Search results for: injection rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8519

Search results for: injection rate

8489 A Portable Miniature Syringe Needle Remover And Receptacle For Drug Injection Users

Authors: Fanjun Zhou

Abstract:

In today's drug-ridden society, drug injection is gradually becoming more popular and has hidden danger to IDUs (injection drug users) such as infectious diseases. According to reports, 67% of IDUs reported improper disposal at some point over the prior 30 days, leading to a proliferation of injection needles on the streets. In recent years, the number of cases of children or ordinary people unintentionally picking up needles have increased. Various needle remover inventions have begun to surface, but the existing ones are either expensive, unportable, or risky for IDUs. In order to effectively alleviate the proliferation of drug injection needles and improve the invention of needle removers, a miniature portable needle remover and receptacle is invented. The device for capturing and storing syringe needles contains an upper lid portion mounted tightly onto the lower box portion through an interlock system on the opposing sides of the device with a breaking-twisting mechanism to remove the needle. The invention is intended to be affordable to the general public, safe enough for IDUs to use, reliable enough not to harm others, and effective in breaking needles from the syringe. This report is conducted in the hope of spreading awareness of the dangers of drug injection and to provide a way to mitigate this drug rampant situation.

Keywords: needle remover, drug injection, injection drug users, portable, receptacle

Procedia PDF Downloads 64
8488 Effect of Hydrogen-Diesel Dual Fuel Combustion on the Performance and Emission Characteristics of a Four Stroke-Single Cylinder Diesel Engine

Authors: Madhujit Deb, G. R. K. Sastry, R. S. Panua, Rahul Banerjee, P. K. Bose

Abstract:

The present work attempts to investigate the combustion, performance and emission characteristics of an existing single-cylinder four-stroke compression-ignition engine operated in dual-fuel mode with hydrogen as an alternative fuel. Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels like hydrogen for internal combustion (IC) engines. In this experimental investigation, a diesel engine is made to run using hydrogen in dual fuel mode with diesel, where hydrogen is introduced into the intake manifold using an LPG-CNG injector and pilot diesel is injected using diesel injectors. A Timed Manifold Injection (TMI) system has been developed to vary the injection strategies. The optimized timing for the injection of hydrogen was 100 CA after top dead center (ATDC). From the study it was observed that with increasing hydrogen rate, enhancement in brake thermal efficiency (BTHE) of the engine has been observed with reduction in brake specific energy consumption (BSEC). Furthermore, Soot contents decrease with an increase in indicated specific NOx emissions with the enhancement of hydrogen flow rate.

Keywords: diesel engine, hydrogen, BTHE, BSEC, soot, NOx

Procedia PDF Downloads 509
8487 Development of Swing Valve for Gasoline Turbocharger Using Hybrid Metal Injection Molding

Authors: B. S. So, Y. H. Yoon, J. O. Jung, K. S. Bae

Abstract:

Metal Injection Molding (MIM) is a technology that combines powder metallurgy and injection molding. Particularly, it is widely applied to the manufacture of precision mobile parts and automobile turbocharger parts because compact precision parts with complicated three-dimensional shapes that are difficult to machining are formed into a large number of finished products. The swing valve is a valve that adjusts the boost pressure of the turbocharger. Since the head portion is exposed to the harsh temperature condition of about 900 degrees in the gasoline GDI engine, it is necessary to use Inconel material with excellent heat resistance and abrasion resistance, resulting in high manufacturing cost. In this study, we developed a swing valve using a metal powder injection molding based hybrid material (Inconel 713C material with heat resistance is applied to the head part, and HK30 material with low price is applied to the rest of the body part). For this purpose, the process conditions of the metal injection molding were optimized to minimize the internal defects, and the effectiveness was confirmed by the fracture strength and fatigue test.

Keywords: hybrid metal injection molding, swing valve, turbocharger, double injection

Procedia PDF Downloads 180
8486 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design

Procedia PDF Downloads 138
8485 The Effect of Dose of Pregnant Mare Serum Gonadotropin (PMSG) on Reproductive Efficiency in Ouled Djellal Ewes

Authors: Ameur Ameur Abdelkader, Boukherrouba Hadjira

Abstract:

The aim of the present study was to evaluate different doses of PMSG on reproductive performance in Ouled Djellal ewes synchronized during the breeding season period. A total of 200 ewes were used in this experiment, were divided in two groups, 100 uniparous (A) and 100 multiparous (B). All animals in both groups were divided equally into four groups homogeneous lots of then a single intramuscular (IM) injection of PMSG, Lot T1, A1 (400 IU), A2 (500 IU), A3 (600 IU) and (lot T2, B1 (400 IU), B2 (500UI), B3 (600UI), T1, and T2 are batch control groups received a single injection of progestin treatment without PMSG. The results showed that the fertility rate ranges from 79.16% to 92% with no significant difference (P > 0.05) between uniparous and multiparous ewes. The prolificity rate varies from 100% to 140% in uniparous ewes with the respective doses of 0 IU for the control group and 600 IU for lot A3. A significant difference between multiparous ewes prolificacy and uniparous receiving 500UI PMSG (respectively 142% vs 109%). The productivity rate has increased significantly among uniparous ewes with 82% for lot A1 to 112.5% for lot A3, as in multiparous ewes 66.66% for lot B1 to 133.33% for lot B3. At the same we recorded a positive correlation between the number of born products and increasing the dose of PMSG injected into the two categories of ewes (112.5% to 133.33% for multiparous uniparous VS 83% for and 66.66 uniparous % for multiparous).

Keywords: Ouled djellal ewe, PMSG, reproductive performance, Fertility

Procedia PDF Downloads 409
8484 Recombination Center Levels in Gold and Platinum Doped N-Type Silicon

Authors: Nam Chol Yu, Kyong Il Chu

Abstract:

Using DLTS measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25eV(A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54eV(B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.

Keywords: recombination center level, lifetime, carrier lifetime control, gold, platinum, silicon

Procedia PDF Downloads 124
8483 Searching for Forensic Evidence in a Compromised Virtual Web Server against SQL Injection Attacks and PHP Web Shell

Authors: Gigih Supriyatno

Abstract:

SQL injection is one of the most common types of attacks and has a very critical impact on web servers. In the worst case, an attacker can perform post-exploitation after a successful SQL injection attack. In the case of forensics web servers, web server analysis is closely related to log file analysis. But sometimes large file sizes and different log types make it difficult for investigators to look for traces of attackers on the server. The purpose of this paper is to help investigator take appropriate steps to investigate when the web server gets attacked. We use attack scenarios using SQL injection attacks including PHP backdoor injection as post-exploitation. We perform post-mortem analysis of web server logs based on Hypertext Transfer Protocol (HTTP) POST and HTTP GET method approaches that are characteristic of SQL injection attacks. In addition, we also propose structured analysis method between the web server application log file, database application, and other additional logs that exist on the webserver. This method makes the investigator more structured to analyze the log file so as to produce evidence of attack with acceptable time. There is also the possibility that other attack techniques can be detected with this method. On the other side, it can help web administrators to prepare their systems for the forensic readiness.

Keywords: web forensic, SQL injection, investigation, web shell

Procedia PDF Downloads 121
8482 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach

Authors: N. Balamurugan, N. V. Mahalakshmi

Abstract:

Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.

Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic

Procedia PDF Downloads 263
8481 Using Electro-Biogrouting to Stabilize of Soft Soil

Authors: Hamed A. Keykha, Hadi Miri

Abstract:

This paper describes a new method of soil stabilisation, electro-biogrouting (EBM), for improvement of soft soil with low hydraulic conductivity. This method uses an applied voltage gradient across the soil to induce the ions and bacteria cells through the soil matrix, resulting in CaCO3 precipitation and an increase of the soil shear strength in the process. The EBM were used effectively with two injection methods; bacteria injection and products of bacteria injection. The bacteria cells, calcium ions and urea were moved across the soil by electromigration and electro osmotic flow respectively. The products of bacteria (CO3-2) were moved by electromigration. The results showed that the undrained shear strength of the soil increased from 6 to 65 and 70 kPa for first and second injection method respectively. The injection of carbonate solution and calcium could be effectively flowed in the clay soil compare to injection of bacteria cells. The detection of CaCO3 percentage and its corresponding water content across the specimen showed that the increase of undrained shear strength relates to the deposit of calcite crystals between soil particles.

Keywords: Sporosarcina pasteurii, electrophoresis, electromigration, electroosmosis, biocement

Procedia PDF Downloads 496
8480 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump

Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil

Abstract:

Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.

Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip

Procedia PDF Downloads 237
8479 Recombination Center Levels in Gold and Platinum Doped N-type Silicon for High-Speed Thyristor

Authors: Nam Chol Yu, GyongIl Chu, HoJong Ri

Abstract:

Using DLTS (Deep-level transient spectroscopy) measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25 eV (A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54 eV (B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.

