Search results for: organic light emitting diodes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5934

Search results for: organic light emitting diodes

5874 Light-Emitting Diode Assisted Synthesis of Ag@Fe3O4 Nanoparticles and Their Application in Magnetic and Photothermal Hyperthermia Therapy

Authors: Pei-Wen Lin, Ta-I Yang

Abstract:

Cancer has been one of the leading causes of human death for centuries. Considerable effort has been devoted to developing new treatments to reduce and control cancers. Magnetic particle hyperthermia and near-infrared photothermal therapy are the promising strategies to treat cancers due to its effectiveness with only mild side effects. This study focused on synthesizing magnetic Ag@Fe3O4 nanoparticles applicable for both of magnetic hyperthermia and near-infrared photothermal therapy. The hydrophilic poly(diallyldimethylammonium chloride) polymer was utilized to prepare superparamagnetic Fe3O4 clusters and to promote silver nanoparticles grown on Fe3O4 surfaces, obtaining Ag@Fe3O4 nanoparticles. The morphology (shape and dimension) of Ag nanoparticles was subsequently tailored using commercial LED lights. Therefore, the resulting Ag@Fe3O4 nanoparticles can absorb specific wavelength of light ranging from 400 nm to 800 nm by adjusting the wavelength of LED lights and the free silver ions in reaction solution. Heating performance tests confirmed that the synthesized Ag@Fe3O4 nanoparticles show appreciable heating capability for both of magnetic particle hyperthermia and near-infrared photothermal therapy. The findings in this study could provide new ideas to design functional materials to treat cancers.

Keywords: light-emitting diode assisted synthesis, magnetic particles, photothermal materials, hyperthermia

Procedia PDF Downloads 255
5873 A Field Study of Monochromatic Light Effects on Antibody Responses to Newcastle Disease by HI Test and the Correlation with ELISA

Authors: Seyed Mehrzad Pahlavani, Mozaffar Haji Jafari Anaraki, Sayma Mohammadi

Abstract:

A total of 34700 day-old broilers were exposed to green, blue and yellow light using a light-emitting diode system for 6 weeks to investigate the effects of light wave length on antibody responses to Newcastle disease by HI test and the correlation with ELISA. 3 poultry house broiler farms with the same conditions was selected and the lightening system of each was set according to the requirement. Blood samples were taken from 20 chicks on days 1, 24 and 46 and the Newcastle virus specific antibody was titered in serum using HI an ELISA test. On day 24, the probability value of more than 0/05 was observed in HI and ELISA tests of all groups while at the end of breeding period, the average HI serum antibody titer was more in the green light than the yellow one while the blue light was not significantly different from both. At the last titration, the green light has got the highest titer of Newcastle antibodies. There were no significant differences of Newcastle antibody titers between all groups and ages in broiler pullets in ELISA. According to the sampling and analysis of HI and ELISA serum tests, there were no significant relationships between all broiler pullets breeding in green, blue and yellow light on days 24 and 46 and the P-value was more than 0/05. It is suggested that the monochromatic light is effective on broilers immunity against Newcastle disease.

Keywords: monochromatic light, Newcastle disease, HI test, ELISA test

Procedia PDF Downloads 632
5872 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 177
5871 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells

Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan

Abstract:

Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.

Keywords: heterojunction, electrical transport, nanorods, solar cells

Procedia PDF Downloads 195
5870 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: vertical-cavity surface-emitting lasers, VCSELs, optical power generation, power consumption, square wave modulation

Procedia PDF Downloads 137
5869 Efficacy of Light-Emitting Diode-Mediated Photobiomodulation in Tendon Healing in a Murine Model

Authors: Sukwoong Kang

Abstract:

