Search results for: metal oxide film
4580 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation
Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh
Abstract:
This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application.Keywords: dewetting, themal annealing, metal, melting point, porous
Procedia PDF Downloads 6574579 The Effects of pH on the Electrochromism in Nickel Oxide Films
Authors: T. Taşköprü, M. Zor, E. Turan
Abstract:
The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor.Keywords: nickel oxide, XRD, SEM, cyclic voltammetry
Procedia PDF Downloads 3054578 To Investigate the Effects of Potassium Ion Doping and Oxygen Vacancies in Thin-Film Transistors of Gallium Oxide-Indium Oxide on Their Electrical
Authors: Peihao Huang, Chun Zhao
Abstract:
Thin-film transistors(TFTs) have the advantages of low power consumption, short reaction time, and have high research value in the field of semiconductors, based on this reason, people have focused on gallium oxide-indium oxide thin-film transistors, a relatively common thin-film transistor, elaborated and analyzed his production process, "aqueous solution method", explained the purpose of each step of operation, and finally explored the influence of potassium ions doped in the channel layer on the electrical properties of the device, as well as the effect of oxygen vacancies on its switching ratio and memory, and summarized the conclusions.Keywords: aqueous solution, oxygen vacancies, switch ratio, thin-film transistor(TFT)
Procedia PDF Downloads 1154577 Characterization of Edible Film from Uwi Starch (Dioscorea alata L.)
Authors: Miksusanti, Herlina, Wiwin
Abstract:
The research about modification uwi starch (Dioscorea alata L) by using propylene oxide has been done. Concentration of propylene oxide were 6%(v/w), 8%(v/w), and 10%(v/w). The amilograf parameters after modification were characteristic breakdown viscosity 43 BU and setback viscosity 975 BU. The modification starch have edible properties according to FDA (Food and Drug Administration) which have degree of modification < 7%, degree of substitution < 0,1 and propylene oxide concentration < 10%(v/w). The best propylene oxide in making of edible film was 8 %( v/w). The starch control can be made into edible film with thickness 0,136 mm, tensile strength 20,4605 MPa and elongation 22%. Modification starch of uwi can be made into edible film with thickness 0,146 mm, tensile strength 25, 3521 Mpa, elongation 30% and water vapor transmission 7, 2651 g/m2/24 hours. FTIR characterization of uwi starch showed the occurrence of hydroxypropylation. The peak spectrum at 2900 cm-1 showed bonding of C-H from methyl group, which is characteristic for modification starch with hydroxypropyl. Characterization with scanning electron microscopy showed that modification of uwi starch has turned the granule of starch to be fully swallon.Keywords: uwi starch, edible film, propylen oxide, modification
Procedia PDF Downloads 2994576 Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor
Authors: Su Jeong Lee, Tae Il Lee, Jung Han Kim, Chul-Hong Kim, Gee Sung Chae, Jae-Min Myoung
Abstract:
The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C.Keywords: single-walled carbon nanotube (SWCNT), Al-doped ZnO (AZO) nanoparticle, contact resistance, thin-film transistor (TFT)
Procedia PDF Downloads 5314575 In₀.₁₈Al₀.₈₂N/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors with Backside Metal-Trench Design
Authors: C. S Lee, W. C. Hsu, H. Y. Liu, C. J. Lin, S. C. Yao, Y. T. Shen, Y. C. Lin
Abstract:
In₀.₁₈Al₀.₈₂N/AlN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) having Al₂O₃ gate-dielectric and backside metal-trench structure are investigated. The Al₂O₃ gate oxide was formed by using a cost-effective non-vacuum ultrasonic spray pyrolysis deposition (USPD) method. In order to enhance the heat dissipation efficiency, metal trenches were etched 3-µm deep and evaporated with a 150-nm thick Ni film on the backside of the Si substrate. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET (Schottky-gate HFET) has demonstrated improved maximum drain-source current density (IDS, max) of 1.08 (0.86) A/mm at VDS = 8 V, gate-voltage swing (GVS) of 4 (2) V, on/off-current ratio (Ion/Ioff) of 8.9 × 10⁸ (7.4 × 10⁴), subthreshold swing (SS) of 140 (244) mV/dec, two-terminal off-state gate-drain breakdown voltage (BVGD) of -191.1 (-173.8) V, turn-on voltage (Von) of 4.2 (1.2) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 155.9 (98.5) V. Enhanced power performances, including saturated output power (Pout) of 27.9 (21.5) dBm, power gain (Gₐ) of 20.3 (15.5) dB, and power-added efficiency (PAE) of 44.3% (34.8%), are obtained. Superior breakdown and RF power performances are achieved. The present In₀.₁₈Al₀.₈₂N/AlN/GaN MOS-HFET design with backside metal-trench is advantageous for high-power circuit applications.Keywords: backside metal-trench, InAlN/AlN/GaN, MOS-HFET, non-vacuum ultrasonic spray pyrolysis deposition
