality Index (NDVSI) and Principal Component Analysis (PCA) of the Normalized Difference Vegetation Index (NDVI) to detect these paleochannels. The average elevation of the sub-basin at the Durvasha Rishi Ashram of river Assi is 96 meters, while it reduces to 80 meters near its confluence with the Ganga in Varanasi, resulting in a 16-meter elevation drop along its course. There are 81 subbasins covering an area of 83,241 square kilometers. It is possible that due to the increased resistance in the flow of river Assi near urban areas of Varanasi, a new channel, Morwa, has originated at an elevation of 87 meters, meeting river Varuna at an elevation of 79 meters. The difference in elevation is 8 meters. Furthermore, the study explored the possibility of restoring the paleochannel of the river Assi and nearby ponds and water bodies to improve the river's base flow and overall hydrological conditions.

Keywords: River Assi, small river restoration, paleochannel identification, remote sensing, GIS

Procedia PDF Downloads 27
1123 Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example

Authors: Kaiping Xu, Aiju You, Lei Hua

Abstract:

In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions.

Keywords: Zhejiang province, mountainous river, ecological water demand, Kaihua river, evaluation

Procedia PDF Downloads 196
1122 Study on Runoff Allocation Responsibilities of Different Land Uses in a Single Catchment Area

Authors: Chuan-Ming Tung, Jin-Cheng Fu, Chia-En Feng

Abstract:

In recent years, the rapid development of urban land in Taiwan has led to the constant increase of the areas of impervious surface, which has increased the risk of waterlogging during heavy rainfall. Therefore, in recent years, promoting runoff allocation responsibilities has often been used as a means of reducing regional flooding. In this study, the single catchment area covering both urban and rural land as the study area is discussed. Based on Storm Water Management Model, urban and rural land in a single catchment area was explored to develop the runoff allocation responsibilities according to their respective control regulation on land use. The impacts of runoff increment and reduction in sub-catchment area were studied to understand the impact of highly developed urban land on the reduction of flood risk of rural land at the back end. The results showed that the rainfall with 1 hour short delay of 2 years, 5 years, 10 years, and 25 years return period. If the study area was fully developed, the peak discharge at the outlet would increase by 24.46% -22.97% without runoff allocation responsibilities. The front-end urban land would increase runoff from back-end of rural land by 76.19% -46.51%. However, if runoff allocation responsibilities were carried out in the study area, the peak discharge could be reduced by 58.38-63.08%, which could make the front-end to reduce 54.05% -23.81% of the peak flow to the back-end. In addition, the researchers found that if it was seen from the perspective of runoff allocation responsibilities of per unit area, the residential area of urban land would benefit from the relevant laws and regulations of the urban system, which would have a better effect of reducing flood than the residential land in rural land. For rural land, the development scale of residential land was generally small, which made the effect of flood reduction better than that of industrial land. Agricultural land requires a large area of land, resulting in the lowest share of the flow per unit area. From the point of the planners, this study suggests that for the rural land around the city, its responsibility should be assigned to share the runoff. And setting up rain water storage facilities in the same way as urban land, can also take stock of agricultural land resources to increase the ridge of field for flood storage, in order to improve regional disaster reduction capacity and resilience.

Keywords: runoff allocation responsibilities, land use, flood mitigation, SWMM

Procedia PDF Downloads 72
1121 Assessment of Impact of Urbanization in Drainage Urban Systems, Cali-Colombia

Authors: A. Caicedo Padilla, J. Zambrano Nájera

Abstract:

Cali, the capital of Valle del Cauca and the second city of Colombia, is located in the Cauca River Valley between the Western and Central Cordillera that is South West of the country. The topography of the city is mainly flat, but it is possibly to find mountains in the west. The city has increased urbanization during XX century, especially since 1958 when started a rapid growth due to migration of people from other parts of the region. Much of that population has settled in eastern of Cali, an area originally intended for cane cultivation and a zone of flood from Cauca River and its tributaries. Due to the unplanned migration, settling was inadequate and produced changes in natural dynamics of the basins, which has resulted in increases in runoff volumes, peak flows and flow velocities, that in turn increases flood risk. Sewerage networks capacity were not enough for this higher runoff volume, because in first term they were not adequately designed and built, causing its failure. This in turn generates increasingly recurrent floods generating considerable effects on the economy and development of normal activities in Cali. Thus, it becomes very important to know hydrological behavior of Urban Watersheds. This research aims to determine the impact of urbanization on hydrology of watersheds with very low slopes. The project aims to identify changes in natural drainage patterns caused by the changes made on landscape. From the identification of such modifications it will be defined the most critical areas due to recurring flood events in the city of Cali. Critical areas are defined as areas where the sewerage system does not work properly as surface runoff increases considerable with storm events, and floods are recurrent. The assessment will be done from the analysis of Geographic Information Systems (GIS) theme layers from CVC Environmental Institution of Regional Control in Valle del Cauca, hydrological data and disaster database developed by OSSO Corporation. Rainfall data from a network and historical stream flow data will be used for analysis of historical behavior and change of precipitation and hydrological response according to homogeneous zones characterized by EMCALI S.A. public utility enterprise of Cali in 1999.