Background: The application of light-emitting diode (LED)-dependent photobiomodulation (PBM) in promoting post-tendon injury healing has been recently reported. Despite the establishment of a theoretical basis for ligament restoration through PBM, the lack of any empirical evidence deems this therapeutic strategy contentious. Therefore, the aim of this study was to investigate the potency of LED-based PBM in facilitating tendon healing in a murine model. Methods: Migration kinetics were analyzed at two specific wavelengths: 630 and 880 nm. The Achilles tendon in the hind limbs of Balb/c mice was severed via Achilles tendon transection. Subsequently, the mice were randomized into LED non-irradiation and LED irradiation groups. Mice with intact tendons were employed as healthy controls. The wounds were LED-irradiated for 20 min daily for two days. Histological properties, tendon healing mediators, and inflammatory mediators were screened on day 14. Results: The roundness of the nuclei and fiber structure, indicating the degree of infiltrated inflammatory cells and severity of fiber fragmentation, respectively, were considerably lower in the LED irradiation group than in the LED non-irradiation group. Immunohistochemical analysis depicted an increase in tenocytes (SCX+ cells) and a recovery of wounds with reduced fibrosis (lower collagen 3 and TGF-β1) in the LED irradiation group during healing; conversely, the LED non-irradiation group exhibited tissue fibrosis. The ratio of M2 macrophages to total macrophages was higher in the LED irradiation group than in the injured group. Conclusion: LED-based PBM in the Achilles tendon rupture murine model effectuated a rapid restoration of histological and immunochemical outcomes. The aforementioned findings suggest that LED-based PBM presents remarkable potential as an adjunct therapeutic for tendon healing and warrants further research to standardize various parameters to advance and establish it as a reliable treatment regime.

Keywords: photobiomodulation, light-emitting diode, tendon, regeneration

Procedia PDF Downloads 11
5868 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature

Authors: J. O. Bodunrin, S. J. Moloi

Abstract:

This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.

Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD

Procedia PDF Downloads 111
5867 Enhancing the Efficiency of Organic Solar Cells Using Metallic Nanoparticles

Authors: Sankara Rao Gollu, Ramakant Sharma, G. Srinivas, Souvik Kundu, Dipti Gupta

Abstract:

In recent years, bulk heterojunction organic solar cells (BHJ OSCs) based on polymer–fullerene attracted a large research attention due to their numerous advantages such as light weight, easy processability, eco-friendly, low-cost, and capability for large area roll-to-roll manufacturing. BHJ OSCs usually suffer from insufficient light absorption due to restriction on keeping thin ( < 150 nm) photoactive layer because of small exciton diffusion length ( ~ 10 nm) and low charge carrier mobilities. It is thus highly desirable that light absorption as well as charge transport properties are enhanced by alternative methods so as to improve the device efficiency. In this work, therefore, we have focused on the strategy of incorporating metallic nanostructures in the active layer or charge transport layer to enhance the absorption and improve the charge transport.

Keywords: organic solar cell, efficiency, bulk heterojunction, polymer-fullerene

Procedia PDF Downloads 368
5866 Photoluminescence of Barium and Lithium Silicate Glasses and Glass Ceramics Doped with Rare Earth Ions

Authors: Augustas Vaitkevicius, Mikhail Korjik, Eugene Tretyak, Ekaterina Trusova, Gintautas Tamulaitis

Abstract:

Silicate materials are widely used as luminescent materials in amorphous and crystalline phase. Lithium silicate glass is popular for making neutron sensitive scintillation glasses. Cerium-doped single crystalline silicates of rare earth elements and yttrium have been demonstrated to be good scintillation materials. Due to their high thermal and photo-stability, silicate glass ceramics are supposed to be suitable materials for producing light converters for high power white light emitting diodes. In this report, the influence of glass composition and crystallization on photoluminescence (PL) of different silicate glasses was studied. Barium (BaO-2SiO₂) and lithium (Li₂O-2SiO₂) glasses were under study. Cerium, dysprosium, erbium and europium ions as well as their combinations were used for doping. The influence of crystallization was studied after transforming the doped glasses into glass ceramics by heat treatment in the temperature range of 550-850 degrees Celsius for 1 hour. The study was carried out by comparing the photoluminescence (PL) spectra, spatial distributions of PL parameters and quantum efficiency in the samples under study. The PL spectra and spatial distributions of their parameters were obtained by using confocal PL microscopy. A WITec Alpha300 S confocal microscope coupled with an air cooled CCD camera was used. A CW laser diode emitting at 405 nm was exploited for excitation. The spatial resolution was in sub-micrometer domain in plane and ~1 micrometer perpendicularly to the sample surface. An integrating sphere with a xenon lamp coupled with a monochromator was used to measure the external quantum efficiency. All measurements were performed at room temperature. Chromatic properties of the light emission from the glasses and glass ceramics have been evaluated. We observed that the quantum efficiency of the glass ceramics is higher than that of the corresponding glass. The investigation of spatial distributions of PL parameters revealed that heat treatment of the glasses leads to a decrease in sample homogeneity. In the case of BaO-2SiO₂: Eu, 10 micrometer long needle-like objects are formed, when transforming the glass into glass ceramics. The comparison of PL spectra from within and outside the needle-like structure reveals that the ratio between intensities of PL bands associated with Eu²⁺ and Eu³⁺ ions is larger in the bright needle-like structures. This indicates a higher degree of crystallinity in the needle-like objects. We observed that the spectral positions of the PL bands are the same in the background and the needle-like areas, indicating that heat treatment imposes no significant change to the valence state of the europium ions. The evaluation of chromatic properties confirms applicability of the glasses under study for fabrication of white light sources with high thermal stability. The ability to combine barium and lithium glass matrixes and doping by Eu, Ce, Dy, and Tb enables optimization of chromatic properties.