Procedia PDF Downloads 2544574 The Effect of Fly Ash and Natural Pozzolans on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars
Authors: M.S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH. In addition to that, commonly used supplementary cementitious materials (natural pozzolan and fly ash) were also added. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, natural pozzolans has been shown to have a highly positive influence on the film quality. Fly ash also increases the protective qualities of the passive film.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 4444573 Elaboration and Characterization of MEH-PPV/PCBM Composite Film Doped with TiO2 Nanoparticles for Photovoltaic Application
Authors: Wided Zerguine, Farid Habelhames
Abstract:
The performance of photovoltaic devices with a light absorber consisting of a single-type conjugated polymer is poor, due to a low photo-generation yield of charge carriers, strong radiative recombination’s and low mobility of charge carriers. Recently, it has been shown that ultra-fast photoinduced charge transfer can also occur between a conjugated polymer and a metal oxide semiconductor such as SnO2, TiO2, ZnO, Nb2O5, etc. This has led to the fabrication of photovoltaic devices based on composites of oxide semiconductor nanoparticles embedded in a conjugated polymer matrix. In this work, Poly [2-methoxy-5-(20-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV), (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and titanium dioxide (TiO2) nanoparticles (n-type) were dissolved, mixed and deposited by physical methods (spin-coating) on indium tin-oxide (ITO) substrate. The incorporation of the titanium dioxide nanoparticles changed the morphology and increased the roughness of polymers film (MEH-PPV/PCBM), and the photocurrent density of the composite (MEH-PPV/PCBM +n-TiO2) was higher than that of single MEHPPV/ PCBM film. The study showed that the presence of n-TiO2 particles in the polymeric film improves the photoelectrochemical properties of MEH-PPV/PCBM composite.Keywords: photocurrent density, organic nanostructures, hybrid coating, conducting polymer, titanium dioxide
Procedia PDF Downloads 3284572 Formation of Protective Aluminum-Oxide Layer on the Surface of Fe-Cr-Al Sintered-Metal-Fibers via Multi-Stage Thermal Oxidation
Authors: Loai Ben Naji, Osama M. Ibrahim, Khaled J. Al-Fadhalah
Abstract:
The objective of this paper is to investigate the formation and adhesion of a protective aluminum-oxide (Al2O3, alumina) layer on the surface of Iron-Chromium-Aluminum Alloy (Fe-Cr-Al) sintered-metal-fibers. The oxide-scale layer was developed via multi-stage thermal oxidation at 930 oC for 1 hour, followed by 1 hour at 960 oC, and finally at 990 oC for 2 hours. Scanning Electron Microscope (SEM) images show that the multi-stage thermal oxidation resulted in the formation of predominantly Al2O3 platelets-like and whiskers. SEM images also reveal non-uniform oxide-scale growth on the surface of the fibers. Furthermore, peeling/spalling of the alumina protective layer occurred after minimum handling, which indicates weak adhesion forces between the protective layer and the base metal alloy. Energy Dispersive Spectroscopy (EDS) analysis of the heat-treated Fe-Cr-Al sintered-metal-fibers confirmed the high aluminum content on the surface of the protective layer, and the low aluminum content on the exposed base metal alloy surface. In conclusion, the failure of the oxide-scale protective layer exposes the base metal alloy to further oxidation, and the fragile non-uniform oxide-scale is not suitable as a support for catalysts.Keywords: high-temperature oxidation, iron-chromium-aluminum alloy, alumina protective layer, sintered-metal-fibers
Procedia PDF Downloads 2044571 An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel
Authors: S. Singh, P. Patel, D. Kachhadiya, Swapnil Dharaskar
Abstract:
The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel.Keywords: aluminium oxide nanoparticles, cobalt oxide nanoparticles, fuel additives, fuel characteristics
Procedia PDF Downloads 3224570 Flexible Laser Reduced Graphene Oxide/MnO2 Electrode for Supercapacitor Applications
Authors: Ingy N. Bkrey, Ahmed A. Moniem
