Search results for: irrigation suitability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1100

Search results for: irrigation suitability

890 Geospatial Techniques for Impact Assessment of Canal Rehabilitation Program in Sindh, Pakistan

Authors: Sumaira Zafar, Arjumand Zaidi, Muhammad Arslan Hafeez

Abstract:

Indus Basin Irrigation System (IBIS) is the largest contiguous irrigation system of the world comprising Indus River and its tributaries, canals, distributaries, and watercourses. A big challenge faced by IBIS is transmission losses through seepage and leaks that account to 41 percent of the total water derived from the river and about 40 percent of that is through watercourses. Irrigation system rehabilitation programs in Pakistan are focused on improvement of canal system at the watercourse level (tertiary channels). Under these irrigation system management programs more than 22,800 watercourses have been improved or lined out of 43,000 (12,900 Kilometers) watercourses. The evaluation of the improvement work is required at this stage to testify the success of the programs. In this paper, emerging technologies of GIS and satellite remote sensing are used for impact assessment of watercourse rehabilitation work in Sindh. To evaluate the efficiency of the improved watercourses, few parameters are selected like soil moisture along watercourses, availability of water at tail end and changes in cultivable command areas. Improved watercourses details and maps are acquired from National Program for Improvement of Watercourses (NPIW) and Space and Upper Atmospheric Research Commission (SUPARCO). High resolution satellite images of Google Earth for the year of 2004 to 2013 are used for digitizing command areas. Temporal maps of cultivable command areas show a noticeable increase in the cultivable land served by improved watercourses. Field visits are conducted to validate the results. Interviews with farmers and landowners also reveal their overall satisfaction in terms of availability of water at the tail end and increased crop production.

Keywords: geospatial, impact assessment, watercourses, GIS, remote sensing, seepage, canal lining

Procedia PDF Downloads 320
889 The Potential Fresh Water Resources of Georgia and Sustainable Water Management

Authors: Nana Bolashvili, Vakhtang Geladze, Tamazi Karalashvili, Nino Machavariani, George Geladze, Davit Kartvelishvili, Ana Karalashvili

Abstract:

Fresh water is the major natural resource of Georgia. The average perennial sum of the rivers' runoff in Georgia is 52,77 km³, out of which 9,30 km³ inflows from abroad. The major volume of transit river runoff is ascribed to the Chorokhi river. Average perennial runoff in Western Georgia is 41,52 km³, in Eastern Georgia 11,25 km³. The indices of Eastern and Western Georgia were calculated with 50% and 90% river runoff respectively, while the same index calculation for other countries is based on a 50% river runoff. Out of total volume of resources, 133,2 m³/sec (4,21 km³) has been geologically prospected by the State Commission on Reserves and Acknowledged as reserves available for exploitation, 48% (2,02 km³) of which is in Western Georgia and 2,19 km³ in Eastern Georgia. Considering acknowledged water reserves of all categories per capita water resources accounts to 2,2 m³/day, whereas high industrial category -0. 88 m³ /day fresh drinking water. According to accepted norms, the possibility of using underground water reserves is 2,5 times higher than the long-term requirements of the country. The volume of abundant fresh-water reserves in Georgia is about 150 m³/sec (4,74 km³). Water in Georgia is consumed mostly in agriculture for irrigation purposes. It makes 66,4% around Georgia, in Eastern Georgia 72,4% and 38% in Western Georgia. According to the long-term forecast provision of population and the territory with water resources in Eastern Georgia will be quite normal. A bit different is the situation in the lower reaches of the Khrami and Iori rivers which could be easily overcome by corresponding financing. The present day irrigation system in Georgia does not meet the modern technical requirements. The overall efficiency of their majority varies between 0,4-0,6. Similar is the situation in the fresh water and public service water consumption. Organization of the mentioned systems, installation of water meters, introduction of new methods of irrigation without water loss will substantially increase efficiency of water use. Besides new irrigation norms developed from agro-climatic, geographical and hydrological angle will significantly reduce water waste. Taking all this into account we assume that for irrigation agricultural lands in Georgia is necessary 6,0 km³ water, 5,5 km³ of which goes to Eastern Georgia on irrigation arable areas. To increase water supply in Eastern Georgian territory and its population is possible by means of new water reservoirs as the runoff of every river considerably exceeds the consumption volume. In conclusion, we should say that fresh water resources by which Georgia is that rich could be significant source for barter exchange and investment attraction. Certain volume of fresh water can be exported from Western Georgia quite trouble free, without bringing any damage to population and hydroecosystems. The precise volume of exported water per region/time and method/place of water consumption should be defined after the estimation of different hydroecosystems and detailed analyses of water balance of the corresponding territories.

