Search results for: quaternary cation compounds (QCC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2516

Search results for: quaternary cation compounds (QCC)

2336 Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)

Authors: E. Kayitesi, S. Moyo, V. Mavumengwana

Abstract:

Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties.

Keywords: Cleome gynandra, phenolic compounds, cooking, drying, health promoting properties

Procedia PDF Downloads 138
2335 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 328
2334 Synthesis and Characterisation of New Heteropolyanion Substitute by CO2+

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

In recent year, polyoxometallates are intensely being explored because of their applications as new materiels, structural aesthetics, catalysts, and biologically active compounds. heteropolyanions of general formulae [X2M18O62] n- (X= heteroatom, e.g. P, Si) and (M=W, Mo), known as Dawson-type anions, constitue a special class of polyoxometallate compounds. In this present work, cobalt substituted heteropolyanion Dawson-type [HP2W15Mo3CoO61] were synthesized and characterized by IR spectroscopy, 31 P NMR, cyclic voltammetry.

Keywords: heteropolyanions, nanomaterials, Dawson-type, characterization

Procedia PDF Downloads 222
2333 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 110
2332 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 292
2331 Comparison of Silica-Filled Rubber Compound Prepared from Unmodified and Modified Silica

Authors: Thirawudh Pongprayoon, Watcharin Rassamee

Abstract:

Silica-filled natural rubber compounds were prepared from unmodified and surface-modified silica. The modified silica was coated by ultrathin film of polyisoprene by admicellar polymerization. FTIR and SEM were applied to characterize the modified silica. The cure, mechanic, and dynamics properties were investigated with the comparison of the compounds. Cure characterization of modified silica rubber compound was shorter than that of unmodified silica compound. Strength and abrasion resistance of modified silica compound were better than those of unmodified silica rubber compound. Wet grip and rolling resistance analyzed by DMA from tanδ at 0°C and 60°C using 5 Hz were also better than those of unmodified silica rubber compound.

Keywords: silica, admicellar polymerization, rubber compounds, mechanical properties, dynamic properties

Procedia PDF Downloads 321
2330 Synthesis and Molecular Docking of Isonicotinohydrazide Derivatives as Anti-Tuberculosis Candidates

Authors: Ruswanto Ruswanto, Richa Mardianingrum, Tita Nofianti, Nur Rahayuningsih

Abstract:

Tuberculosis (TB) is a chronic disease as a result of Mycobacterium tuberculosis. It can affect all age groups, and hence, is a global health problem that causes the death of millions of people every year. One of the drugs used in tuberculosis treatment is isonicotinohydrazide. In this study, N'-benzoylisonicotinohydrazide derivative compounds (a-l) were prepared using acylation reactions between isonicotinohydrazide and benzoyl chloride derivatives, through the reflux method. Molecular docking studies suggested that all of the compounds had better interaction with Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) than isonicotinohydrazide. It can be concluded that N'-benzoylisonicotinohydrazide derivatives (a-l) could be used as anti-tuberculosis candidates. From the docking results revealed that all of the compounds interact well with InhA, with compound g (N'-(3-nitrobenzoyl)isonicotinohydrazide) exhibiting the best interaction.

Keywords: anti-tuberculosis , docking, InhA, N'-benzoylisonicotinohydrazide, synthesis

Procedia PDF Downloads 275
2329 Neotectonic Characteristics of the Western Part of Konya, Central Anatolia, Turkey

Authors: Rahmi Aksoy

Abstract:

The western part of Konya consists of an area of block faulted basin and ranges. Present day topography is characterized by alternating elongate mountains and depressions trending east-west. A number of depressions occur in the region. One of the large depressions is the E-W trending Kızılören-Küçükmuhsine (KK basin) basin bounded on both sides by normal faults and located on the west of the Konya city. The basin is about 5-12 km wide and 40 km long. Ranges north and south of the basin are composed of undifferentiated low grade metamorphic rocks of Silurian-Cretaceous age and smaller bodies of ophiolites of probable Cretaceous age. The basin fill consists of the upper Miocene-lower Pliocene fluvial, lacustrine, alluvial sediments and volcanic rocks. The younger and undeformed Plio-Quaternary basin fill unconformably overlies the older basin fill and is composed predominantly of conglomerate, mudstone, silt, clay and recent basin floor deposits. The paleostress data on the striated fault planes in the basin indicates NW-SE extension and associated with an NE-SW compression. The eastern end of the KK basin is cut and terraced by the active Konya fault zone. The Konya fault zone is NE trending, east dipping normal fault forming the western boundary of the Konya depression. The Konya depression consists mainly of Plio-Quaternary alluvial complex and recent basin floor sediments. The structural data gathered from the Konya fault zone support normal faulting with a small amount of dextral strike-slip tensional tectonic regime that shaped under the WNW-ESE extensional stress regime.

Keywords: central Anatolia, fault kinematics, Kızılören-Küçükmuhsine basin, Konya fault zone, neotectonics

Procedia PDF Downloads 331
2328 Smart Food Packaging Using Natural Dye and Nanoclay as a Meat Freshness Indicator

Authors: Betina Luiza Koop, Lenilton Santos Soares, Karina Cesca, Germán Ayala Valencia, Alcilene Rodrigues Monteiro

Abstract:

Active and smart food packaging has been studied to control and extend the food shelf-life. However, active compounds such as anthocyanins (ACNs) are unstable to high temperature, light, and pH changes. Several alternatives to stabilize and protect the anthocyanins have been researched, such as adsorption on nanoclays. Thus, this work aimed to stabilize anthocyanin extracted from jambolan fruit (Syzygium cumini), a noncommercial fruit, to development of food package sensors. The anthocyanin extract from jambolan pulp was concentrated by ultrafiltration and adsorbed on montmorillonite. The final biohybrid material was characterized by pH and color. Anthocyanins were adsorbed on nanoclay at pH 1.5, 2.5, and 3.5 and temperatures of 10 and 20 °C. The highest adsorption values were obtained at low pH at high temperatures. The color and antioxidant activity of the biohybrid was maintained for 60 days. A test of the color stability at pH from 1 to 13, simulating spoiled food using ammonia vapor, was performed. At pH from 1 to 5, the ACNs pink color was maintained, indicating that the flavylium cation form was preserved. At pH 13, the biohybrid presented yellow color due to the ACN oxidation. These results showed that the biohybrid material developed has potential application as a sensor to indicate the freshness of meat products.

Keywords: anthocyanin, biohybrid, food, smart packaging

Procedia PDF Downloads 38
2327 Methodology for the Determination of Triterpenic Compounds in Apple Extracts

Authors: Mindaugas Liaudanskas, Darius Kviklys, Kristina Zymonė, Raimondas Raudonis, Jonas Viškelis, Norbertas Uselis, Pranas Viškelis, Valdimaras Janulis

Abstract:

Apples are among the most commonly consumed fruits in the world. Based on data from the year 2014, approximately 84.63 million tons of apples are grown per annum. Apples are widely used in food industry to produce various products and drinks (juice, wine, and cider); they are also used unprocessed. Apples in human diet are an important source of different groups of biological active compounds that can positively contribute to the prevention of various diseases. They are a source of various biologically active substances – especially vitamins, organic acids, micro- and macro-elements, pectins, and phenolic, triterpenic, and other compounds. Triterpenic compounds, which are characterized by versatile biological activity, are the biologically active compounds found in apples that are among the most promising and most significant for human health. A specific analytical procedure including sample preparation and High Performance Liquid Chromatography (HPLC) analysis was developed, optimized, and validated for the detection of triterpenic compounds in the samples of different apples, their peels, and flesh from widespread apple cultivars 'Aldas', 'Auksis', 'Connel Red', 'Ligol', 'Lodel', and 'Rajka' grown in Lithuanian climatic conditions. The conditions for triterpenic compound extraction were optimized: the solvent of the extraction was 100% (v/v) acetone, and the extraction was performed in an ultrasound bath for 10 min. Isocratic elution (the eluents ratio being 88% (solvent A) and 12% (solvent B)) for a rapid separation of triterpenic compounds was performed. The validation of the methodology was performed on the basis of the ICH recommendations. The following characteristics of validation were evaluated: the selectivity of the method (specificity), precision, the detection and quantitation limits of the analytes, and linearity. The obtained parameters values confirm suitability of methodology to perform analysis of triterpenic compounds. Using the optimised and validated HPLC technique, four triterpenic compounds were separated and identified, and their specificity was confirmed. These compounds were corosolic acid, betulinic acid, oleanolic acid, and ursolic acid. Ursolic acid was the dominant compound in all the tested apple samples. The detected amount of betulinic acid was the lowest of all the identified triterpenic compounds. The greatest amounts of triterpenic compounds were detected in whole apple and apple peel samples of the 'Lodel' cultivar, and thus apples and apple extracts of this cultivar are potentially valuable for use in medical practice, for the prevention of various diseases, for adjunct therapy, for the isolation of individual compounds with a specific biological effect, and for the development and production of dietary supplements and functional food enriched in biologically active compounds. Acknowledgements. This work was supported by a grant from the Research Council of Lithuania, project No. MIP-17-8.

Keywords: apples, HPLC, triterpenic compounds, validation

Procedia PDF Downloads 147
2326 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves

Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye

Abstract:

Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.

Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis

Procedia PDF Downloads 244
2325 Isolation, Characterization and Biological Activities of Compounds Isolated from Callicarpa maingayi

Authors: Muhammad A. Ado, Intan S. Ismail, Hasanah M. Ghazali, Faridah Abas

Abstract:

In this study, we have investigated the phytochemical constituents of soluble fractions of dichloromethane (DCM) of methanolic leaves extract of the Callicarpa maingayi. The phytochemicals investigation has resulted in the isolation of three triterpenoids (euscaphic acid (1), arjunic acid (2), and ursolic acid (3)) together with two flavones apigenin (4) and acacetin (5)), two phytosterols (stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)), and one fatty acid (n-hexacosanoic acid (8)). Six (6) compounds isolated from this species were isolated for the first time (1, 2, 3, 4, 5, and 8). Their structures were elucidated and identified by spectral methods of one and two-dimensional NMR techniques, gas chromatography-mass spectrometry, and comparison with the previously reported literature. The biological activity of three compounds (1-3) was carried out on acetylcholinesterase inhibition activity. Compound (3) was found to displayed good inhibition against AChE with an IC₅₀ value of 21.5 ± 0.022 μM.

Keywords: acetylcholinesterase, Callicarpa maingayi, euscaphic acid, ursolic acid

Procedia PDF Downloads 108
2324 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN.  Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.

Keywords: magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR

Procedia PDF Downloads 341
2323 Acetalization of Carbonyl Compounds by Using Al2 (HPO4)3 under Green Condition Mg HPO4

Authors: Fariba Jafari, Samaneh Heydarian

Abstract:

Al2(HPO4)3 was easily prepared and used as a solid acid in acetalization of carbonyl compounds at room temperature and under solvent-free conditions. The protection was done in short reaction times and in good to high isolated yields. The cheapness and availability of this reagent with easy procedure and work-up make this method attractive for the organic synthesis.

Keywords: acetalization, acid catalysis, carbonylcompounds, green condition, protection

Procedia PDF Downloads 290
2322 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 259
2321 Synthesis, Molecular-Docking, and Biological Evaluation of Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents

Authors: Iram Batool, Aamer Saeed, Irfan Zia Qureshi, Ayesha Razzaq, Saima Kalsoom

Abstract:

Heterocyclic compounds analogues and their derivatives have attracted strong interest in medicinal chemistry due to their biological and pharmacological properties. A series of new thiazolopyrimidine carboxylates were conveniently synthesized by one-pot three-component reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with electron-donating and electron-withdrawing groups in order to find some more potent antidiabetic and antibacterial drugs. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. An in vitro antidiabetic effect was evaluated in adult male BALB/c mice and antibacterial activities were tested against Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Some of the tested compounds proved to possess good to excellent activities more than the reference drugs. An in silico molecular docking was also performed on synthesized compounds. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs and understanding the mechanism by which such drugs interact with RNA and diabetes target and exert their biochemical action.