Keywords: glass ceramics, luminescence, phosphor, silicate

Procedia PDF Downloads 282
5865 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method

Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).

Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures

Procedia PDF Downloads 269
5864 Assessing the Material Determinants of Cavity Polariton Relaxation using Angle-Resolved Photoluminescence Excitation Spectroscopy

Authors: Elizabeth O. Odewale, Sachithra T. Wanasinghe, Aaron S. Rury

Abstract:

Cavity polaritons form when molecular excitons strongly couple to photons in carefully constructed optical cavities. These polaritons, which are hybrid light-matter states possessing a unique combination of photonic and excitonic properties, present the opportunity to manipulate the properties of various semiconductor materials. The systematic manipulation of materials through polariton formation could potentially improve the functionalities of many optoelectronic devices such as lasers, light-emitting diodes, photon-based quantum computers, and solar cells. However, the prospects of leveraging polariton formation for novel devices and device operation depend on more complete connections between the properties of molecular chromophores, and the hybrid light-matter states they form, which remains an outstanding scientific goal. Specifically, for most optoelectronic applications, it is paramount to understand how polariton formation affects the spectra of light absorbed by molecules coupled strongly to cavity photons. An essential feature of a polariton state is its dispersive energy, which occurs due to the enhanced spatial delocalization of the polaritons relative to bare molecules. To leverage the spatial delocalization of cavity polaritons, angle-resolved photoluminescence excitation spectroscopy was employed in characterizing light emission from the polaritonic states. Using lasers of appropriate energies, the polariton branches were resonantly excited to understand how molecular light absorption changes under different strong light-matter coupling conditions. Since an excited state has a finite lifetime, the photon absorbed by the polariton decays non-radiatively into lower-lying molecular states, from which radiative relaxation to the ground state occurs. The resulting fluorescence is collected across several angles of excitation incidence. By modeling the behavior of the light emission observed from the lower-lying molecular state and combining this result with the output of angle-resolved transmission measurements, inferences are drawn about how the behavior of molecules changes when they form polaritons. These results show how the intrinsic properties of molecules, such as the excitonic lifetime, affect the rate at which the polaritonic states relax. While it is true that the lifetime of the photon mediates the rate of relaxation in a cavity, the results from this study provide evidence that the lifetime of the molecular exciton also limits the rate of polariton relaxation.

Keywords: flourescece, molecules in cavityies, optical cavity, photoluminescence excitation, spectroscopy, strong coupling

Procedia PDF Downloads 32
5863 Infrared Lightbox and iPhone App for Improving Detection Limit of Phosphate Detecting Dip Strips

Authors: H. Heidari-Bafroui, B. Ribeiro, A. Charbaji, C. Anagnostopoulos, M. Faghri

Abstract:

In this paper, we report the development of a portable and inexpensive infrared lightbox for improving the detection limits of paper-based phosphate devices. Commercial paper-based devices utilize the molybdenum blue protocol to detect phosphate in the environment. Although these devices are easy to use and have a long shelf life, their main deficiency is their low sensitivity based on the qualitative results obtained via a color chart. To improve the results, we constructed a compact infrared lightbox that communicates wirelessly with a smartphone. The system measures the absorbance of radiation for the molybdenum blue reaction in the infrared region of the spectrum. It consists of a lightbox illuminated by four infrared light-emitting diodes, an infrared digital camera, a Raspberry Pi microcontroller, a mini-router, and an iPhone to control the microcontroller. An iPhone application was also developed to analyze images captured by the infrared camera in order to quantify phosphate concentrations. Additionally, the app connects to an online data center to present a highly scalable worldwide system for tracking and analyzing field measurements. In this study, the detection limits for two popular commercial devices were improved by a factor of 4 for the Quantofix devices (from 1.3 ppm using visible light to 300 ppb using infrared illumination) and a factor of 6 for the Indigo units (from 9.2 ppm to 1.4 ppm) with repeatability of less than or equal to 1.2% relative standard deviation (RSD). The system also provides more granular concentration information compared to the discrete color chart used by commercial devices and it can be easily adapted for use in other applications.

Keywords: infrared lightbox, paper-based device, phosphate detection, smartphone colorimetric analyzer

Procedia PDF Downloads 97
5862 Electroactive Fluorene-Based Polymer Films Obtained by Electropolymerization

Authors: Mariana-Dana Damaceanu

Abstract:

Electrochemical oxidation is one of the most convenient ways to obtain conjugated polymer films as polypyrrole, polyaniline, polythiophene or polycarbazole. The research in the field has been mainly directed to the study of electrical conduction properties of the materials obtained by electropolymerization, often the main reason being their use as electroconducting electrodes, and very little attention has been paid to the morphological and optical quality of the films electrodeposited on flat surfaces. Electropolymerization of the monomer solution was scarcely used in the past to manufacture polymer-based light-emitting diodes (PLED), most probably due to the difficulty of obtaining defectless polymer films with good mechanical and optical properties, or conductive polymers with well controlled molecular weights. Here we report our attempts in using electrochemical deposition as appropriate method for preparing ultrathin films of fluorene-based polymers for PLED applications. The properties of these films were evaluated in terms of structural morphology, optical properties, and electrochemical conduction. Thus, electropolymerization of 4,4'-(9-fluorenylidene)-dianiline was performed in dichloromethane solution, at a concentration of 10-2 M, using 0.1 M tetrabutylammonium tetrafluoroborate as electrolyte salt. The potential was scanned between 0 and 1.3 V on the one hand, and 0 - 2 V on the other hand, when polymer films with different structures and properties were obtained. Indium tin oxide-coated glass substrate of different size was used as working electrode, platinum wire as counter electrode and calomel electrode as reference. For each potential range 100 cycles were recorded at a scan rate of 100 mV/s. The film obtained in the potential range from 0 to 1.3 V, namely poly(FDA-NH), is visible to the naked eye, being light brown, transparent and fluorescent, and displays an amorphous morphology. Instead, the electrogrowth poly(FDA) film in the potential range of 0 - 2 V is yellowish-brown and opaque, presenting a self-assembled structure in aggregates of irregular shape and size. The polymers structure was identified by FTIR spectroscopy, which shows the presence of broad bands specific to a polymer, the band centered at approx. 3443 cm-1 being ascribed to the secondary amine. The two polymer films display two absorption maxima, at 434-436 nm assigned to π-π* transitions of polymers, and another at 832 and 880 nm assigned to polaron transitions. The fluorescence spectra indicated the presence of emission bands in the blue domain, with two peaks at 422 and 488 nm for poly (FDA-NH), and four narrow peaks at 422, 447, 460 and 484 nm for poly(FDA), peaks originating from fluorene-containing segments of varying degrees of conjugation. Poly(FDA-NH) exhibited two oxidation peaks in the anodic region and the HOMO energy value of 5.41 eV, whereas poly(FDA) showed only one oxidation peak and the HOMO level localized at 5.29 eV. The electrochemical data are discussed in close correlation with the proposed chemical structure of the electrogrowth films. Further research will be carried out to study their use and performance in light-emitting devices.

Keywords: electrogrowth polymer films, fluorene, morphology, optical properties

Procedia PDF Downloads 319
5861 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films

Authors: Esubalew Yehualaw Melaku, Tizazu Abeza

Abstract:

ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.

Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells

Procedia PDF Downloads 91
5860 Effects of Magnetic Field on 4H-SiC P-N Junctions

Authors: Khimmatali Nomozovich Juraev

Abstract:

Silicon carbide is one of the promising materials with potential applications in electronic devices using high power, high frequency and high electric field. Currently, silicon carbide is used to manufacture high power and frequency diodes, transistors, radiation detectors, light emitting diodes (LEDs) and other functional devices. In this work, the effects of magnetic field on p-n junctions based on 4H-SiC were experimentally studied. As a research material, monocrystalline silicon carbide wafers (Cree Research, Inc., USA) with relatively few growth defects grown by physical vapor transport (PVT) method were used: Nd dislocations 104 cm², Nm micropipes ~ 10–10² cm-², thickness ~ 300-600 μm, surface ~ 0.25 cm², resistivity ~ 3.6–20 Ωcm, the concentration of background impurities Nd − Na ~ (0.5–1.0)×1017cm-³. The initial parameters of the samples were determined on a Hall Effect Measurement System HMS-7000 (Ecopia) measuring device. Diffusing Ni nickel atoms were covered to the silicon surface of silicon carbide in a Universal Vacuum Post device at a vacuum of 10-⁵ -10-⁶ Torr by thermal sputtering and kept at a temperature of 600-650°C for 30 minutes. Then Ni atoms were diffused into the silicon carbide 4H-SiC sample at a temperature of 1150-1300°C by low temperature diffusion method in an air atmosphere, and the effects of the magnetic field on the I-V characteristics of the samples were studied. I-V characteristics of silicon carbide 4H-SiC p-n junction sample were measured in the magnetic field and in the absence of a magnetic field. The measurements were carried out under conditions where the magnitude of the magnetic field induction vector was 0.5 T. In the state, the direction of the current flowing through the diode is perpendicular to the direction of the magnetic field. From the obtained results, it can be seen that the magnetic field significantly affects the I-V characteristics of the p-n junction in the magnetic field when it is measured in the forward direction. Under the influence of the magnetic field, the change of the magnetic resistance of the sample of silicon carbide 4H-SiC p-n junction was determined. It was found that changing the magnetic field poles increases the direct forward current of the p-n junction or decreases it when the field direction changes. These unique electrical properties of the 4H-SiC p-n junction sample of silicon carbide, that is, the change of the sample's electrical properties in a magnetic field, makes it possible to fabricate magnetic field sensing devices based on silicon carbide to use at harsh environments in future. So far, the productions of silicon carbide magnetic detectors are not available in the industry.

Keywords: 4H-SiC, diffusion Ni, effects of magnetic field, I-V characteristics

Procedia PDF Downloads 62
5859 Synthesis and Application of an Organic Dye in Nanostructure Solar Cells Device

Authors: M. Hoseinnezhad, K. Gharanjig

Abstract:

Two organic dyes comprising carbazole as the electron donors and cyanoacetic acid moieties as the electron acceptors were synthesized. The organic dye was prepared by standard reaction from carbazole as the starting material. To this end, carbazole was reacted with bromobenzene and further oxidation and reacted with cyanoacetic acid. The obtained organic dye was purified and characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1HNMR), carbon nuclear magnetic resonance (13CNMR) and elemental analysis. The influence of heteroatom on carbazole donors and cyno substitution on the acid acceptor is evidenced by spectral and electrochemical photovoltaic experiments. Finally, light fastness properties for organic dye were investigated.

Keywords: dye-sensitized solar cells, indoline dye, nanostructure, oxidation potential, solar energy

Procedia PDF Downloads 164
5858 The Effect of Yb3+ Concentration on Spectroscopic properties of Strontium Cerate Doped with Tm3+ and Yb3+

Authors: Yeon Woo Seo, Haeyoung Choi, Jung Hyun Jeong

Abstract:

Recently, the UC phosphors have attracted much attention owing to their wide applicability in areas such as biological fluorescence labeling, three-dimensional color displays, temperature sensor, solar cells, white light emitting diodes (WLEDs), fiber optic communication, anti-counterfeiting and other areas. The UC efficiency is mainly dependent on the host lattice and the interaction between the host lattice and doped ions. Up to date, various host matrices, such as oxides, fluorides, vanadates and phosphates, have been investigated as efficient UC luminescent hosts. Recently, oxide materials with low phonon energy have been investigated as the host matrices of UC materials due to their high chemical durability and physical stability. A series of Sr2CeO4: Tm3+/Yb3+ phosphors with different concentrations of Yb3+ ions have been successfully prepared using the high-energy ball milling method. In this study, we reported the UC luminescent properties of Tm3+/Yb3+ ions co-doped Sr2CeO4 phosphors under an excitation wavelength of 975 nm. Furthermore, the structural and morphological characteristics, as well as the UC luminescence mechanism were investigated in detail. The X-ray diffraction patterns confirmed their orthorhombic structure. Under 975 nm excitation, the emission peaks were observed at 478 nm (blue) and 652 nm (red), corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+, respectively. The optimized doping concentration of Yb3+ ion was 10 mol%.

Keywords: Strontium Cerate, up-conversion, luminescence, Tm3+, Yb3+

Procedia PDF Downloads 230
5857 Synthesis of Biologically Active Heterocyclic Compounds via C-H Bond Activation

Authors: Neeraj Kumar Mishra, In Su Kim

Abstract:

The isoindoline, indazole and indole heterocycles are ubiquitous structural motif found in heterocyclic compounds as they exhibit biological and medicinal applications. For example, isoindoline motif is present in molecules that act as endothelin-A receptor antagonists and dipeptidyl peptidase inhibitors. Moreover, isoindoline derivatives are very crucial constituents in the field of materials science as attractive candidates for organic light-emitting devices. However, compounds containing the indazole motif are known to exhibit to a variety of biological activities, such as estrogen receptor, HIV protease inhibition and anti-tumor activity. The prevalence of indazoles and indoles has led to the development of many useful methods for their preparation. Thus, isoindoline, indazole and indole heterocycles can be new candidates for the next generation of pharmaceuticals. Therefore, the development of highly efficient strategies for the formation of these heterocyclic architectures is an area of great interest in organic synthesis. The past years, transition-metal-catalyzed C−H activation followed by annulation reaction has been frequently used as a powerful tool to construct various heterocycles. Herein, we describe our recent achievements about the transition-metal-catalyzed tandem cyclization reactions of N-benzyltriflamides, 1,2-disubstituted arylhydrazines, acetanilides, etc. via C−H bond activation to access the corresponding bioactive heterocylic scaffolds.

Keywords: biologically active, C-H activation, heterocyclic compounds, transition-metal catalysts

Procedia PDF Downloads 268
5856 Characterization of current–voltage (I–V) and capacitance–voltage–frequency (C–V–f) features of Au/GaN Schottky diodes

Authors: Abdelaziz Rabehi

Abstract:

The current–voltage (I–V) characteristics of Au/GaN Schottky diodes were measured at room temperature. In addition, capacitance–voltage–frequency (C–V–f) characteristics are investigated by considering the interface states (Nss) at frequency range 100 kHz to 1 MHz. From the I–V characteristics of the Schottky diode, ideality factor (n) and barrier height (Φb) values of 1.22 and 0.56 eV, respectively, were obtained from a forward bias I–V plot. In addition, the interface states distribution profile as a function of (Ess − Ev) was extracted from the forward bias I–V measurements by taking into account the bias dependence of the effective barrier height (Φe) for the Schottky diode. The C–V curves gave a barrier height value higher than those obtained from I–V measurements. This discrepancy is due to the different nature of the I–V and C–V measurement techniques.

Keywords: Schottky diodes, frequency dependence, barrier height, interface states

Procedia PDF Downloads 278
5855 The Nonlinear Optical Properties Analysis of AlPc-Cl Organic Compound

Authors: M. Benhaliliba, A. Ben Ahmed, C.E. Benouis, A.Ayeshamariam

Abstract:

The properties of nonlinear optical NLOs are examined, and the results confirm the 2.19 eV HOMO-LUMO mismatch. In the Al-Pc cluster, certain functional bond lengths and bond angles have been observed. The Quantum chemical method (DFT and TD-DFT) and Vibrational spectra properties of AlPc are studied. X-ray pattern reveals the crystalline structure along with the (242) orientation of the AlPc organic thin layer. UV-Vis shows the frequency selective behavior of the device. The absorbance of such layer exhibits a high value within the UV range and two consecutive peaks within visible range. Spin coating is used to make an organic diode based on the Aluminium-phthalocynanine (AlPc-Cl) molecule. Under dark and light conditions, electrical characterization of Ag/AlPc/Si/Au is obtained. The diode's high rectifying capability (about 1x104) is subsequently discovered. While the height barrier is constant and saturation current is greatly reliant on light, the ideality factor of such a diode increases to 6.9 which confirms the non-ideality of such a device. The Cheung-Cheung technique is employed to further the investigation and gain additional data such as series resistance and barrier height.