Keywords: GIS, management, rivers, water resources

Procedia PDF Downloads 328
888 District Selection for Geotechnical Settlement Suitability Using GIS and Multi Criteria Decision Analysis: A Case Study in Denizli, Turkey

Authors: Erdal Akyol, Mutlu Alkan

Abstract:

Multi criteria decision analysis (MDCA) covers both data and experience. It is very common to solve the problems with many parameters and uncertainties. GIS supported solutions improve and speed up the decision process. Weighted grading as a MDCA method is employed for solving the geotechnical problems. In this study, geotechnical parameters namely soil type; SPT (N) blow number, shear wave velocity (Vs) and depth of underground water level (DUWL) have been engaged in MDCA and GIS. In terms of geotechnical aspects, the settlement suitability of the municipal area was analyzed by the method. MDCA results were compatible with the geotechnical observations and experience. The method can be employed in geotechnical oriented microzoning studies if the criteria are well evaluated.

Keywords: GIS, spatial analysis, multi criteria decision analysis, geotechnics

Procedia PDF Downloads 428
887 Spring Water Quality Appraisement for Drinking and Irrigation Application in Nigeria: A Muliti-Criteria Approach

Authors: Hillary Onyeka Abugu, Valentine Chinakwugwo Ezea, Janefrances Ngozi Ihedioha, Nwachukwu Romanus Ekere

Abstract:

The study assessed the spring water quality in Igbo-Etiti, Nigeria, for drinking and irrigation application using Physico-chemical parameters, water quality index, mineral and trace elements, pollution indices and risk assessment. Standard methods were used to determine the physicochemical properties of the spring water in rainy and dry seasons. Trace metals such as Pb, Cd, Zn and Cu were determined with atomic absorption spectrophotometer. The results showed that most of the physicochemical properties studied were within the guideline values set by Nigeria Standard for Drinking Water Quality (NSDWQ), WHO and US EPA for drinking water purposes. However, pH of all the spring water (4.27- 4.73; and 4.95- 5.73), lead (Pb) (0.01-1.08 mg/L) and cadmium (Cd) (0.01-0.15 mg/L) concentrations were above the guideline values in both seasons. This could be attributed to the lithography of the study area, which is the Nsukka formation. Leaching of lead and sulphides from the embedded coal deposits could have led to the increased lead levels and made the water acidic. Two-way ANOVA showed significant differences in most of the parameters studied in dry and rainy seasons. Pearson correlation analysis and cluster analysis showed strong significant positive and negative correlations in some of the parameters studied in both seasons. The water quality index showed that none of the spring water had excellent water status. However, one spring (Iyi Ase) had poor water status in dry season and is considered unsafe for drinking. Iyi Ase was also considered not suitable for irrigation application as predicted by most of the pollution indices, while others were generally considered suitable for irrigation application. Probable cancer and non-cancer risk assessment revealed a probable risk associated with the consumption of the spring in the Igbo-Ettiti area, Nigeria.

Keywords: water quality, pollution index, risk assessment, physico-chemical parameters

Procedia PDF Downloads 137
886 Protection and Safeguarding of Groundwater in Algeria between Law and Right to Use

Authors: Aziez Ouahiba, Remini Boualem, Habi Mohamed

Abstract:

The growth and the development of a pay are strongly related to the existence or the absence of water in this area, the sedentary lifestyle of the population makes that water demand is increasing and the different brandishing (dams, tablecloths or other) are increasingly solicited. In normal time rain and snow of the winter period reloads the slicks and the wadis that fill dams. Over these two decades, Global warming fact that temperature is increasingly high and rainfall is increasingly low, which induces a charge less and less important tablecloths, add to that the strong demand in irrigation. Our study will focus on the variation of rainfall and irrigation, Their effects on the degree of pollution of the groundwater in this area based on statistical analyses by the Xlstat (ACP, correlation...) software for a better explanation of these results and determine the hydrochemistry of different groups or polluted areas pou be able to offer adequate solutions for each area.

Keywords: water in the basement, legislation, over exploitation, pollution, water prices

Procedia PDF Downloads 346
885 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 41
884 Satellite Derived Evapotranspiration and Turbulent Heat Fluxes Using Surface Energy Balance System (SEBS)

