Facile Synthesis of Heterostructured Bi₂S₃-WS₂ Photocatalysts for Photodegradation of Organic Dye

Authors : S. V. Prabhakar Vattikuti, Chan Byon

Abstract : In this paper, we report a facile synthetic strategy of randomly disturbed Bi_2S_3 nanorods on WS₂ nanosheets, which are synthesized via a controlled hydrothermal method without surfactant under an inert atmosphere. We developed a simple hydrothermal method for the formation of heterostructured of Bi_2S_3/WS_2 with a large scale (>95%). The structural features, composition, and morphology were characterized by XRD, SEM-EDX, TEM, HRTEM, XPS, UV-vis spectroscopy, N₂ adsorption-desorption, and TG-DTA measurements. The heterostructured Bi_2S_3/WS_2 composite has significant photocatalytic efficiency toward the photodegradation of organic dye. The time-dependent UV-vis absorbance spectroscopy measurement was consistent with the enhanced photocatalytic degradation of rhodamine B (RhB) under visible light irradiation with the diminishing carrier recombination for the Bi_2S_3/WS_2 photocatalyst. Due to their marked synergistic effects, the supported Bi_2S_3 nanorods on WS₂ nanorods on WS₂ nanosheet heterostructures exhibit significant visible-light photocatalytic activity and stability for the degradation of RhB. A possible reaction mechanism is proposed for the Bi_2S_3/WS_2 composite.

1

Keywords : photocatalyst, heterostructures, transition metal disulfides, organic dye, nanorods

Conference Title : ICBN 2016 : International Conference on Biotechnology and Nanotechnology

Conference Location : New York, United States

Conference Dates : October 10-11, 2016