Abstract:
We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50 μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.Keywords: electrode deposition, flexible, graphene oxide, graphene, high power CO2 Laser, MnO2
Procedia PDF Downloads 3174569 Enhanced Properties of Plasma-Induced Two-Dimensional Ga₂O₃/GaS Heterostructures on Liquid Alloy Substrate
Authors: S. Zhuiykov, M. Karbalaei Akbari
Abstract:
Ultra-low-level incorporation of trace impurities and dopants into two-dimensional (2D) semiconductors is a challenging step towards the development of functional electronic instruments based on 2D materials. Herein, the incorporation of sulphur atoms into 2D Ga2O3 surface oxide film of eutectic gallium-indium alloy (EGaIn) is achieved through plasma-enhanced metal-catalyst dissociation of H2S gas on EGaIn substrate. This process led to the growth of GaS crystalline nanodomains inside amorphous 2D Ga2O3 sublayer films. Consequently, 2D lateral heterophase was developed between the amorphous Ga2O3 and crystalline GaS nanodomains. The materials characterization revealed the alteration of photoluminescence (PL) characteristics and change of valence band maximum (VBM) of functionalized 2D films. The comprehensive studies by conductive atomic force microscopy (c-AFM) showed considerable enhancement of conductivity of 2D Ga2O3/GaS materials (300 times improvement) compared with that of 2D Ga2O3 film. This technique has a great potential for the fabrication of 2D metal oxide devices with tuneable electronic characteristics similar to nano junction memristors and transistors.Keywords: 2D semiconductors, Ga₂O₃, GaS, plasma-induced functionalization
Procedia PDF Downloads 914568 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂
Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek
Abstract:
Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂
Procedia PDF Downloads 1764567 Preparation of Protective Coating Film on Metal Alloy
Authors: Rana Th. A. Al-rubaye
Abstract:
A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in –situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physico-chemical properties were investigated using X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C).Keywords: fecralloy, zsm-5 zeolite, zeolite coatings, hydrothermal method
Procedia PDF Downloads 3954566 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films
Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh
Abstract:
According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.Keywords: memristor, quantum dot, resistive switching, thin film
Procedia PDF Downloads 1224565 Atomic Layer Deposition Of Metal Oxide Inverse Opals: A Promising Strategy For Photocatalytic Applications
Authors: Hamsasew Hankebo Lemago, Dóra Hessz, Tamás Igricz, Zoltán Erdélyi, , Imre Miklós Szilágyi
Abstract:
Metal oxide inverse opals are a promising class of photocatalysts with a unique hierarchical structure. Atomic layer deposition (ALD) is a versatile technique for the synthesis of high-precision metal oxide thin films, including inverse opals. In this study, we report the synthesis of TiO₂, ZnO, and Al₂O₃ inverse opal and their composites photocatalysts using thermal or plasma-enhanced ALD. The synthesized photocatalysts were characterized using a variety of techniques, including scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL), ellipsometry, and UV-visible spectroscopy. The results showed that the ALD-synthesized metal oxide inverse opals had a highly ordered structure and a tunable pore size. The PL spectroscopy results showed low recombination rates of photogenerated electron-hole pairs, while the ellipsometry and UV-visible spectroscopy results showed tunable optical properties and band gap energies. The photocatalytic activity of the samples was evaluated by the degradation of methylene blue under visible light irradiation. The results showed that the ALD-synthesized metal oxide inverse opals exhibited high photocatalytic activity, even under visible light irradiation. The composites photocatalysts showed even higher activity than the individual metal oxide inverse opals. The enhanced photocatalytic activity of the composites can be attributed to the synergistic effect between the different metal oxides. For example, Al₂O₃ can act as a charge carrier scavenger, which can reduce the recombination of photogenerated electron-hole pairs. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production. The ALD-synthesized metal oxide inverse opals and their composites are promising photocatalysts for a variety of applications, such as wastewater treatment, air purification, and energy production.Keywords: ALD, metal oxide inverse opals, photocatalysis, composites