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

One of the key components of the water cycle is evapotranspiration (ET), which represents water consumption by vegetated and non-vegetated surfaces. Conventional techniques for measurements of ET are point based and representative of the local scale only. Satellite remote sensing data with large area coverage and high temporal frequency provide representative measurements of several relevant biophysical parameters required for estimation of ET at regional scales. The objective is of this research is to exploit satellite data in order to estimate evapotranspiration. This study uses Surface Energy Balance System (SEBS) model to calculate daily actual evapotranspiration (ETa) in Larkana District, Sindh Pakistan using Landsat TM data for clouds-free days. As there is no flux tower in the study area for direct measurement of latent heat flux or evapotranspiration and sensible heat flux, therefore, the model estimated values of ET were compared with reference evapotranspiration (ETo) computed by FAO-56 Penman Monteith Method using meteorological data. For a country like Pakistan, agriculture by irrigation in the river basins is the largest user of fresh water. For the better assessment and management of irrigation water requirement, the estimation of consumptive use of water for agriculture is very important because it is the main consumer of water. ET is yet an essential issue of water imbalance due to major loss of irrigation water and precipitation on cropland. As large amount of irrigated water is lost through ET, therefore its accurate estimation can be helpful for efficient management of irrigation water. Results of this study can be used to analyse surface conditions, i.e. temperature, energy budgets and relevant characteristics. Through this information we can monitor vegetation health and suitable agricultural conditions and can take controlling steps to increase agriculture production.

Keywords: SEBS, remote sensing, evapotranspiration, ETa

Procedia PDF Downloads 309
883 Suitability Verification of Cellulose Nanowhisker as a Scaffold for Bone Tissue Engineering

Authors: Moon Hee Jung, Dae Seung Kim, Sang-Myung Jung, Gwang Heum Yoon, Hoo Cheol Lee, Hwa Sung Shin

Abstract:

Scaffolds are an important part to support growth and differentiation of osteoblast for regeneration of injured bone in bone tissue engineering. We utilized tunicate cellulose nanowhisker (CNW) as scaffold and developed complex system that can enhance differentiation of osteoblast by applying mechanical stimulation. CNW, a crystal form of cellulose, has high stiffness with a large surface area and is useful as a biomedical material due to its biodegradability and biocompatibility. In this study, CNW was obtained from tunicate extraction and was confirmed for its adhesion, differentiation, growth of osteoblast without cytotoxicity. In addition, osteoblast was successfully differentiated under mechanical stimulation, followed by calcium dependent signaling. In conclusion, we verified suitability of CNW as scaffold and possibility of bone substitutes.

Keywords: osteoblast, cellulose nanowhisker, CNW, mechanical stimulation, bone tissue engineering, bone substitute

Procedia PDF Downloads 336
882 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants

Authors: Subhash Chandra Sharma, Mohammad Soleimani

Abstract:

Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.

Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants

Procedia PDF Downloads 266
881 Spatial-Temporal Characteristics of Bacterioplankton in the Upper Part of Taktakorpu Water Complex

Authors: Fidan Z. Aliyeva

Abstract:

In the presented article, the formation of the microbiological regime in the Takhtakorpu water complex, as well as spatial-temporal changes in the quantitative indicators of bacterioplankton, were studied. Taktakorpu water complex was built as a continuation of the reconstruction and expansion project of the Samur-Absheron irrigation system in Shabran on the northeastern slope of our republic. It should be noted that with the implementation of the project, the water supply of up to 150 thousand ha of useful land in the northern region has been improved, and the drinking, technical, and irrigation water needs of the population of Baku, Sumgayit and also the Absheron Peninsula, and industrial and agricultural areas, joining the agricultural circulation of new soil areas, Takhtakorpu reservoir with a volume of 238.4 million m³, connected with them -Valvalachay- Takhtakorpu and Takhtakorpu-Jeyranbatan canals have been created, conditions have been created to increase the resources of the Jeyranbatan reservoir. Special attention is paid to the study of saprophytic bacteria in order to determine the development dynamics and biochemical activity of the microbiological regime in the Takhtakorpu Water Complex, which is of great strategic importance for our republic, to evaluate changes under the influence of anthropogenic factors, as well as to evaluate the properties of self-cleaning, mineralization features of organic substances of allochthon and autochthonous origin. One of the main goals of our research is to determine the main structural indicators of bacterioplankton in the upper part of Takhtakorpu water complex in the first three stations and analyzing their quantitative values in a certain time aspect.

Keywords: water, irrigation, sewage, wastewater

Procedia PDF Downloads 46
880 Heavy Metal of Soil in Wastewater, Irrigated Agricultural Soil in a Surrounding Area of the Nhue River, Vietnam

Authors: Thi Lan Huong Nguyen, Motohei Kanayama, Takahiro Higashi, Van Chinh Le, Thu Ha Doan, Anh Daochu

Abstract:

Waste from industrial sources, serves as sources of water for irrigating farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals in the soils. Soil samples were collected from the different locations from upstream to downstream of the Nhue River to evaluate heavy metal pollution. The results showed that the concentrations of all heavy metals in the soil samples in the farmland area were much higher than the background level in that area (1.2-2.6 mg/kg for Cd, 42-60 mg/kg for Cr, 22-62mg/kg for Cu, 30-86 mg/kg for Pb, 119-245 mg/kg for Zn, and 26-57 mg/kg for Ni), and exceeded the level of Vietnamese standard for agricultural soil for all heavy metals Cd, Cu, Pb, and Zn except soil samples at upstream and downstream of the Nhue River.