Keywords: antidiabetic, antibacterial, MOE docking, thiazolopyrimidine

Procedia PDF Downloads 429
2320 Designing a Functional Bread Premixes Recipes Involving White Mulberry Fruit

Authors: Kobus-Cisowska Joanna, Flaczyk Ewa, Gramza-Michalowska Anna, Kmiecik Dominik, Przeor Monika, Marcinkowska Agata, Korczak Józef

Abstract:

The object of this study was to develop recipes and technology of production of functional bread with morus alba fruit addition. There were prepared four samples of functional breads and the control sample also. Bread recipe was designed for supporting the treatment of anemia, diabetes, obesity and cardiovascular diseases. Samples of bread were baked with mixes directly after preparation and after three months' storage, each time preparing the water and methanol extracts. The sensory analysis and nutritional value were estimated. The antioxidant activity were estimated used tests such as the ability to scavenge free radical DPPH, the ability to scavenge the ABTS cation, chelating properties and the total content of polyphenols. The study results showed that the prepared sample of functional breads were characterized by a high nutritional value with high concentration of biologically active compounds which showed antioxidant activity. In addition, the profile sensory of bread samples was highly rated. However, to determine whether they can be considered as a new product preset pro-health properties require additional nutritional studies - clinical trials.

Keywords: functional food, breads, white mulberry, bioactive components

Procedia PDF Downloads 274
2319 2-Thioimidazole Analogues: Synthesis, in silico Studies and in vitro Anticancer and Antiprotozoal Evaluation

Authors: Drashti G. Daraji, Rosa E. Moo-Puc, Hitesh D. Patel

Abstract:

Substituted 2-Thioimidazole analogues have been synthesized and confirmed by advanced spectroscopic techniques. Among them, ten compounds have been selected and evaluated for their in vitro anti-cancer activity at the National Cancer Institute (NCI) for testing against a panel of 60 different human tumor cell lines derived from nine neoplastic cancer types. Furthermore, synthesized compounds were tested for their in vitro antiprotozoal activity, and none of them exhibited significant potency against antiprotozoans. It was observed that the tested all compounds seem effective on the UACC-62 melanoma cancer cell line as compared to other cancer cell lines and also exhibited the least potent in the Non-Small Cell Lung Cancer cell line in one-dose screening. In silico studies of these derivatives were carried out by molecular docking techniques and Absorption, Distribution, Metabolism, and Excretion (ADME) using Schrödinger software to find potent B-Raf kinase inhibitor (PDB ID: 3OG7). All the compounds have been performed for docking study; Compound D4 has a good docking score for melanoma cancer as compared with other.

Keywords: anticancer activity, cancer cell line, 2-thio imidazole, one-dose assay, molecular docking

Procedia PDF Downloads 111
2318 Bioactive Compounds and Antioxidant Capacity of Instant Fruit Green Tea Powders

Authors: Akanit Pisalwadcharin, Komate Satayawut, Virachnee Lohachoompol

Abstract:

Green tea, mangosteen and pomegranate contain high levels of bioactive compounds which have antioxidant effects and great potential in food applications. The aim of this study was to produce and determine catechin contents, total phenolic contents, antioxidant activity and phenolic compounds of two instant fruit green tea powders which were green tea fortified with mangosteen juice and green tea fortified with pomegranate juice. Seventy percent of hot water extract of green tea was mixed with 30% of mangosteen juice or pomegranate juice, and then spray-dried using a spray dryer. The results showed that the drying conditions optimized for the highest total phenolic contents, catechin contents and antioxidant activity of both powders were the inlet air temperature of 170°C, outlet air temperatures of 90°C and maltodextrin concentration of 30%. The instant green tea with mangosteen powder had total phenolic contents, catechin contents and antioxidant activity of 19.18 (mg gallic acid/kg), 85.44 (mg/kg) and 4,334 (µmoles TE/100 g), respectively. The instant green tea with pomegranate powder had total phenolic contents, catechin contents and antioxidant activity of 32.72 (mg gallic acid/kg), 156.36 (mg/kg) and 6,283 (µmoles TE/100 g), respectively. The phenolic compounds in instant green tea with mangosteen powder comprised of tannic acid (2,156.87 mg/kg), epigallocatechin-3-gallate (898.23 mg/kg) and rutin (13.74 mg/kg). Also, the phenolic compounds in instant green tea with pomegranate powder comprised of tannic acid (2,275.82 mg/kg), epigallocatechin-3-gallate (981.23 mg/kg), rutin (14.97 mg/kg) and i-quercetin (5.86 mg/kg).

Keywords: green tea, mangosteen, pomegranate, antioxidant activity

Procedia PDF Downloads 331
2317 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić

Abstract:

The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.

Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR

Procedia PDF Downloads 271
2316 Synthesis, Inhibitory Activity, and Molecular Modelling of 2-Hydroxy-3-Oxo-3-Phenylpropionate Derivatives as HIV-1-Integrase Inhibitors

Authors: O. J. Jesumoroti, Faridoon, R. Klein, K. A. Iobb, D. Mnkadhla, H. C. Hoppe, P. T. Kaye

Abstract:

The 1, 3-aryl diketo acids (DKA) based agents represent an important class of HIV integrase (IN) strand transfer inhibitors. In other to study the chelating role of the divalent metal ion in the inhibition of IN strand transfer, we designed and synthesized a series of 2-hydroxy-3-oxo-3-phenyl propionate derivatives with the notion that such compounds could interact with the divalent ion in the active site of IN. The synthetic sequence to the desired compounds involves the concept of Doebner knoevenagel condensation, Fischer esterification and ketohydroxylation using neuclophilic re-oxidant; compounds were characterized by their IR, IHNMR, 13CNMR, HRMS spectroscopic data and melting point determination. Also, molecular docking was employed in this study and it was revealed that there is interaction with the active site of the enzyme. However, there is disparity in the corresponding anti-HIV activity determined by the experimental bioassay. These compounds lack potency at low micromolar concentration when compared to the results of the docking studies. Nevertheless, the results of the study suggest modification of the aryl ring with one or two hydroxyl groups to improve the inhibitory activity.

Keywords: anti-HIV-1 integrase, ketohydroxylation, molecular docking, propionate derivatives

Procedia PDF Downloads 166
2315 Enthalpies of Formation of Equiatomic Binary Hafnium Transition Metal Compounds HfM (M=Co, Ir, Os, Pt, Rh, Ru)

Authors: Hadda Krarcha, S. Messaasdi

Abstract:

In order to investigate Hafnium transition metal alloys HfM (M= Co, Ir, Os,Pt, Rh, Ru) phase diagrams in the region of 50/50% atomic ratio, we performed ab initio Full-Potential Linearized Augmented Plane Waves calculations of the enthalpies of formation of HfM compounds at B2 (CsCl) structure type. The obtained enthalpies of formation are discussed and compared to some of the existing models and available experimental data.

Keywords: enthalpy of formation, transition metal, binarry compunds, hafnium

Procedia PDF Downloads 450
2314 Synthesis, Characterization, and Biological Evaluation of 1,3,4-Mercaptooxadiazole Ether Derivatives Analogs as Antioxidant, Cytotoxic, and Molecular Docking Studies