Keywords: recombination center level, lifetime, carrier lifetime control, Gold, Platinum, Silicon

Procedia PDF Downloads 36
8478 Prevalence of Drug Injection among Male Prisoners in the West of Iran

Authors: Farzad Jalilian, Mehdi Mirzaei Alavijeh

Abstract:

Background: Substance addiction is one of the major worldwide problems that destroys economy, familial relationships, and the abuser’s career and has several side effects; in the meantime drug injection due to the possibility of shared use of syringes among drug users could have multiple complications to be followed. The purpose of this study was to determine the prevalence of drug injection among male prisoners in Kermanshah city, the west of Iran. Methods: In this cross-sectional study 615 male prisoners were randomly selected to participate voluntarily in the study. Participants filled out a writing self-report questionnaire. Data were analyzed by the SPSS software (ver. 21.0) at 95% significant level. Results: The mean age of respondents was 31.13 years [SD: 7.76]. Mean initiation age for drug use was 14.36 years (range, 9-34 years). Almost, 39.4 % reported a history of drug use before prison. Opium (33.2%) and crystal (27.1%) was the most used drug among prisoners. Furthermore, 9.3 % had a history of injection addiction. There was a significant correlation between age, crime type, marital status, economic status, unprotected sex and drug injection (P < 0.05). Conclusion: The low age of drug abuse and the prevalence of drug injection among offenders can be as a warning for responsible; in this regard, implementation of prevention programs to risky behavior and harm reduction among high-risk groups can follow useful results.

Keywords: substance abuse, drug injection, prison, Iran

Procedia PDF Downloads 462
8477 Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions

Authors: Seyed Mostafa Jafari Raad, Hassan Hassanzadeh

Abstract:

Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites.

Keywords: CO₂ storage, solubility trapping, convective dissolution, storage efficiency

Procedia PDF Downloads 170
8476 Effect of Laser Ablation OTR Films and High Concentration Carbon Dioxide for Maintaining the Freshness of Strawberry ‘Maehyang’ for Export in Modified Atmosphere Condition

Authors: Hyuk Sung Yoon, In-Lee Choi, Min Jae Jeong, Jun Pill Baek, Ho-Min Kang

Abstract:

This study was conducted to improve storability by using suitable laser ablation oxygen transmission rate (OTR) films and effectiveness of high carbon dioxide at strawberry 'Maehyang' for export. Strawberries were grown by hydroponic system in Gyeongsangnam-do province. These strawberries were packed by different laser ablation OTR films (Daeryung Co., Ltd.) such as 1,300 cc, 20,000 cc, 40,000 cc, 80,000 cc, and 100,000 cc•m-2•day•atm. And CO2 injection (30%) treatment was used 20,000 cc•m-2•day•atm OTR film and perforated film was as a control. Temperature conditions were applied simulated shipping and distribution conditions from Korea to Singapore, there were stored at 3 ℃ (13 days), 10 ℃ (an hour), and 8 ℃ (7 days) for 20 days. Fresh weight loss rate was under 1% as maximum permissible weight loss in treated OTR films except perforated film as a control during storage. Carbon dioxide concentration within a package for the storage period showed a lower value than the maximum CO2 concentration tolerated range (15 %) in treated OTR films and even the concentration of high OTR film treatment; from 20,000cc to 100,000cc were less than 3%. 1,300 cc had a suitable carbon dioxide range as over 5 % under 15 % at 5 days after storage until finished experiments and CO2 injection treatment was quickly drop the 15 % at storage after 1 day, but it kept around 15 % during storage. Oxygen concentration was maintained between 10 to 15 % in 1,300 cc and CO2 injection treatments, but other treatments were kept in 19 to 21 %. Ethylene concentration was showed very higher concentration at the CO2 injection treatment than OTR treatments. In the OTR treatments, 1,300 cc showed the highest concentration in ethylene and 20,000 cc film had lowest. Firmness was maintained highest in 1,300cc, but there was not shown any significant differences among other OTR treatments. Visual quality had shown the best result in 20,000 cc that showed marketable quality until 20 days after storage. 20,000 cc and perforated film had better than other treatments in off-odor and the 1,300 cc and CO2 injection treatments have occurred strong off-odor even after 10 minutes. As a result of the difference between Hunter ‘L’ and ‘a’ values of chroma meter, the 1,300cc and CO2 injection treatments were delayed color developments and other treatments did not shown any significant differences. The results indicate that effectiveness for maintaining the freshness was best achieved at 20,000 cc•m-2•day•atm. Although 1,300 cc and CO2 injection treatments were in appropriate MA condition, it showed darkening of strawberry calyx and excessive reduction of coloring due to high carbon dioxide concentration during storage. While 1,300cc and CO2 injection treatments were considered as appropriate treatments for exports to Singapore, but the result was shown different. These results are based on cultivar characteristics of strawberry 'Maehyang'.