Keywords: heavy metal, soil, Nhue River, wastewater irrigation

Procedia PDF Downloads 441
879 An Overview on Micro Irrigation-Accelerating Growth of Indian Agriculture

Authors: Rohit Lall

Abstract:

The adoption of Micro Irrigation (MI) technologies in India has helped in achieving higher cropping and irrigation intensity with significant savings on resource savings such as labour, fertilizer and improved crop yields. These technologies have received considerable attention from policymakers, growers and researchers over the years for its perceived ability to contribute towards agricultural productivity and economic growth with the well-being of the growers of the country. Keeping the pace with untapped theoretical potential to cover government had launched flagship programs/centre sector schemes with earmarked budget to capture the potential under these waters saving techniques envisaged under these technologies by way of providing financial assistance to the beneficiaries for adopting these technologies. Micro Irrigation technologies have been in the special attention of the policymakers over the years. India being an agrarian economy having engaged 75% of the population directly or indirectly having skilled, semi-skilled and entrepreneurs in the sector with focused attention and financial allocations from the government under these technologies in covering the untapped potential under Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) 'Per Drop More Crop component.' During the year 2004, a Taskforce on Micro Irrigation was constituted to estimate the potential of these technologies in India which was estimated 69.5 million hectares by the Task Force Report on MI however only 10.49 million hectares have been achieved so far. Technology collaborations by leading manufacturing companies in overseas have proved to a stepping stone in technology advancement and product up gradation with increased efficiencies. Joint ventures by the leading MI companies have added huge business volumes which have not only accelerated the momentum of achieving the desired goal but in terms of area coverage but had also generated opportunities for the polymer manufacturers in the country. To provide products matching the global standards Bureau of Indian Standards have constituted a sectional technical committee under the Food and Agriculture Department (FAD)-17 to formulated/devise and revise standards pertaining to MI technologies. The research lobby has also contributed at large by developing in-situ analysis proving MI technologies a boon for farming community of the country with resource conservation of which water is of paramount importance. Thus, Micro Irrigation technologies have proved to be the key tool for feeding the grueling demand of food basket of the growing population besides maintaining soil health and have been contributing towards doubling of farmers’ income.

Keywords: task force on MI, standards, per drop more crop, doubling farmers’ income

Procedia PDF Downloads 97
878 Fitness Apparel and Body Cathexis of Women Consumers When and after Using Virtual Fitting Room

Authors: Almas Athif Fathin Wiyantoro, Fransiskus Xaverius Ivan Budiman, Fithra Faisal Hastiadi

Abstract:

The growth of clothing and technology as a marketing tool has a great influence on online business owners to know how much the characteristics and psychology of consumers in influencing purchasing decisions made by Indonesian women consumers. One of the most important issues faced by Indonesian women consumers is the suitability of clothing. The suitability of clothing can affect the body cathexis, identity, and confidence. So the thematic analysis of clothing fitness and body cathexis of women consumers when and after using virtual fitting room technology to purchase decision is important to do. This research using group method of pre-post treatment and considers how the recruitment technique of snowball sampling, which uses interpersonal relations and connections between people, both includes and excludes individuals into 39 participants' social networks to access specific populations. The results obtained from the study that the results of body scans and photos of virtual fitting room results can be made an intervention in women consumers in assessing their body cathexis objectively in the process of making purchasing decisions. The study also obtained a regression equation Y = 0.830 + 0.290X1 + 0.292X2, showing a positive relationship between suitability of clothing and body cathexis which influenced purchasing decisions on women consumers and after (personal and psychological factors) using virtual fitting room, meaning that all independent variables influence Positive towards the purchasing decision of the women consumers.

Keywords: body cathexis, clothing fitness, purchasing decision making and virtual fitting room

Procedia PDF Downloads 184
877 Temporal Effects on Chemical Composition of Treated Wastewater and Borehole Water Used for Irrigation in Limpopo Province, South Africa

Authors: Pholosho M. Kgopa, Phatu W. Mashela, Alen Manyevere

Abstract:

Increasing incidents of drought spells in most Sub-Saharan Africa call for using alternative sources of water for irrigation in arid and semi-arid regions. A study was conducted to investigate chemical composition of borehole and treated wastewater from different sampling disposal sites at University of Limpopo Experimental Farm (ULEF). A 4 × 5 factorial experiment, with the borehole as a reference sampling site and three other sampling sites along the wastewater disposal system was conducted over five months. Water samples were collected at four sites namely, (a) exit from Pond 16 into the furrow, (b) entry into night-dam, (c) exit from night dam to irrigated fields and (d) exit from borehole to irrigated fields. Water samples were collected in the middle of each month, starting from July to November 2016. Samples were analysed for pH, EC, Ca, Mg, Na, K, Al, B, Zn, Cu, Cr, Pb, Cd and As. The site × time interactions were highly significant for Ca, Mg, Zn, Cu, Cr, Pb, Cd, and As variables, but not for Na and K. Sampling site was highly significant on all variables, with sampling period not significant for K and Na. Relative to water from the borehole, Na concentration in wastewater samples from the night-dam exit, night-dam entry and Pond16 exit were lower by 69, 34 and 55%, respectively. Relative to borehole water, Al was higher in wastewater sampling sites. In conclusion, both sampling site and period affected the chemical composition of treated wastewater.

Keywords: irrigation water quality, spatial effects, temporal effects, water reuse, water scarcity

Procedia PDF Downloads 208
876 Channel That Can Be Used on Slope, Slide Prone and Seismic Areas, Swelling and Collapsing Soils

Authors: Sabir Tehrankhan Hasanov, Mir Movsum Anar Dadashev

Abstract:

The article provides a brief overview of irrigation systems and canals applied to slopes, landslide-prone, seismic areas, and swelling and collapsing soils. The contemporary construction of the canal used for irrigation, energy, and water supply purposes is described. In order to ensure the durability, longevity, and reliability of the channel, a damping mat made of cast material is created under its cover, and the top is covered with a waterproof screen. Dowels are placed on the bottom and sides of the channel, and the bottom dowel is riveted to the solid bedrock and connected with piles placed at certain distances. Drainage was placed next to the bottom dowel, an operation road was created on one side of the channel, and a berm road was created on the other side. A bathtub was built on the side of the road, and a forest-bush strip was built on its bank.

Keywords: slope, channel, landslide, collapse, swell, soil, structure

Procedia PDF Downloads 53
875 Optimal Performance of Plastic Extrusion Process Using Fuzzy Goal Programming

Authors: Abbas Al-Refaie

Abstract:

This study optimized the performance of plastic extrusion process of drip irrigation pipes using fuzzy goal programming. Two main responses were of main interest; roll thickness and hardness. Four main process factors were studied. The L18 array was then used for experimental design. The individual-moving range control charts were used to assess the stability of the process, while the process capability index was used to assess process performance. Confirmation experiments were conducted at the obtained combination of optimal factor setting by fuzzy goal programming. The results revealed that process capability was improved significantly from -1.129 to 0.8148 for roll thickness and from 0.0965 to 0.714 and hardness. Such improvement results in considerable savings in production and quality costs.

Keywords: fuzzy goal programming, extrusion process, process capability, irrigation plastic pipes

Procedia PDF Downloads 230
874 The Flooding Management Strategy in Urban Areas: Reusing Public Facilities Land as Flood-Detention Space for Multi-Purpose

Authors: Hsiao-Ting Huang, Chang Hsueh-Sheng

Abstract:

Taiwan is an island country which is affected by the monsoon deeply. Under the climate change, the frequency of extreme rainstorm by typhoon becomes more and more often Since 2000. When the extreme rainstorm comes, it will cause serious damage in Taiwan, especially in urban area. It is suffered by the flooding and the government take it as the urgent issue. On the past, the land use of urban planning does not take flood-detention into consideration. With the development of the city, the impermeable surface increase and most of the people live in urban area. It means there is the highly vulnerability in the urban area, but it cannot deal with the surface runoff and the flooding. However, building the detention pond in hydraulic engineering way to solve the problem is not feasible in urban area. The land expropriation is the most expensive construction of the detention pond in the urban area, and the government cannot afford it. Therefore, the management strategy of flooding in urban area should use the existing resource, public facilities land. It can archive the performance of flood-detention through providing the public facilities land with the detention function. As multi-use public facilities land, it also can show the combination of the land use and water agency. To this purpose, this research generalizes the factors of multi-use for public facilities land as flood-detention space with literature review. The factors can be divided into two categories: environmental factors and conditions of public facilities. Environmental factors including three factors: the terrain elevation, the inundation potential and the distance from the drainage system. In the other hand, there are six factors for conditions of public facilities, including area, building rate, the maximum of available ratio etc. Each of them will be according to it characteristic to given the weight for the land use suitability analysis. This research selects the rules of combination from the logical combination. After this process, it can be classified into three suitability levels. Then, three suitability levels will input to the physiographic inundation model for simulating the evaluation of flood-detention respectively. This study tries to respond the urgent issue in urban area and establishes a model of multi-use for public facilities land as flood-detention through the systematic research process of this study. The result of this study can tell which combination of the suitability level is more efficacious. Besides, The model is not only standing on the side of urban planners but also add in the point of view from water agency. Those findings may serve as basis for land use indicators and decision-making references for concerned government agencies.