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Oxadiazoles and their derivatives with thioether functionalities represent a new and exciting class of physiologically active heterocyclic compounds. Several molecules with these moieties play a vital role in pharmaceuticals because of their diverse biological activities. This paper describes a new class of 1,3,4- oxadiazole-2-thioethers with acetophenone, coumarin, and N-phenyl acetamide residues (S-alkylation), with the hope that the addition of various biologically active molecules will have a synergistic effect on anticancer activity. The structure of the synthesized title compounds was determined by the combined methods of IR, proton-NMR, carbon-13-NMR, and mass spectrometry. Further, all the newly prepared molecules were assessed against their antioxidant activity. Furthermore, four compounds were assessed for their molecular docking interactions and cytotoxicity activity. The synthesized derivatives have shown moderate antioxidant activity compared to the standard BHA. The IC50 of the tilted molecules (11b, 11c, 13b, and 14b) observed for in vitro anti-cancer activities were 11.20, 15.73, 59.61, and 27.66 g/ml at 72-hour treatment time against the A549 cell lines, respectively. The tested compounds' biological evaluation showed that 11b is the most effective molecule in the series.

Keywords: antioxidant activity, cytotoxicity activity, molecular docking, 1, 3, 4-Oxadiazole-2 thioether derivatives

Procedia PDF Downloads 56
2313 Antihyperglycaemic and Antihyperlipidemic Activities of Pleiogynium timorense Seeds and Identification of Bioactive Compounds

Authors: Ataa A. Said, Elsayed A. Abuotabl, Gehan F. Abdel Raoof, Khaled Y. Mohamed

Abstract:

The aim of this study is to evaluate antihyperglycaemic and antihyperlipidemic activities of Pleiogynium timorense (DC.) Leenh (Anacardiaceae) seeds as well as to isolate and identify the bioactive compounds. Antihyperglycaemic effect was evaluated by measuring the effect of two dose levels (150 and 300 mg/kg) of 70% methanol extract of Pleiogynium timorense seeds on blood glucose level when administered 45 minutes before glucose loading. In addition, the effect of the plant extract on the lipid profile was determined by measuring serum total lipids (TL), total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). Furthermore, the bioactive compounds were isolated and identified by chromatographic and spectrometric methods.The results showed that the methanolic extract of the seeds significantly reduced the levels of blood glucose,(TL), (TC), (TG) and (LDL-C) but no significant effect on (HDL-C) comparing with control group. Furthermore, four phenolic compound were isolated which were identified as; catechin, gallic acid, para methoxy benzaldehyde and pyrogallol which were isolated for the first time from the plant. In addition sulphur -containing compound (sulpholane) was isolated for the first time from the plant and from the family. To our knowledge, this is the first study about antihyperglycaemicand antihyperlipidemic activities of the seeds of Pleiogyniumtimorense and its bioactive compounds. So, the methanolic extract of the seeds of Pleiogynium timorense could be a step towards the development of new antihyperglycaemic and antihyperlipidemic drugs.

Keywords: antihyperglycaemic, bioactive compounds, phenolic, Pleiogynium timorense, seeds

Procedia PDF Downloads 178
2312 Design, Synthesis and Anti-Inflammatory Activity of Some Coumarin and Flavone Derivatives Containing 1,4 Dioxane Ring System

Authors: Asif Husain, Shah Alam Khan

Abstract:

Coumarins and flavones are oxygen containing heterocyclic compounds which are present in various biologically active compounds. Both the heterocyclic rings are associated with diverse biological actions, therefore considered as an important scaffold for the design of molecules of pharmaceutical interest. Aim: To synthesize and evaluate the in vivo anti-inflammatory activity of few coumrain and flavone derivatives containing 1,4 dioxane ring system. Materials and methods: Coumarin derivatives (3a-d) were synthesized by reacting 7,8 dihydroxy coumarin (2a) and its 4-methyl derivative (2b) with epichlorohydrin/ethylene dibromide. The flavone derivatives (10a-d) were prepared by using quercetin and 3,4 dihydroxy flavones. Compounds of both the series were also evaluated for their anti-inflammatory, analgesic activity and ulcerogenicity in animal models by reported methods. Results and Discussion: The structures of all newly synthesized compounds were confirmed with the help of IR, 1H NMR, 13C NMR and Mass spectral studies. Elemental analyses data for each element analyzed (C, H, N) was found to be within acceptable range of ±0.4 %. Flavone derivatives, but in particular quercetin containing 1,4 dioxane ring system (10d) showed better anti-inflammatory and analgesic activity along with reduced gastrointestinal toxicity as compared to other synthesized compounds. The results of anti-inflammatory and analgesic activities of both the series are comparable with the positive control, diclofenac. Conclusion: Compound 10d, a quercetin derivative, emerged as a lead molecule which exhibited potent anti-inflammatory and analgesic activity with significant reduced gastric toxicity.