Keywords: drainage systems, land cover changes, urban hydrology, urban planning

Procedia PDF Downloads 228
1120 Metal (Loids) Speciation Using HPLC-ICP-MS Technique in Klodnica River, Upper Silesia, Poland

Authors: Magdalena Jabłońska-Czapla

Abstract:

The work allowed gaining knowledge about redox and speciation changes of As, Cr, and Sb ionic forms in Klodnica River water. This kind of studies never has been conducted in this region of Poland. In study optimized and validated previously HPLC-ICP-MS methods for determination of As, Sb and Cr was used. Separation step was done using high-performance liquid chromatograph equipped with ion-exchange column followed by ICP-MS spectrometer detector. Preliminary studies included determination of the total concentration of As, Sb and Cr, pH, Eh, temperature and conductivity of the water samples. The study was conducted monthly from March to August 2014, at six points on the Klodnica River. The results indicate that exceeded at acceptable concentration of total Cr and Sb was observed in Klodnica River and we should qualify Klodnica River waters below the second purity class. In Klodnica River waters dominates oxidized antimony and arsenic forms, as well as the two forms of chromium Cr(VI) and Cr(III). Studies have also shown the methyl derivative of arsenic's presence.

Keywords: antimony, arsenic, chromium, HPLC-ICP-MS, river water, speciation

Procedia PDF Downloads 391
1119 Evaluation of Biochemical Oxygen Demand and Dissolved Oxygen for Thames River by Using Stream Water Quality Model

Authors: Ghassan Al-Dulaimi

Abstract:

This paper studied the biochemical parameter (BOD5) and (DO) for the Thames River (Canada-Ontario). Water samples have been collected from Thames River along different points between Chatham to Woodstock and were analysed for various water quality parameters during the low flow season (April). The study involves the application of the stream water quality model QUAL2K model to simulate and predict the dissolved oxygen (DO) and biochemical oxygen demand (BOD5) profiles for Thames River in a stretch of 251 kilometers. The model output showed that DO in the entire river was within the limit of not less than 4 mg/L. For Carbonaceous Biochemical Oxygen Demand CBOD, the entire river may be divided into two main reaches; the first one is extended from Chatham City (0 km) to London (150 km) and has a CBOD concentration of 2 mg/L, and the second reach has CBOD range (2–4) mg/L in which begins from London city and extend to near Woodstock city (73km).

Keywords: biochemical oxygen demand, dissolved oxygen, Thames river, QUAL2K model

Procedia PDF Downloads 68
1118 Pollutant Loads of Urban Runoff from a Mixed Residential-Commercial Catchment

Authors: Carrie Ho, Tan Yee Yong

Abstract:

Urban runoff quality for a mixed residential-commercial land use catchment in Miri, Sarawak was investigated for three storm events in 2011. Samples from the three storm events were tested for five water quality parameters, Namely, TSS, COD, BOD5, TP, and Pb. Concentration of the pollutants were found to vary significantly between storms, but were generally influenced by the length of antecedent dry period and the strength of rainfall intensities. Runoff from the study site showed a significant level of pollution for all the parameters investigated. Based on the National Water Quality Standards for Malaysia (NWQS), stormwater quality from the study site was polluted and exceeded class III water for TSS and BOD5 with maximum EMCs of 177 and 24 mg/L, respectively. Design pollutant load based on a design storm of 3-month average recurrence interval (ARI) for TSS, COD, BOD5, TP, and Pb were estimated to be 40, 9.4, 5.4, 1.7, and 0.06 kg/ha, respectively. The design pollutant load for the pollutants can be used to estimate loadings from similar catchments within Miri City.