Keywords: flooding management strategy, land use suitability analysis, multi-use for public facilities land, physiographic inundation model

Procedia PDF Downloads 320
873 Exergy Analysis of Reverse Osmosis for Potable Water and Land Irrigation

Authors: M. Sarai Atab, A. Smallbone, A. P. Roskilly

Abstract:

A thermodynamic study is performed on the Reverse Osmosis (RO) desalination process for brackish water. The detailed RO model of thermodynamics properties with and without an energy recovery device was built in Simulink/MATLAB and validated against reported measurement data. The efficiency of desalination plants can be estimated by both the first and second laws of thermodynamics. While the first law focuses on the quantity of energy, the second law analysis (i.e. exergy analysis) introduces quality. This paper used the Main Outfall Drain in Iraq as a case study to conduct energy and exergy analysis of RO process. The result shows that it is feasible to use energy recovery method for reverse osmosis with salinity less than 15000 ppm as the exergy efficiency increases twice. Moreover, this analysis shows that the highest exergy destruction occurs in the rejected water and lowest occurs in the permeate flow rate accounting 37% for 4.3% respectively.

Keywords: brackish water, exergy, irrigation, reverse osmosis (RO)

Procedia PDF Downloads 141
872 Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: Multi-Criteria Decision-Making Framework

Authors: Ayat-Allah Bouramdane

Abstract:

Solar Photovoltaic (PV) and Concentrated Solar Power (CSP) do not burn fossil fuels and, therefore, could meet the world's needs for low-carbon power generation as they do not release greenhouse gases into the atmosphere as they generate electricity. The power output of the solar PV module and CSP collector is proportional to the temperature and the amount of solar radiation received by their surface. Hence, the determination of the most convenient locations of PV and CSP systems is crucial to maximizing their output power. This study aims to provide a hands-on and plausible approach to the multi-criteria evaluation of site suitability of PV and CSP plants using a combination of Geographic Referenced Information (GRI) and Analytic Hierarchy Process (AHP). Applying the GRI-based AHP approach is meant to specify the criteria and sub-criteria, to identify the unsuitable areas, the low-, moderate-, high- and very high suitable areas for each layer of GRI, to perform the pairwise comparison matrix at each level of the hierarchy structure based on experts' knowledge, and calculate the weights using AHP to create the final map of solar PV and CSP plants suitability in Morocco with a particular focus on the Dakhla city. The results recognize that solar irradiation is the main decision factor for the integration of these technologies on energy policy goals of Morocco but explicitly account for other factors that cannot only limit the potential of certain locations but can even exclude the Dakhla city classified as unsuitable area. We discuss the sensitivity of the PV and CSP site suitability to different aspects, such as the methodology, the climate conditions, and the technology used in each source, and provide the final recommendations to the Moroccan energy strategy by analyzing if actual Morocco's PV and CSP installations are located within areas deemed suitable and by discussing several cases to provide mutual benefits across the Food-Energy-Water nexus. The adapted methodology and conducted suitability map could be used by researchers or engineers to provide helpful information for decision-makers in terms of sites selection, design, and planning of future solar plants, especially in areas suffering from energy shortages, such as the Dakhla city, which is now one of Africa's most promising investment hubs and it is especially attractive to investors looking to root their operations in Africa and import to European markets.

Keywords: analytic hierarchy process, concentrated solar power, dakhla, geographic referenced information, Morocco, multi-criteria decision-making, photovoltaic, site suitability

Procedia PDF Downloads 126
871 Climate Change Adaptation of the Portuguese Viticultural Sector

Authors: H. Fraga, J. A. Santos

Abstract:

Vitiviniculture in Portugal is a key socio-economic sector, with a strong connection to local traditions and culture. Despite being a relatively small country, with prevailing Mediterranean environments, Portugal comprises an exceptionally large diversity of growth conditions (Terroirs). The vineyard area in Portugal is over 190 thousand hectares, being the eleventh wine producer and ninth wine exporter worldwide. Owing to the strong impact of weather and climate conditions on grapevine physiological development, grape berry quantity and quality show important inter-annual variability. Grapevines are also susceptible to climate change, as their responses will be unavoidably different under future climates. These impacts may change wine typicity of a given region or even its viticultural suitability. The current study reveals that the projected warming and drying trends for Portugal under the Representative Concentration Pathway (RCP) 4.5 and 8.5, are projected to 1) significantly shift current grapevine growing thermal conditions (e.g., heat and chill accumulation), 2) enhance water stress, 3) anticipate phenological timings and 4) modify yields. Moreover, the present study provides some hints regarding the effectiveness of mulching and irrigation as climate change adaptation measures. Our results show that the effectiveness of these adaptation measures will strongly rest on the strength of the climate change signal at a local scale, thus emphasizing the need for local-to-regional climate change assessments.