Procedia PDF Downloads 824564 The TiO2 Refraction Film for CsI Scintillator
Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang
Abstract:
Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light after through CsI and TiO2 film refractions arrive to the CsI second surface. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.Keywords: cesium iodide, anodic aluminum oxide (AAO), TiO2, refraction, X-ray
Procedia PDF Downloads 4254563 Layer by Layer Coating of Zinc Oxide/Metal Organic Framework Nanocomposite on Ceramic Support for Solvent/Solvent Separation Using Pervaporation Method
Authors: S. A. A. Nabeela Nasreen, S. Sundarrajan, S. A. Syed Nizar, Seeram Ramakrishna
Abstract:
Metal-organic frameworks (MOFs) have attracted considerable interest due to its diverse pore size tunability, fascinating topologies and extensive uses in fields such as catalysis, membrane separation, chemical sensing, etc. Zeolitic imidazolate frameworks (ZIFs) are a class of MOF with porous crystals containing extended three-dimensional structures of tetrahedral metal ions (e.g., Zn) bridged by Imidazolate (Im). Selected ZIFs are used to separate solvent/solvent mixtures. A layer by layer formation of the nanocomposite of Zinc oxide (ZnO) and ZIF on a ceramic support using a solvothermal method was engaged and tested for target solvent/solvent separation. Metal oxide layer was characterized by XRD, SEM, and TEM to confirm the smooth and continuous coating for the separation process. The chemical composition of ZIF films was studied by using X-Ray absorption near-edge structure (XANES) spectroscopy. The obtained ceramic tube with metal oxide and ZIF layer coating were tested for its packing density, thickness, distribution of seed layers and variation of permeation rate of solvent mixture (isopropyl alcohol (IPA)/methyl isobutyl ketone (MIBK). Pervaporation technique was used for the separation to achieve a high permeation rate with separation ratio of > 99.5% of the solvent mixture.Keywords: metal oxide, membrane, pervaporation, solvothermal, ZIF
Procedia PDF Downloads 1964562 Composite Electrodes Containing Ni-Fe-Cr as an Activatable Oxygen Evolution Catalyst
Authors: Olga A. Krysiak, Grzegorz Cichowicz, Wojciech Hyk, Michal Cyranski, Jan Augustynski
Abstract:
Metal oxides are known electrocatalyst in water oxidation reaction. Due to the fact that it is desirable for efficient oxygen evolution catalyst to contain numerous redox-active metal ions to guard four electron water oxidation reaction, mixed metal oxides exhibit enhanced catalytic activity towards oxygen evolution reaction compared to single metal oxide systems. On the surface of fluorine doped tin oxide coated glass slide (FTO) deposited (doctor blade technique) mixed metal oxide layer composed of nickel, iron, and chromium. Oxide coating was acquired by heat treatment of the aqueous precursors' solutions of the corresponding salts. As-prepared electrodes were photosensitive and acted as an efficient oxygen evolution catalyst. Our results showed that obtained by this method electrodes can be activated which leads to achieving of higher current densities. The recorded current and photocurrent associated with oxygen evolution process were at least two orders of magnitude higher in the presence of oxide layer compared to bare FTO electrode. The overpotential of the process is low (ca. 0,2 V). We have also checked the activity of the catalyst at different known photoanodes used in sun-driven water splitting. Herein, we demonstrate that we were able to achieve efficient oxygen evolution catalysts using relatively cheap precursor consisting of earth abundant metals and simple method of preparation.Keywords: chromium, electrocatalysis, iron, metal oxides, nickel, oxygen evolution
Procedia PDF Downloads 2104561 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution
Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish
Abstract:
The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)
Procedia PDF Downloads 3944560 Effect of Substrate Temperature on Structure and Properties of Sputtered Transparent Conducting Film of La-Doped BaSnO₃
Authors: Alok Tiwari, Ming Show Wong
Abstract:
Lanthanum (La) doped Barium Tin Oxide (BaSnO₃) film is an excellent alternative for expensive Transparent Conducting Oxides (TCOs) film such as Indium Tin Oxide (ITO). However single crystal film of La-doped BaSnO₃ has been reported with a good amount of conductivity and transparency but in order to improve its reachability, it is important to grow doped BaSO₃ films on an inexpensive substrate. La-doped BaSnO₃ thin films have been grown on quartz substrate by Radio Frequency (RF) sputtering at a different substrate temperature (from 200⁰C to 750⁰C). The thickness of the film measured was varying from 360nm to 380nm with varying substrate temperature. Structure, optical and electrical properties have been studied. The carrier concentration is seen to be decreasing as we enhance the substrate temperature while mobility found to be increased up to 9.3 cm²/V-S. At low substrate temperature resistivity found was lower (< 3x10⁻³ ohm-cm) while sudden enhancement was seen as substrate temperature raises and the trend continues further with increasing substrate temperature. Optical transmittance is getting better with higher substrate temperature from 70% at 200⁰C to > 80% at 750⁰C. Overall, understanding of changes in microstructure, electrical and optical properties of a thin film by varying substrate temperature has been reported successfully.Keywords: conductivity, perovskite, mobility, TCO film
Procedia PDF Downloads 1604559 Metal-Semiconductor-Metal Photodetector Based on Porous In0.08Ga0.92N
Authors: Saleh H. Abud, Z. Hassan, F. K. Yam
Abstract:
Characteristics of MSM photodetector based on a porous In0.08Ga0.92N thin film were reported. Nanoporous structures of n-type In0.08Ga0.92N/AlN/Si thin films were synthesized by photoelectrochemical (PEC) etching at a ratio of 1:4 of HF:C2H5OH solution for 15 min. The structural and optical properties of pre- and post-etched thin films were investigated. Field emission scanning electron microscope and atomic force microscope images showed that the pre-etched thin film has a sufficiently smooth surface over a large region and the roughness increased for porous film. Blue shift has been observed in photoluminescence emission peak at 300 K for porous sample. The photoluminescence intensity of the porous film indicated that the optical properties have been enhanced. A high work function metals (Pt and Ni) were deposited as a metal contact on the porous films. The rise and recovery times of the devices were investigated at 390 nm chopped light. Finally, the sensitivity and quantum efficiency were also studied.Keywords: porous InGaN, photoluminescence, SMS photodetector, atomic force microscopy
Procedia PDF Downloads 4894558 Speciation and Bioavailability of Heavy Metals in Greenhouse Soils
Authors: Bulent Topcuoglu
Abstract:
Repeated amendments of organic matter and intensive use of fertilizers, metal-enriched chemicals and biocides may cause soil and environmental pollution in greenhouses. Specially, the impact of heavy metal pollution of soils on food metal content and underground water quality has become a public concern. Due to potential toxicity of heavy metals to human life and environment, determining the chemical form of heavy metals in greenhouse soils is an important approach of chemical characterization and can provide useful information on its mobility and bioavailability. A sequential extraction procedure was used to estimate the availability of heavy metals (Zn, Cd, Ni, Pb and Cr) in greenhouse soils of Antalya Aksu. Zn was predominantly associated with Fe-Mn oxide fraction, major portion of Cd associated with carbonate and organic matter fraction, a major portion of (>65 %) Ni and Cr were largely associated with Fe-Mn oxide and residual fractions and Pb was largely associated with organic matter and Fe-Mn oxide fractions. Results of the present study suggest that the mobility and bioavailability of metals probably increase in the following order: Cr < Pb < Ni < Cd < Zn. Among the elements studied, Zn and Cd appeared to be the most readily soluble and potentially bioavailable metals and these metals may carry a potential risk for metal transfer in food chain and contamination to ground water.Keywords: metal speciation, metal mobility, greenhouse soils, biosystems engineering
Procedia PDF Downloads 4164557 Microstructural Investigations of Metal Oxides Encapsulated Thermochromic Materials
Authors: Yusuf Emirov, Abdullatif Hakami, Prasanta K Biswas, Elias K Stefanakos, Sesha S Srinivasan
Abstract:
This study is aimed to develop microencapsulated thermochromic materials and the analysis of core-shell formation using high resolution electron microscopy. The candidate metal oxides (e.g., titanium oxide and silicon oxide) used for the microencapsulation of thermochromic materials are based on the microemulsion route that involves the micelle formation using different surfactants. The effectiveness of the core-shell microstructure formationrevealed the influence of surfactants and the metal oxide precursor concentrations. Additionally, a detailed thermal and color chromic behavior of these core-shell microcapsules are evaluated with the pristine thermochromic dye particles.Keywords: core-shell thermochromic materials, core-shell microstructure formation, thermal and color chromic behavior of core-shell microcapsules, development micro-capsulated thermochromic materials
Procedia PDF Downloads 1584556 Fabricating an Infrared-Radar Compatible Stealth Surface with Frequency Selective Surface and Structured Radar-Absorbing Material
Authors: Qingtao Yu, Guojia Ma
Abstract:
Approaches to microwave absorption and low infrared emissivity are often conflicting, as the low-emissivity layer, usually consisting of metals, increases the reflection of microwaves, especially in high frequency. In this study, an infrared-radar compatible stealth surface was fabricated by first depositing a layer of low-emissivity metal film on the surface of a layer of radar-absorbing material. Then, ultrafast laser was used to generate patterns on the metal film, forming a frequency selective surface. With proper pattern design, while the majority of the frequency selective surface is covered by the metal film, it has relatively little influence on the reflection of microwaves between 2 to 18 GHz. At last, structures on the radar-absorbing layer were fabricated by ultra-fast laser to further improve the absorbing bandwidth of the microwave. This study demonstrates that the compatibility between microwave absorption and low infrared emissivity can be achieved by properly designing patterns and structures on the metal film and the radar-absorbing layer accordingly.Keywords: frequency selective surface, infrared-radar compatible, low infrared emissivity, radar-absorbing material, patterns, structures
Procedia PDF Downloads 1294555 The Effect of Aging of ZnO, AZO, and GZO films on the Microstructure and Photoelectric Property
Authors: Zue-Chin Chang
Abstract:
RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films. The AZO film had the best electrical properties; it had the lowest resistivity of 6.6 × 10-4 cm, the best sheet resistance of 2.2 × 10-1 Ω/square, and the highest carrier concentration of 4.3 × 1020 cm-3, as compared to the ZnO and GZO films.Keywords: aging, films, microstructure, photoelectric property
Procedia PDF Downloads 4764554 Fabrication of Tin Oxide and Metal Doped Tin Oxide for Gas Sensor Application
Authors: Goban Kumar Panneer Selvam
Abstract:
In past years, there is lots of death caused due to harmful gases. So its very important to monitor harmful gases for human safety, and semiconductor material play important role in producing effective gas sensors.A novel solvothermal synthesis method based on sol-gel processing was prepared to deposit tin oxide thin films on glass substrate at high temperature for gas sensing application. The structure and morphology of tin oxide were analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM analysis of how spheres shape in tin oxide nanoparticles. The structure characterization of tin oxide studied by X-ray diffraction shows 8.95 nm (calculated by sheers equation). The UV visible spectroscopy indicated a maximum absorption band shown at 390 nm. Further dope tin oxide with selected metals to attain maximum sensitivity using dip coating technique with different immersion and sensing characterization are measured.Keywords: tin oxide, gas sensor, chlorine free, sensitivity, crystalline size
Procedia PDF Downloads 1464553 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis
Authors: V. Jelev, P. Petkov, P. Shindov
Abstract:
Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect
Procedia PDF Downloads 3014552 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst
Authors: Napat Hataivichian
Abstract:
The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.Keywords: alumina, dehydrogenation, platinum, transition metal
Procedia PDF Downloads 3104551 The Microstructure of Aging ZnO, AZO, and GZO Films
Authors: Zue Chin Chang, Shih-Chang Liang
Abstract:
RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The electric conduction mechanism of the AZO and GZO films came mainly from the Al and Ga, the oxygen vacancies, Zn interstitial atoms, and Al and/or Ga interstitial atoms. AZO and GZO films achieved higher conduction than did ZnO film, it being ion vacant and nonstoichiometric. The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films.Keywords: ZnO, AZO, GZO, doped, sputtering
Procedia PDF Downloads 396