Keywords: carbon dioxide, firmness, shelf-life, visual quality

Procedia PDF Downloads 378
8475 When and How Do Individuals Transition from Regular Drug Use to Injection Drug Use in Uganda? Findings from a Rapid Assessment

Authors: Stanely Nsubuga

Abstract:

Background In Uganda, injection drug use is a growing but less studied problem. Preventing the transition to injection drug use may help prevent blood-borne viral transmission, but little is known about when and how people transition to injection drug use. A greater understanding of this transition process may aid in the country’s efforts to prevent the continued growth of injection drug use, HIV, and hepatitis C Virus (HCV) infection among people who inject drugs (PWID). Methods Using a rapid situation assessment framework, we conducted semi-structured interviews among 125 PWID (102 males and 23 females)—recruited through outreach and snow-ball sampling. Participants were interviewed about their experiences on when and how they transitioned into injection drug use and these issues were also discussed in 12 focus groups held with the participants. Results All the study participants started their drug use career with non-injecting forms including chewing, smoking, and sniffing before transitioning to injecting. Transitioning was generally described as a peer-driven and socially learnt behavior. The participants’ social networks and accessibility to injectable drugs on the market and among close friends influenced the time lag between first regular drug use and first injecting—which took an average of 4.5 years. By the age of 24, at least 81.6% (95.7% for females and 78.4% for males) had transitioned into injecting. Over 84.8% shared injecting equipment during their first injection, 47.2% started injecting because a close friend was already injecting, 26.4% desired to achieve a greater “high” (26.4%) which could reflect drug-tolerance, and 12% out of curiosity.

Keywords: People who Use Drugs, transition, injection drug use, Uganda

Procedia PDF Downloads 99
8474 Effects of Injection Conditions on Flame Structures in Gas-Centered Swirl Coaxial Injector

Authors: Wooseok Song, Sunjung Park, Jongkwon Lee, Jaye Koo

Abstract:

The objective of this paper is to observe the effects of injection conditions on flame structures in gas-centered swirl coaxial injector. Gaseous oxygen and liquid kerosene were used as propellants. For different injection conditions, two types of injector, which only differ in the diameter of the tangential inlet, were used in this study. In addition, oxidizer injection pressure was varied to control the combustion chamber pressure in different types of injector. In order to analyze the combustion instability intensity, the dynamic pressure was measured in both the combustion chamber and propellants lines. With the increase in differential pressure between the propellant injection pressure and the combustion chamber pressure, the combustion instability intensity increased. In addition, the flame structure was recorded using a high-speed camera to detect CH* chemiluminescence intensity. With the change in the injection conditions in the gas-centered swirl coaxial injector, the flame structure changed.

Keywords: liquid rocket engine, flame structure, combustion instability, dynamic pressure

Procedia PDF Downloads 201
8473 Investigation on the Effect of Sugarcane Bagasse/HDPE Composition on the Screw Withdrawal Resistance of Injection Molded Parts

Authors: Seyed Abdol Mohammad Rezavand, Mohammad Nikbakhsh

Abstract:

Withdrawal resistance of screws driven into HDPE/Sugarcane Bagasse injection molded parts was investigated. After chemical treatment and drying, SCB was pre-mixed with HDPE using twin extruder. The resulting granules are used in producing samples in injection molding machine. SCB with the quantity of %10, %20, and %30 was used. By using a suitable fixture, screw heads can take with tensile test machine grips. Parts with screws in the center and edge were fasten together. Then, withdrawal resistance was measured with tensile test machine. Injection gate is at the one edge of the part. The results show that by increasing SCB content in composite, the withdrawal resistance is decreased. Furthermore, the withdrawal resistance at the edges (near injection gate and the end of the filling path of mold cavity) is more than that of the center.

Keywords: polyethylene, sugarcane bagasse, wood plastic, screw, withdrawal resistance

Procedia PDF Downloads 554
8472 Oil Producing Wells Using a Technique of Gas Lift on Prosper Software

Authors: Nikhil Yadav, Shubham Verma

Abstract:

Gas lift is a common technique used to optimize oil production in wells. Prosper software is a powerful tool for modeling and optimizing gas lift systems in oil wells. This review paper examines the effectiveness of Prosper software in optimizing gas lift systems in oil-producing wells. The literature review identified several studies that demonstrated the use of Prosper software to adjust injection rate, depth, and valve characteristics to optimize gas lift system performance. The results showed that Prosper software can significantly improve production rates and reduce operating costs in oil-producing wells. However, the accuracy of the model depends on the accuracy of the input data, and the cost of Prosper software can be high. Therefore, further research is needed to improve the accuracy of the model and evaluate the cost-effectiveness of using Prosper software in gas lift system optimization

Keywords: gas lift, prosper software, injection rate, operating costs, oil-producing wells