Keywords: viticulture, climate change, adaptation measures, Portugal

Procedia PDF Downloads 109
870 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge

Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada

Abstract:

According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.

Keywords: ancestral knowledge, climate change, medicinal plants, solar energy

Procedia PDF Downloads 196
869 Dry Season Rice Production along Hadejia Valley Irrigation Scheme in Auyo Local Government Area in Jigawa State

Authors: Saifullahi Umar, Baba Mamman Yarima, Mohammed Bello Usman, Hassan Mohammed

Abstract:

This study was conducted along with the Hadejia valley project irrigation under the Hadejia-Jama’are River Basin Development Authority (HRBDA) in Jigawa State. The multi-stage sampling procedure was used to select 72 rice farmers operating along with the Hadejia Valley Irrigation Project. Data for the study were collected using a structured questionnaire. The analytical tools employed for the study were descriptive statistics and Farm budget technique. The result shows that 55% of the farmers were between 31-40 years of age, 66.01% were male, and the result also revealed that the total cost of cultivation of an acre of land for rice production during the dry season was N73,900 with input cost accounting for 63.59% of the total cost of production. The gross return was N332,500, with a net return of N258,600 per acre. The estimated benefit-cost ratio of 3.449 indicates the strong performance of the dry season rice production. The leading constraints to dry season rice production were low access to quality extension services, low access to finance, poor quality fertilizers, and poor prices. The study, therefore, concludes that dry season rice production is a profitable enterprise in the study area hence, to productivity the farmers should be linked to effective extension service delivery institutions, expanding their access to productive sources of finances, the government should strengthen fertilizer quality control measures and comprehensive market linkages for the farmers.

Keywords: Auyo, dry season, Hadejia Valley, rice

Procedia PDF Downloads 130
868 A Model Approach of Good Practice Based on the Project Management Body of Knowledge® Guide in the Project Owner

Authors: Claudia Marcela Munoz Gonzalez, Diego Fernando Hernandez Losada, Hugo Alberto Herrera Fonseca

Abstract:

The project owner's role in the public-private investment consists of controlling and verifying the correct execution of the project's objectives and resources. Likewise, it is a discipline little explored in the academic field, whereby this work wishes to contribute with a model of good practices based on the project management methodology proposed by the Project Management Body of Knowledge® Guide. In the same way, highlight what are the controls that an integral project owner should take into account in its exercise and application, through the stages in which its contract runs. This proposal aims to structure its practice and integrate its functions according to a project management methodology. In addition, these practices will be applied in a case study of projects in the agricultural sector, particularly in the construction of irrigation district in Cundinamarca, Colombia.

Keywords: controls, construction of irrigation district, PMBOK®, project owner

Procedia PDF Downloads 427
867 Impact of Lined/Unlined Canal on Groundwater Recharge in the Lower Bhavani Basin, Tamilnadu, India

Authors: K. Mirudhula, R. Saravanan

Abstract:

Bhavani basin is the fourth largest Sub Basin in the Cauvery basin. The entire command area of all three major canals that takes off from the Bhavani river falls within the Erode District i.e. Lower Bhavani Project (LBP), Kodiveri and Kalingarayan canals. The LBP canal is a major source of irrigation in Erode District. Many of these canals are unlined and leakage takes place from them. Thus the seepage from the canal helps in recharging the wells in the area, enabling to get adequate water supply for the crops when water was not released from Bhavanisagar Dam. In this study, the groundwater recharge is determined by groundwater flow modeling using Visual MODFLOW model. For this purpose, three major natural sources of groundwater recharge are taken into consideration such as rainfall infiltration, canal seepage and return flow of irrigation. The model was run and ZONEBUDGET gives an idea about the amount of recharge from lined/unlined canal to the field. Unlined canal helps to recharge the groundwater about 20% more than the lined canal. The analysis reveals that the annual rainfall also has rapidly changed in this region. In the LBP canal Head reach meets their requirement with available quantity of water from the canal system. Tail end reach does not receive the required quantity of water because of seepage loss and conveyance loss. Hence the lined canal can be provided for full length of the main canal. Branch canals and minor distributaries are suggested to maintain the canals with unlined canal system.