Keywords: mixed land-use, urban runoff, pollutant load, national water quality

Procedia PDF Downloads 300
1117 Evaluation of SCS-Curve Numbers and Runoff across Varied Tillage Methods

Authors: Umar Javed, Kristen Blann, Philip Adalikwu, Maryam Sahraei, John McMaine

Abstract:

The soil conservation service curve number (SCS-CN) is a widely used method to assess direct runoff depth based on specific rainfall events. “Actual” estimated runoff depth was estimated by subtracting the change in soil moisture from the depth of precipitation for each discrete rain event during the growing seasons from 2021 to 2023. Fields under investigation were situated in a HUC-12 watershed in southeastern South Dakota selected for a common soil series (Nora-Crofton complex and Moody-Nora complex) to minimize the influence of soil texture on soil moisture. Two soil moisture probes were installed from May 2021 to October 2023, with exceptions during planting and harvest periods. For each field, “Textbook” CN estimates were derived from the TR-55 table based on corresponding mapped land use land cover LULC class and hydrologic soil groups from web soil survey maps. The TR-55 method incorporated HSG and crop rotation within the study area fields. These textbook values were then compared to actual CN values to determine the impact of tillage practices on CN and runoff. Most fields were mapped as having a textbook C or D HSG, but the HSG of actual CNs was that of a B or C hydrologic group. Actual CNs were consistently lower than textbook CNs for all management practices, but actual CNs in conventionally tilled fields were the highest (and closest to textbook CNs), while actual CNs in no-till fields were the lowest. Preliminary results suggest that no-till practice reduces runoff compared to conventional till. This research highlights the need to use CNs that incorporate agricultural management to more accurately estimate runoff at the field and watershed scale.

Keywords: curve number hydrology, hydrologic soil groups, runoff, tillage practices

Procedia PDF Downloads 15
1116 Modeling Sediment Yield of Jido River in the Rift Vally

Authors: Dawit Hailekrios Hailu

Abstract:

The main objective of this study is to predict the sediment yield of the Jido River Watershed. Jido River is the largest tributary and covers around 50% of the total catchment area of Lake Shala. This research is undertaken to analyze the sediment yield of the catchments, transport capacity of the streams and sediment deposition rates of Jido River, which is located in the Sub-basin of Shala Lake, Rift Valley Basin of Ethiopia. The input data were Meteorological, Hydrological, land use/land cover maps and soil maps collected from concerned government offices. The sediment yield of Jido River and sediment change of the streams discharging into the Shala Lake were modeled.

Keywords: sediment yield, watershed, simulation, calibration

Procedia PDF Downloads 29
1115 Experimental Testing of a Synthetic Mulch to Reduce Runoff and Evaporative Water Losses

Authors: Yasmeen Saleem, Pedro Berliner, Nurit Agam

Abstract:

The most severe limitation for plant production in arid areas is water. Rainfall events are rare but can have pulses of high intensity. As a result, crusts are formed, which decreases infiltration into the soil, and results additionally in erosive losses of soil. Direct evaporation of water from the wetted soil can account for large fractions of the water stored in the soil. Different kinds of mulches have been used to decrease the loss of water in arid and semi-arid region. This study aims to evaluate the effect of polystyrene styrofoam pellets mulch on soil infiltration, runoff, and evaporation as a more efficient and economically viable mulch alternative. Polystyrene styrofoam pellets of two sizes (0.5 and 1 cm diameter) will be placed on top of the soil in two mulch layer depths (1 and 2 cm), in addition to the non-mulched treatment. The rainfall simulator will be used as an artificial source of rain. The preliminary results in the prototype experiment indicate that polystyrene styrofoam pellets decreased runoff, increased soil-water infiltration. We are still testing the effect of these pellets on decreasing the soil-water evaporation.

Keywords: synthetic mulch, runoff, evaporation, infiltration

Procedia PDF Downloads 98
1114 Hydrological Method to Evaluate Environmental Flow: Case Study of Gharasou River, Ardabil

Authors: Mehdi Fuladipanah, Mehdi Jorabloo

Abstract:

Water flow management is one of the most important parts of river engineering. Non-uniformity distribution of rainfall and various flow demand with unreasonable flow management will be caused destroyed of the river ecosystem. Then, it is severe to determine ecosystem flow requirement. In this paper, Flow duration curve indices method which has hydrological based was used to evaluate environmental flow in Gharasou River, Ardabil, Iran. Using flow duration curve, Q90 and Q95 for different return periods were calculated. Their magnitude was determined as 1-day, 3-day, 7-day, and 30 days. According to the second method, hydraulic alteration indices often had low and medium range. To maintain river at an acceptable ecological condition, minimum daily discharge of index Q95 is 0.7 m^3.s^-1.