Procedia PDF Downloads 47
8471 Extracting an Experimental Relation between SMD, Mass Flow Rate, Velocity and Pressure in Swirl Fuel Atomizers

Authors: Mohammad Hassan Ziraksaz

Abstract:

Fuel atomizers are used in a wide range of IC engines, turbojets and a variety of liquid propellant rocket engines. As the fuel spray fully develops its characters approach their ultimate amounts. Fuel spray characters such as SMD, injection pressure, mass flow rate, droplet velocity and spray cone angle play important roles to atomize the liquid fuel to finely atomized fuel droplets and finally form the fine fuel spray. Well performed, fully developed, fine spray without any defections, brings the idea of finding an experimental relation between the main effective spray characters. Extracting an experimental relation between SMD and other fuel spray physical characters in swirl fuel atomizers is the main scope of this experimental work. Droplet velocity, fuel mass flow rate, SMD and spray cone angle are the parameters which are measured. A set of twelve reverse engineering atomizers without any spray defections and a set of eight original atomizers as referenced well-performed spray are contributed in this work. More than 350 tests, mostly repeated, were performed. This work shows that although spray cone angle plays a very effective role in spray formation, after formation, it smoothly approaches to an almost constant amount while the other characters are changed to create fine droplets. Therefore, the work to find the relation between the characters is focused on SMD, droplet velocity, fuel mass flow rate, and injection pressure. The process of fuel spray formation begins in 5 Psig injection pressures, where a tiny fuel onion attaches to the injector tip and ended in 250 Psig injection pressure, were fully developed fine fuel spray forms. Injection pressure is gradually increased to observe how the spray forms. In each step, all parameters are measured and recorded carefully to provide a data bank. Various diagrams have been drawn to study the behavior of the parameters in more detail. Experiments and graphs show that the power equation can best show changes in parameters. The SMD experimental relation with pressure P, fuel mass flow rate Q ̇ and droplet velocity V extracted individually in pairs. Therefore, the proportional relation of SMD with other parameters is founded. Now it is time to find an experimental relation including all the parameters. Using obtained proportional relation, replacing the parameters with experimentally measured ones and drawing the graphs of experimental SMD versus proportion SMD (〖SMD〗_P), a correctional equation and consequently the final experimental equation is obtained. This experimental equation is specified to use for swirl fuel atomizers and the use of this experimental equation in different conditions shows about 3% error, which is expected to achieve lower error and consequently higher accuracy by increasing the number of experiments and increasing the accuracy of data collection.

Keywords: droplet velocity, experimental relation, mass flow rate, SMD, swirl fuel atomizer

Procedia PDF Downloads 139
8470 Mathematical Study of CO₂ Dispersion in Carbonated Water Injection Enhanced Oil Recovery Using Non-Equilibrium 2D Simulator

Authors: Ahmed Abdulrahman, Jalal Foroozesh

Abstract:

CO₂ based enhanced oil recovery (EOR) techniques have gained massive attention from major oil firms since they resolve the industry's two main concerns of CO₂ contribution to the greenhouse effect and the declined oil production. Carbonated water injection (CWI) is a promising EOR technique that promotes safe and economic CO₂ storage; moreover, it mitigates the pitfalls of CO₂ injection, which include low sweep efficiency, early CO₂ breakthrough, and the risk of CO₂ leakage in fractured formations. One of the main challenges that hinder the wide adoption of this EOR technique is the complexity of accurate modeling of the kinetics of CO₂ mass transfer. The mechanisms of CO₂ mass transfer during CWI include the slow and gradual cross-phase CO₂ diffusion from carbonated water (CW) to the oil phase and the CO₂ dispersion (within phase diffusion and mechanical mixing), which affects the oil physical properties and the spatial spreading of CO₂ inside the reservoir. A 2D non-equilibrium compositional simulator has been developed using a fully implicit finite difference approximation. The material balance term (k) was added to the governing equation to account for the slow cross-phase diffusion of CO₂ from CW to the oil within the gird cell. Also, longitudinal and transverse dispersion coefficients have been added to account for CO₂ spatial distribution inside the oil phase. The CO₂-oil diffusion coefficient was calculated using the Sigmund correlation, while a scale-dependent dispersivity was used to calculate CO₂ mechanical mixing. It was found that the CO₂-oil diffusion mechanism has a minor impact on oil recovery, but it tends to increase the amount of CO₂ stored inside the formation and slightly alters the residual oil properties. On the other hand, the mechanical mixing mechanism has a huge impact on CO₂ spatial spreading (accurate prediction of CO₂ production) and the noticeable change in oil physical properties tends to increase the recovery factor. A sensitivity analysis has been done to investigate the effect of formation heterogeneity (porosity, permeability) and injection rate, it was found that the formation heterogeneity tends to increase CO₂ dispersion coefficients, and a low injection rate should be implemented during CWI.