Keywords: lower Bhavani basin, erode, groundwater flow modeling, irrigation practice, lined canal system

Procedia PDF Downloads 273
866 Evaluation of Groundwater Quality in North-West Region of Punjab, India

Authors: Jeevan Jyoti Mohindroo, Umesh Kumar Garg

Abstract:

The district of Tarntaran is located25 km south of Amritsar city in Punjab State of Northwestern India. It is 5059 Sq. Km in area. It is surrounded by Amritsar in the North, Kapurthala in the East, and Ferozepur in the South and Pakistan in the West. Patti Town is a municipal council of the Tarntaran district of the Indian state of Punjab, located 45 km from Amritsar its geographical coordinates are 310 16' 51" north to 740 51' 25" East Longitude. The town spreads over an area of 50sq. Km. Moisture content is very less in the air, falling within the semiarid region and frequently facing water scarcity as well as water quality problems. The major sources of employment are agriculture, horticulture and animal husbandry engaging almost 80% of the workforce. Water samples are collected from 400 locations in 20 villages on the Patti –Khem Karan highway with 20 samples from each village, and were subjected to analysis of chemical characteristics. The type of water that predominates in the study area is Ca-Mg-HCO3 type, based on hydro-chemical analysis. Besides, suitability of water for irrigation is evaluated based on the sodium adsorption ratio (SAR), residual sodium carbonate, sodium percent and salinity hazard. Other Physico-chemical parameters such as pH, TDS, conductance, etc. were also determined using a water analysis kit. Analysis of water samples for heavy metal analysis was also carried out in the present study.

Keywords: groundwater, chemical classification, SAR, RSC, USSL diagram

Procedia PDF Downloads 166
865 Treated Wastewater Reuse in Algeria: Overview, Mobilization Potential and Challenges

Authors: Dairi Sabri, Mrad Dounia, Djebbar Yassine, Abida Habib

Abstract:

Food security, which may be ensured by important agricultural production, needs huge amounts of water for irrigation. Recognizing this, the Algerian government made enormous efforts to mobilize water resources. Every drop of water collected, regardless of its origin, is needed to strengthen agricultural production. The present irrigated area in Algeria is about 1 million hectares while the potential agricultural area all over the country exceeds 9 million ha. This clearly shows the need for non-conventional water resources in Algeria, especially treated wastewater reuse. The use of treated wastewater in agricultural irrigation is still at the experimental stage in Algeria. While 20 million hectares worldwide are irrigated with treated wastewater, only 2300 hectares in Algeria are irrigated on an experimental basis in the regions of Setif, Constantine, Mila Telemcen, Tougourt and Boumerdès. The volume of wastewater discharged nationwide is estimated to be around 750 million cubic meters and is expected to exceed 1.5 billion m3 in 2020. An ambitious program of providing treatment facilities has been initiated in this direction to increase the treatment capacity to 2.5 million m3 per day in 2030. In order to optimize the use of this resource, specific research actions interested in defining treated wastewater reuse opportunities and standards are undertaken. The objective of this study is basically to examine the different components of treated wastewater reuse, including standards, treatment processes, agricultural opportunities and potentials as well as technical and economic aspects governing the feasibility of this technology in Algeria based on Geographic Information System (GIS).

Keywords: wastewater reuse, integrated management, irrigation, GIS

Procedia PDF Downloads 271
864 Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria

Authors: Emmanuel Ekpa, Adaji Andrew, Queen Opaluwa, Isreal Daraobong

Abstract:

Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system.

Keywords: bioremediation, heavy metals, physicochemical parameters, Bacillus spp, Acinectobacter spp and Moraxella spp, AAS, spectrometer 3000

Procedia PDF Downloads 302
863 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: irrigation, principal component analysis, reference evapotranspiration, Vaalharts

Procedia PDF Downloads 225
862 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability

Authors: Xvelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.

Keywords: space under bridge, potential evaluation, high density urban area, updated using

Procedia PDF Downloads 39
861 Photo-Reflective Mulches For Saving Water in Agriculture

Authors: P. Mormile, M. Rippa, G. Bonanomi, F. Scala, Changrong Yan, L. Petti

Abstract:

Photo-reflective films represent, in the panorama of agricultural films, a valid support for Spring and Summer cultivations, both in open field and under greenhouse. In fact, thanks to the high reflectivity of these films, thermal aggression, that causes serious problems to plants when traditional black mulch films are used, is avoided. Yellow or silver colored photo-reflective films protect plants from damages, assure the mulching effect, give a valid support to Integrated Pest Management and, according to recent trials, greatly contribute in saving water. This further advantage is determined by the high water condensation under the mulch film and this gives rise to reduction of irrigation. Water saving means also energy saving for electric system of water circulation. Trials performed at different geographic and ambient context confirm that the use of photo-reflective mulch films during the hot season allows to save water up to 30%.

Keywords: photo-selective mulches, saving water, water circulation, irrigation

Procedia PDF Downloads 488