Keywords: analgesic, anti-inflammatory, 1, 4 dioxane, coumarin, flavone

Procedia PDF Downloads 292
2311 Quinazolino-Thiazoles: Fused Pharmacophores as Antimicrobial Agents

Authors: Sanjay Bari, Vinod Ugale, Kamalkishor Patil

Abstract:

Over the past several years the emergence of micro-organisms resistant to nearly all the class of antimicrobial agents has become a serious public health concern. In the present research, we report the synthesis and in-vitro antimicrobial activity of a new series of novel quinazolino-thiadiazoles 3 (a-j). The synthesized compounds were confirmed by melting point, IR, 1H-NMR, 13C NMR and Mass spectroscopy. In general, the results of the in-vitro antibacterial activity are encouraging, as out of 10 compounds tested, Compound 3f and 3i with a 4-chloro phenyl and 4-nitro phenyl at C-2 of thiadiazolyl of quinazolino-thiadiazoles, displayed the excellent antibacterial and antifungal activities against all the tested microorganisms (Bacterial and Fungal strain) with MIC values of 62.5 μg/mL. It is worth to mention that the combination of two biologically active moieties quinazoline and thiadiazole profoundly influences the biological activity. While evaluating the antimicrobial activity, it was observed that compounds having electron withdrawing groups on thiazole has shown profound activity in comparison to compounds having electron releasing groups. As a result of this study, it can be concluded that halogen substituent on thiazole ring increases antimicrobial activity. Possible improvements in the antimicrobial activity can be further achieved by slight modifications in the substituent’s and/or additional structural activity investigations to have good antimicrobial activity.

Keywords: antifungal, antimicrobial, quinazolino-thiazoles, synthesis

Procedia PDF Downloads 380
2310 The Effects of Various Curing Compounds on the Mechanical Characteristics of Roller Compacted Concrete Pavements (RCCP)

Authors: Azadeh Askarinejad, Parmida Hayati, Parham Hayati, Reza Parchami

Abstract:

Curing is a very important factor in the ultimate strength and durability of roller compacted concrete pavements (RCCP). Curing involves keeping the concrete is saturated or close to saturation point. Since maintaining concrete moisture has a significant impact on its mechanical properties, permeability and durability, curing is important. The most common procedure for curing of roller compacted concrete is using a white pigmented curing compound. This method is effective, economical and fast. In the present study, different curing compounds were applied on concrete specimens and the results of their effects on the mechanical properties were compared with each other and usual methods of curing in order to select appropriate materials and methods of curing for RCCP construction.

Keywords: curing compounds, roller compacted concrete pavements, mechanical properties, durability

Procedia PDF Downloads 568
2309 Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli

Authors: M. Shahin Alam, Satoru Takahashi, Mariko Itoh, Miyuki Komura, Mayuko Suzuki, Natthanan Sangsriratanakul, Kazuaki Takehara

Abstract:

Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry.

Keywords: carrier, food additive grade calcium hydroxide (FdCa(OH)₂), quaternary ammonium compound, synergistic effects

Procedia PDF Downloads 261
2308 GC-MS Analysis of Bioactive Compounds in the Ethanolic Extract of Nest Material of Mud Wasp, Sceliphron caementarium

Authors: P. Susheela, Mary Rosaline, R. Radha

Abstract:

This research was designed to determine the bioactive compounds present in the nest samples of the mud dauber wasp, Sceliophron caementarium. Insects and insect-based products have been used for the treatment of various ailments from a very long time. It has been found that all over the world including the western societies and the indigenous populations, the usage of insect-based medicine plays an important role in various healing practices and magic rituals. Studies on the therapeutic usage of insects are negligible when compared to plants, the. In the present scenario, it is important to explore bioactive compounds from natural sources rather than depending on synthetic drugs that have adverse effects on human body. Keeping this in view, an attempt was made to analyze and identify bioactive components from the nest sample of the mud dauber wasp, Sceliophron caementarium. The nests of the mud dauber wasp, Sceliophron caementarium were collected from Coimbatore, Tamil Nadu, India. The nest sample was extracted with ethanol for 6-8 hours using Soxhlet apparatus. The final residue was obtained by filtering the extract through Whatman filter paper No.41. The GCMS analysis of the nest sample was performed using Perkin Elmer Elite - 5 capillary column. The resultant compounds were compared with the database of National Institute Standard and Technology (NIST), WILEY8, FAME. The GC-MS analysis of the concentrated ethanol extract revealed the presence of eight constituents like Methylene chloride, Eicosanoic acid, 1, 1’:3’, 1’’-Terphenyl, 5'-Phenyl, Di-N-Decylsulfone, 1, 2-Bis (Trimethylsilyl) Benzene, Androstane-11, 17-Dione, 3-[(Trimethylsilyl) Oxy]-, 17-[O-(Phenylmethyl) O. Most of the identified compounds were reported as having biological activities viz. anti-inflammatory, antibacterial and antifungal properties that can be of pharmaceutical importance and further study of these isolated compounds may prove their medicinal importance in future.

Keywords: Sceliophron caementarium, Gas chromatography-mass spectrometry, ethanol extract, bioactive compounds

Procedia PDF Downloads 258
2307 Reverse Osmosis Application on Sewage Tertiary Treatment

Authors: Elisa K. Schoenell, Cristiano De Oliveira, Luiz R. H. Dos Santos, Alexandre Giacobbo, Andréa M. Bernardes, Marco A. S. Rodrigues

Abstract:

Water is an indispensable natural resource, which must be preserved to human activities as well the ecosystems. However, the sewage discharge has been contaminating water resources. Conventional treatment, such as physicochemical treatment followed by biological processes, has not been efficient to the complete degradation of persistent organic compounds, such as medicines and hormones. Therefore, the use of advanced technologies to sewage treatment has become urgent and necessary. The aim of this study was to apply Reverse Osmosis (RO) on sewage tertiary treatment from a Waste Water Treatment Plant (WWTP) in south Brazil. It was collected 200 L of sewage pre-treated by wetland with aquatic macrophytes. The sewage was treated in a RO pilot plant, using a polyamide membrane BW30-4040 model (DOW FILMTEC), with 7.2 m² membrane area. In order to avoid damage to the equipment, this system contains a pleated polyester filter with 5 µm pore size. It was applied 8 bar until achieve 5 times of concentration, obtaining 80% of recovery of permeate, with 10 L.min-1 of concentrate flow rate. Samples of sewage pre-treated on WWTP, permeate and concentrate generated on RO was analyzed for physicochemical parameters and by gas chromatography (GC) to qualitative analysis of organic compounds. The results proved that the sewage treated on WWTP does not comply with the limit of phosphorus and nitrogen of Brazilian legislation. Besides this, it was found many organic compounds in this sewage, such as benzene, which is carcinogenic. Analyzing permeate results, it was verified that the RO as sewage tertiary treatment was efficient to remove of physicochemical parameters, achieving 100% of iron, copper, zinc and phosphorus removal, 98% of color removal, 91% of BOD and 62% of ammoniacal nitrogen. RO was capable of removing organic compounds, however, it was verified the presence of some organic compounds on de RO permeate, showing that RO did not have the capacity of removal all organic compounds of sewage. It has to be considered that permeate showed lower intensity of peaks in chromatogram in comparison to the sewage of WWTP. It is important to note that the concentrate generate on RO needs a treatment before its disposal in environment.

Keywords: organic compounds, reverse osmosis, sewage treatment, tertiary treatment

Procedia PDF Downloads 174