Keywords: CO₂ mass transfer, carbonated water injection, CO₂ dispersion, CO₂ diffusion, cross phase CO₂ diffusion, within phase CO2 diffusion, CO₂ mechanical mixing, non-equilibrium simulation

Procedia PDF Downloads 141
8469 Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine

Authors: Tytus Tulwin, Rafal Sochaczewski, Ksenia Siadkowska

Abstract:

Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: CFD, combustion, injection, opposed piston

Procedia PDF Downloads 240
8468 Design and Finite Element Analysis of Clamp Cylinder for Capacity Augmentation of Injection Moulding Machine

Authors: Vimal Jasoliya, Purnank Bhatt, Mit Shah

Abstract:

The Injection Moulding is one of the principle methods of conversions of plastics into various end products using a very wide range of plastics materials from commodity plastics to specialty engineering plastics. Injection Moulding Machines are rated as per the tonnage force applied. The work present includes Design & Finite Element Analysis of a structure component of injection moulding machine i.e. clamp cylinder. The work of the project is to upgrade the 1300T clamp cylinder to 1500T clamp cylinder for injection moulding machine. The design of existing clamp cylinder of 1300T is checked. Finite Element analysis is carried out for 1300T clamp cylinder in ANSYS Workbench, and the stress values are compared with acceptance criteria and theoretical calculation. The relation between the clamp cylinder diameter and the tonnage capacity has been derived and verified for 1300T clamp cylinder. The same correlation is used to find out the thickness for 1500T clamp cylinder. The detailed design of 1500T cylinder is carried out based on calculated thickness.

Keywords: clamp cylinder, fatigue analysis, finite element analysis, injection moulding machines

Procedia PDF Downloads 309
8467 The Effect of Education on Nurses' Knowledge Level for Ventrogluteal Site Injection: Pilot Study

Authors: Emel Bayraktar, Gulengun Turk

Abstract:

Introduction and Objective: Safe administration of medicines is one of the main responsibilities of nurses. Intramuscular drug administration is among the most common methods used by nurses among all drug applications. This study was carried out in order to determine determine the effect of education given on injection in ventrogluteal area on the level of knowledge of nurses on this subject. Methods: The sample of the study consisted of 20 nurses who agreed to participate in the study between 01 October and 31 December 2019. The research is a pretest-posttest comparative, quasi-experimental type pilot study. The nurses were given a 4-hour training prepared on injection into the ventrogluteal area. The training consisted of two hours of theoretical and two hours of laboratory practice. Before the training and 4 weeks after the training, a questionnaire form containing questions about their knowledge and practices regarding the injection of the ventrogluteal region was applied to the nurses. Results: The average age of the nurses is 26.55 ± 7.60, 35% (n = 7) of them are undergraduate and 30% (n = 6) of them work in intensive care units. Before the training, 35% (n = 7) of the nurses stated that the most frequently used intramuscular injection site was the ventrogluteal area, and 75% (n = 15) stated that the safest area was the rectus femoris muscle. After the training, 55% (n = 11) of the nurses stated that they most frequently used the ventrogluteal area and 100% (n = 20) of them stated that the ventrogluteal area was the safest area. The average score the nurses got from the premises before the training is 14.15 ± 6.63 (min = 0, max = 20), the total score is 184. The average score obtained after the training was determined as 18.69 ± 2.35 (min = 12, max = 20), and the total score was 243. Conclusion: As a result of the research, it was determined that the training given on the injection of ventrogluteal area increased the knowledge level of the nurses. It is recommended to organize in-service trainings for all nurses on the injection of ventrogluteal area.

Keywords: safe injection, knowledge level, nurse, intramuscular injection, ventrogluteal area

Procedia PDF Downloads 184
8466 Study on Novel Reburning Process for NOx Reduction by Oscillating Injection of Reburn Fuel

Authors: Changyeop Lee, Sewon Kim, Jongho Lee

Abstract:

Reburning technology has been developed to adopt various commercial combustion systems. Fuel lean reburning is an advanced reburning method to reduce NOx economically without using burnout air, however it is not easy to get high NOx reduction efficiency. In the fuel lean reburning system, the localized fuel rich eddies are used to establish partial fuel rich regions so that the NOx can react with hydrocarbon radical restrictively. In this paper, a new advanced reburning method which supplies reburn fuel with oscillatory motion is introduced to increase NOx reduction rate effectively. To clarify whether forced oscillating injection of reburn fuel can effectively reduce NOx emission, experimental tests were conducted in vertical combustion furnace. Experiments were performed in flames stabilized by a gas burner, which was mounted at the bottom of the furnace. The natural gas is used as both main and reburn fuel and total thermal input is about 40kW. The forced oscillating injection of reburn fuel is realized by electronic solenoid valve, so that fuel rich region and fuel lean region is established alternately. In the fuel rich region, NOx is converted to N2 by reburning reaction, however unburned hydrocarbon and CO is oxidized in fuel lean zone and mixing zone at downstream where slightly fuel lean region is formed by mixing of two regions. This paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. All experimental data has been measured at steady state. The NOx reduction rate increases up to 41% by forced oscillating reburn motion. The CO emissions were shown to be kept at very low level. And this paper makes clear that in order to decrease NOx concentration in the exhaust when oscillating reburn fuel injection system is adopted, the control of factors such as frequency and duty ratio is very important.

Keywords: NOx, CO, reburning, pollutant

Procedia PDF Downloads 267
8465 Effect of Synchronization Protocols on Serum Concentrations of Estrogen and Progesterone in Holstein Dairy Heifers

Authors: K. Shafiei, A. Pirestani, G. Ghalamkari, S. Safavipour

Abstract:

Use of GnRH or its agonists to increase conception rates should be based on an understanding of GnRH-induced biological effects on the reproductive-endocrine system. This effect may occur through GnRH-stimulated LH surge stimulating production of progesterone by corpus luteum.the aim of this study was to compare the effects on reproductive efficiency of a luteolytic dose of a synthetic prostaglandin Cloprostenol Sodium versus ainjectable progesterone and Luliberin- A on Follicle estrogen and progesterone levels.In this study, we used45 head of holstein dairy heifersin the three treatments, with 15 replicates per treatment were performed in random groups. all the heifers before the projects is began in two steps injection 3 mL CloprostenolSodium with an interval of 11 days been synchronized and 10 days later, second injection of prostaglandin was conducted after that we started below protocol:Control group (daily sodium chloride serum injection 1 cc), Group B: Day Zero, intramuscular injection of 15 mg Luliberin- A + every other day injection of 3 cc progesterone + day 7, injection of Cloprostenol Sodium+ day 9, injection of 15 mg Luliberin- A.Group C: similar to Grop B + daily injection of progesterone after that blood samples was collected and centrifuged.plasma were analysed by ELISA.the analysis of this study uses SPSS data software package and compared between the mean and LS Means LSD test at 5% significance level was used.The results of this study shows that maximum of progesterone plasma levels were in the control gruop (P ≥ 0.05).Therefore, daily injection of progesterone inhibit the growth CL. the most estrogen levels in plasma were in Group C (P ≥ 0.05) thus it can be concluded, rise in endogenous estrogen concentrations normally stimulates the preovulatory LH release in heifers.

Keywords: Luliberin- A, Cloprostenol Sodium, estrogen, progesterone, dairy heifers

Procedia PDF Downloads 509
8464 Optical Heterodyning of Injection-Locked Laser Sources: A Novel Technique for Millimeter-Wave Signal Generation

Authors: Subal Kar, Madhuja Ghosh, Soumik Das, Antara Saha

Abstract:

A novel technique has been developed to generate ultra-stable millimeter-wave signal by optical heterodyning of the output from two slave laser (SL) sources injection-locked to the sidebands of a frequency modulated (FM) master laser (ML). Precise thermal tuning of the SL sources is required to lock the particular slave laser frequency to the desired FM sidebands of the ML. The output signals from the injection-locked SL when coherently heterodyned in a fast response photo detector like high electron mobility transistor (HEMT), extremely stable millimeter-wave signal having very narrow line width can be generated. The scheme may also be used to generate ultra-stable sub-millimeter-wave/terahertz signal.

Keywords: FM sideband injection locking, master-slave injection locking, millimetre-wave signal generation, optical heterodyning

Procedia PDF Downloads 365
8463 Managing Subretinal Bleeds with Intravitreal Aflibercept

Authors: Prachi Abhishek Dave, Abhishek Dave

Abstract:

Purpose: The purpose of this study is to elucidate the role of intravitreal injection Aflibercept in managing complex cases of Wet Age Related Macular Degeneration (ARMD) and the gratifying visual recovery experienced with a minimally invasive procedure. Methods: A 73-year-old gentleman presented with a drop in vision in the left eye for 25 days. On examination, his best corrected visual acuity (BCVA) in the Right eye (OD) was 6/60, and finger counting close to face in the Left eye (OS). On multimodal imaging, he was diagnosed to have a scarred Wet ARMD in OD and an active Wet ARMD with a large subretinal bleed secondary to Wet ARMD in OS. Treatment management options included monotherapy with an Injection Aflibercept or an intravitreal gas injection with tPA followed by Injection Aflibercept. Considering his one-eyed status, the patient decided to go for Aflibercept monotherapy. Results: After 3 monthly injections of injection Aflibercept, the subretinal bleed reduced, the subretinal fluid resolved, and his vision in OS improved to 6/9. He is on a regular follow-up and has not needed any further injections in OS and he maintains 6/9 vision. Conclusions: Conventional treatment guidelines for a large subretinal bleed dictate the use of gas followed by intravitreal Injection Aflibercept. However, gas has its own limitations of causing a rise in intraocular pressure and a transient loss of vision, which is particularly troublesome in one-eyed patients. Injection Aflibercept offers a much safer, less invasive, and elegant treatment option for such patients with equally good or even better visual outcomes.

Keywords: wet ARMD, subretinal bleed, intravitreal injections, aflibercept, EYELEA, intravitreal gas

Procedia PDF Downloads 7
8462 An Open-Label Phase I Clinical Study: Safety, Tolerability and Pharmacodynamics of Mutant Collagenase Injection in Adults for Localized Fat Reduction

Authors: Yong Cang

Abstract:

RJV001 is a subcutaneous injection containing mutated recombinant Collagenase H (ColH), leading to disruption of collagen matrix in adipose tissue and programmed cell death of adipocytes. Here we reported our clinical investigation of the safety, tolerance and pharmacodynamics of localized RJV001 injection into healthy human abdominal fat tissues (NCT04821648, Arizona Research Center). Investigate the safety, tolerance and clinical pharmacodynamics of subcutaneous RJV001 in humans. In the dose-escalating study, 18 subjects completed the study, 100% female, 78% white, with a mean age of 42[±9.9]. All three tested dose (0.05, 0.075 and 0.15 mg/injection), up to 30 injections, were safe and well-tolerated. Bruising and tenderness to palpation, mild to moderate, were the most frequent local skin reactions but nearly all resolved within 30 days. Additionally, physician-monitored ultrasound measurement showed that a reduction in abdominal fat tissue thickness was consistently observed in Cohort C (0.075, 0.15 mg/injection, 30injections), with a mean reduction of 7.37 [± 2.020] mm. Based on this clinical study, RJV001 has been advanced to phase II clinical studies. In the dose-escalating study, subcutaneously administered RJV001 was safe and well-tolerated in healthy adults up to 0.15 mg/injection, 30 injections. Fat reduction and adipocytolysis were observed by ultrasound measurements and histological analysis for exploratory purposes.

Keywords: fat reduction, mutant collagenase, clinical trial, subcutaneous injection

Procedia PDF Downloads 80
8461 Effect of Wettability Alteration in Low Salt Water Injection Modeling

Authors: H. Vahdani

Abstract:

By the adsorption of polar compounds and/or the deposition of organic material, the wettability of originally water-wet reservoir rock can be altered. The degree of alteration is determined by the interaction of the oil constituents, the mineral surface, and the brine chemistry. Recently improving oil recovery by tuning wettability alteration is believed as a new recovery method. Various researchers have demonstrated that low salt water injection has a significant impact on oil recovery. It has been shown, for instance, that additional oil can be produced from reservoir rock by managing the injection water. Large wettability sensitivity has been observed, indicating that the oil/water capillary pressure profiles play a major role during low saline water injection simulation. Although the exact physics on how this alteration occurs is still a research topic; however, it has been reported that some of its effect can be captured by a relative permeability shift from an oil-wet system to a water-wet system. Modeling of low salt water injection mainly is based on the theory of wettability alteration and is hence strongly dependent on the wettability of the reservoir. In this article, combination of different wettabilities has been simulated and it is observed that the highest recoveries were from the cases were the reservoir initially was water-wet, and the lowest recoveries was from the cases were the reservoir initially was considered oil-wet. However for the cases where the reservoir initially was oil-wet, the effect of low-salinity waterflooding was the largest.

Keywords: low salt water injection, wettability alteration, modelling, relative permeability

Procedia PDF Downloads 464
8460 Failure Analysis of the Gasoline Engines Injection System

Authors: Jozef Jurcik, Miroslav Gutten, Milan Sebok, Daniel Korenciak, Jerzy Roj

Abstract:

The paper presents the research results of electronic fuel injection system, which can be used for diagnostics of automotive systems. In the paper is described the construction and operation of a typical fuel injection system and analyzed its electronic part. It has also been proposed method for the detection of the injector malfunction, based on the analysis of differential current or voltage characteristics. In order to detect the fault state, it is needed to use self-learning process, by the use of an appropriate self-learning algorithm.

Keywords: electronic fuel injector, diagnostics, measurement, testing device

Procedia PDF Downloads 521