Keywords: Gharasou River, water flow management, non-uniformity distribution, ecosystem flow requirement, hydraulic alteration

Procedia PDF Downloads 302
1113 Anthropogenic Impact on Migration Process of River Yamuna in Delhi-NCR Using Geospatial Techniques

Authors: Mohd Asim, K. Nageswara Rao

Abstract:

The present work was carried out on River Yamuna passing through Delhi- National Capital Region (Delhi-NCR) of India for a stretch of about 130 km to assess the anthropogenic impact on the channel migration process for a period of 200 years with the help of satellite data and topographical maps with integration of geographic information system environment. Digital Shoreline Analysis System (DSAS) application was used to quantify river channel migration in ArcGIS environment. The average river channel migration was calculated to be 22.8 m/year for the entire study area. River channel migration was found to be moving in westward and eastward direction. Westward migration is more than 4 km maximum in length and eastward migration is about 4.19 km. The river has migrated a total of 32.26 sq. km of area. The results reveal that the river is being impacted by various human activities. The impact indicators include engineering structures, sand mining, embankments, urbanization, land use/land cover, canal network. The DSAS application was also used to predict the position of river channel in future for 2032 and 2042 by analyzing the past and present rate and direction of movement. The length of channel in 2032 and 2042 will be 132.5 and 141.6 km respectively. The channel will migrate maximum after crossing Okhla Barrage near Faridabad for about 3.84 sq. km from 2022 to 2042 from west to east.

Keywords: river migration, remote sensing, river Yamuna, anthropogenic impacts, DSAS, Delhi-NCR

Procedia PDF Downloads 99
1112 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa

Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka

Abstract:

Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.

Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise

Procedia PDF Downloads 178
1111 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran

Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi

Abstract:

Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.

Keywords: watershed simulation, WetSpa, stream flow, flood prediction

Procedia PDF Downloads 221
1110 Modeling of Hydraulic Networking of Water Supply Subsystem Case of Addis Ababa

Authors: Solomon Weldegebriel Gebrelibanos

Abstract:

Water is one of the most important substances in human life that can give a human liberality with its cost and availability. Water comes from rainfall and runoff and reaches the ground as runoff that is stored in a river, ponds, and big water bodies, including sea and ocean and the remaining water portion is infiltrated into the ground to store in the aquifer. Water can serve human beings in various ways, including irrigation, water supply, hydropower and soon. Water supply is the main pillar of the water service to the human being. Water supply distribution in Addis Ababa arises from Legedadi, Akakai, and Gefersa. The objective of the study is to measure the performance of the water supply distribution in Addis Ababa city. The water supply distribution model is developed by computer-aided design software. The model can analyze the operational change, loss of water, and performance of the network. The two design criteria that have been employed to analyze the network system are velocity and pressure. The result shows that the customers are using the water at high pressure with low demand. The water distribution system is older than the expected service life with more leakage. Hence the study recommended that fixing Pressure valves and new distribution facilities can resolve the performance of the water supply system

Keywords: distribution, model, pressure, velocity

Procedia PDF Downloads 88
1109 Periodicity Analysis of Long-Term Waterquality Data Series of the Hungarian Section of the River Tisza Using Morlet Wavelet Spectrum Estimation

Authors: Péter Tanos, József Kovács, Angéla Anda, Gábor Várbíró, Sándor Molnár, István Gábor Hatvani

Abstract:

The River Tisza is the second largest river in Central Europe. In this study, Morlet wavelet spectrum (periodicity) analysis was used with chemical, biological and physical water quality data for the Hungarian section of the River Tisza. In the research 15, water quality parameters measured at 14 sampling sites in the River Tisza and 4 sampling sites in the main artificial changes were assessed for the time period 1993 - 2005. Results show that annual periodicity was not always to be found in the water quality parameters, at least at certain sampling sites. Periodicity was found to vary over space and time, but in general, an increase was observed in the company of higher trophic states of the river heading downstream.

Keywords: annual periodicity water quality, spatiotemporal variability of periodic behavior, Morlet wavelet spectrum analysis, River Tisza

Procedia PDF Downloads 309
1108 Northern Westerrn Ghats of India Possess an Indigenous Fish Fauna: A Survey from Kudali River

Authors: R. A. Jamdade, Rokade A. C., Deshpande V. Y.

Abstract:

The freshwater fish fauna of Kudali River, a northern right bank tributary of the Krishna River Western Ghats of India was studied. It is one of the smallest tributary of Krishna river and never been explored for fish fauna assessment. It extends over 23 Kms having 22 fish species belonging to 15 genera and 7 families, of these 3 species are endemic to Western Ghats, 2 are globaly endangered and 2 near to be threatened. Downstream the Kudal locality, the river is under the influence of anthropogenic activities and over fishing, where conservation action plans are needed to be undertaken for conservation of endangered and near to be threatened fish fauna.

Keywords: freshwater, fish, fauna, western Ghats, anthropogenic activity, conservation

Procedia PDF Downloads 517
1107 Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors

Authors: Sheng Huang, Xin Zhao, Xiaofeng Gao, Tao Zhou, Shijin Dai, Youcai Zhao

Abstract:

Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems.

Keywords: adsorption mechanism, industrial construction waste, metals, pesticide, runoff

Procedia PDF Downloads 426