Keywords: AlPc-Cl organic material, nonlinear optic, optical filter, diode

Procedia PDF Downloads 107
5854 Upconversion Nanomaterials for Applications in Life Sciences and Medicine

Authors: Yong Zhang

Abstract:

Light has proven to be useful in a wide range of biomedical applications such as fluorescence imaging, photoacoustic imaging, optogenetics, photodynamic therapy, photothermal therapy, and light controlled drug/gene delivery. Taking photodynamic therapy (PDT) as an example, PDT has been proven clinically effective in early lung cancer, bladder cancer, head, and neck cancer and is the primary treatment for skin cancer as well. However, clinical use of PDT is severely constrained by the low penetration depth of visible light through thick tissue, limiting its use to target regions only a few millimeters deep. One way to enhance the range is to use invisible near-infrared (NIR) light within the optical window (700–1100nm) for biological tissues, extending the depth up to 1cm with no observable damage to the intervening tissue. We have demonstrated use of NIR-to-visible upconversion fluorescent nanoparticles (UCNPs), emitting visible fluorescence when excited by a NIR light at 980nm, as a nanotransducer for PDT to convert deep tissue-penetrating NIR light to visible light suitable for activating photosensitizers. The unique optical properties of UCNPs enable the upconversion wavelength to be tuned and matched to the activation absorption wavelength of the photosensitizer. At depths beyond 1cm, however, tissue remains inaccessible to light even within the NIR window, and this critical depth limitation renders existing phototherapy ineffective against most deep-seated cancers. We have demonstrated some new treatment modalities for deep-seated cancers based on UCNP hydrogel implants and miniaturized, wirelessly powered optoelectronic devices for light delivery to deep tissues.

Keywords: upconversion, fluorescent, nanoparticle, bioimaging, photodynamic therapy

Procedia PDF Downloads 129
5853 Optical Repeater Assisted Visible Light Device-to-Device Communications

Authors: Samrat Vikramaditya Tiwari, Atul Sewaiwar, Yeon-Ho Chung

Abstract:

Device-to-device (D2D) communication is considered a promising technique to provide wireless peer-to-peer communication services. Due to increasing demand on mobile services, available spectrum for radio frequency (RF) based communications becomes scarce. Recently, visible light communications (VLC) has evolved as a high speed wireless data transmission technology for indoor environments with abundant available bandwidth. In this paper, a novel VLC based D2D communication that provides wireless peer-to-peer communication is proposed. Potential low operating power devices for an efficient D2D communication over increasing distance of separation between devices is analyzed. Optical repeaters (OR) are also proposed to enhance the performance in an environment where direct D2D communications yield degraded performance. Simulation results show that VLC plays an important role in providing efficient D2D communication up to a distance of 1 m between devices. It is also found that the OR significantly improves the coverage distance up to 3.5 m.

Keywords: visible light communication, light emitting diode, device-to-device, optical repeater

Procedia PDF Downloads 454
5852 Elucidation of the Photoreactivity of 2-Hydroxychalcones and the Effect of Continuous Photoflow Method on the Photoreactivity

Authors: Sobiya George, Anna Dora Gudmundsdottir

Abstract:

The 2-hydroxychalcones form an important group of organic compounds not only because of their pharmacological properties but also because they are intermediates in the biosynthesis of flavanones. We studied the photoreactivity of 2-hydroxychalcone derivatives in aprotic solvent acetonitrile and found that their photochemistry is concentration-dependent. Irradiation of 2-hydroxychalcone derivatives with 365 nm light emitting diode (LED) in dilute concentration selectively forms flavanones, whereas, at higher concentrations, an additional photoproduct is observed. However, the application of the continuous photo-flow method resulted in the selective formation of flavanones even at higher concentrations. To understand the reaction mechanism and explain the concentration-dependent photoreactivity of 2-hydroxychalcones, we preformed trapping studies with tris(trimethylsilyl)silane, nanosecond laser flash photolysis, and time dependent-density functional theory (TD-DFT) calculations.

Keywords: flavanones, hydroxychalcones, laser flash photolysis, TD-DFT calculations

Procedia PDF Downloads 120
5851 Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye

Authors: S. V. Prabhakar Vattikuti, Chan Byon

Abstract:

In this paper, we report a facile synthetic strategy of randomly disturbed Bi₂S₃ nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi₂S₃/WS₂ with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi₂S₃/WS₂ composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi₂S₃/WS₂ photocatalyst. Due to their marked synergistic effects, the supported Bi₂S₃ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi₂S₃/WS₂ composite.

Keywords: photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods

Procedia PDF Downloads 268
5850 Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory

Authors: Ankit Kargeti, Ravikant Shrivastav, Tabish Rasheed

Abstract:

The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature.

Keywords: density functional theory, DFT, density functional theory, nanostructures, HOMO-LUMO, density of states

Procedia PDF Downloads 89
5849 Relative Intensity Noise of Vertical-Cavity Surface-Emitting Lasers Subject to Variable Polarization-Optical Feedback

Authors: Salam Nazhan Ahmed

Abstract:

Influence of variable polarization angle (θp) of optical feedback on the Relative Intensity Noise (RIN) of a Vertical-Cavity Surface-Emitting Laser (VCSEL) has been experimentally investigated. The RIN is a minimum at θp = 0° for the dominant polarization mode (XP), and at θp = 90° for the suppressed polarization mode (YP) of VCSEL. Furthermore, the RIN of the XP mode increases rapidly with increasing θp, while for the YP mode, it increases slightly to θp = 45° and decreases for angles greater than 45°.

Keywords: lasers, vertical-cavity surface-emitting lasers, optical switching, optical polarization feedback, relative intensity noise

Procedia PDF Downloads 355
5848 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process

Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar

Abstract:

Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.

Keywords: electrodeposition, microstructure, optical properties, ZnO thin films

Procedia PDF Downloads 291
5847 Performance Analysis of Vertical Cavity Surface Emitting Laser and Distributed Feedback Laser for Community Access Television

Authors: Ashima Rai

Abstract:

CATV transmission systems have altered from old cable based one-way analog video transmission to two ways hybrid fiber transmission. The use of optical fiber reduces the RF amplifiers in the transmission, high transmission power or lower fiber transmission losses are required to increase system capability. This paper evaluates and compares Distributed Feedback (DFB) laser and Vertical Cavity Surface Emitting Laser (VCSEL) for CATV transmission. The simulation results exhibit the better performer among both lasers taking into consideration the parameters chosen for evaluation.

Keywords: Distributed Feedback (DFB), Vertical Cavity Surface Emitting Laser (VCSEL), Community Access Television (CATV), Composite Second Order (CSO), Composite Triple Beat (CTB), RF

Procedia PDF Downloads 335
5846 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 254
5845 Benchmarking Electric Light versus Sunshine

Authors: Courret Gilles, Pidoux Damien

Abstract:

Considering that sunshine is the ultimate reference in lighting, we have examined the spectral correlation between a series of electric light sources and sunlight. As the latter is marked by fluctuations, we have taken two spectra of reference: on the one hand, the CIE daylight standard illuminant, and on the other hand, the global illumination by the clear sky with the sun at 30° above the horizon. We determined the coefficients of correlation between the spectra filtered by the sensitivity of the CIE standard observer for photopic vision. We also calculated the luminous efficiency of the radiation in order to compare the ideal energy performances as well as the CIE color indexes Ra, Ra14, and Rf, since the choice of a light source requires a trade-off between color rendering and luminous efficiency. The benchmarking includes the most commonly used bulbs, various white LED (Lighting Emitting Diode) of warm white or cold white types, incandescent halogen as well as two HID lamps (High-Intensity Discharge) and two plasma lamps of different types, a solar simulator and a new version of the sulfur lamp. The latter obtains the best correlation, whether in comparison with the solar spectrum or that of the standard illuminant.

Keywords: electric light sources, plasma lamp, daylighting, sunlight, spectral correlation

Procedia PDF Downloads 153