Search results for: in situ chemical reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9191

Search results for: in situ chemical reduction

9071 Efficacy of In-Situ Surgical vs. Needle Revision on Late Failed Trabeculectomy Blebs

Authors: Xie Xiaobin, Zhang Yan, Shi Yipeng, Sun Wenying, Chen Shuang, Cai Zhipeng, Zhang Hong, Zhang Lixia, Xie Like

Abstract:

Objective: The objective of this research is to compare the efficacy of the late in-situ surgical revision augmented with continuous infusion and needle revision on failed trabeculectomy blebs. Methods From December 2018 to December 2021, a prospective randomized controlled trial was performed on 44 glaucoma patients with failed bleb ≥ 6months with medically uncontrolled in Eye Hospital, China Academy of Chinese Medical Sciences. They were randomly divided into two groups. 22 eyes of 22 patients underwent the late in-situ surgical revision with continuous anterior chamber infusion in the study group, and 22 of 22 patients were treated with needle revision in the control group. Main outcome measures include preoperative and postoperative intraocular pressure (IOP), the number of anti-glaucoma medicines, the operation success rate, and the postoperative complications. Results The postoperative IOP values decreased significantly from the baseline in both groups (both P<0.05). IOP was significantly lower in the study group than in the control group at one week, 1, and 3 months postoperatively (all P<0.05). IOP reductions in the study group were substantially more prominent than in the control group at all postoperative time points (all P<0.05). The complete success rate in the study group was significantly higher than in the control group (71.4% vs. 33.3%, P<0.05), while the complete failure rate was significantly lower in the study group (0% vs. 28.5%, P<0.05). According to Cox’s proportional hazards regression analysis, high IOP at baseline was independently associated with increased risks of complete failure (adjusted hazard ratio=1.141, 95% confidence interval=1.021-1.276, P<0.05). There was no significant difference in the incidence of postoperative complications between the two groups (P>0.05). Conclusion: Both in-situ surgical and needle revision have acceptable success rates and safety for the late failed trabeculectomy blebs, while the former is likely to have a higher level of efficacy over the latter. Needle revision may be insufficient for eyes with low target IOP.

Keywords: glaucoma, trabeculectomy blebs, in-situ surgical revision, needle revision

Procedia PDF Downloads 64
9070 Using MALDI-TOF MS to Detect Environmental Microplastics (Polyethylene, Polyethylene Terephthalate, and Polystyrene) within a Simulated Tissue Sample

Authors: Kara J. Coffman-Rea, Karen E. Samonds

Abstract:

Microplastic pollution is an urgent global threat to our planet and human health. Microplastic particles have been detected within our food, water, and atmosphere, and found within the human stool, placenta, and lung tissue. However, most spectrometric microplastic detection methods require chemical digestion which can alter or destroy microplastic particles and makes it impossible to acquire information about their in-situ distribution. MALDI TOF MS (Matrix-assisted laser desorption ionization-time of flight mass spectrometry) is an analytical method using a soft ionization technique that can be used for polymer analysis. This method provides a valuable opportunity to both acquire information regarding the in-situ distribution of microplastics and also minimizes the destructive element of chemical digestion. In addition, MALDI TOF MS allows for expanded analysis of the microplastics including detection of specific additives that may be present within them. MALDI TOF MS is particularly sensitive to sample preparation and has not yet been used to analyze environmental microplastics within their specific location (e.g., biological tissues, sediment, water). In this study, microplastics were created using polyethylene gloves, polystyrene micro-foam, and polyethylene terephthalate cable sleeving. Plastics were frozen using liquid nitrogen and ground to obtain small fragments. An artificial tissue was created using a cellulose sponge as scaffolding coated with a MaxGel Extracellular Matrix to simulate human lung tissue. Optimal preparation techniques (e.g., matrix, cationization reagent, solvent, mixing ratio, laser intensity) were first established for each specific polymer type. The artificial tissue sample was subsequently spiked with microplastics, and specific polymers were detected using MALDI-TOF-MS. This study presents a novel method for the detection of environmental polyethylene, polyethylene terephthalate, and polystyrene microplastics within a complex sample. Results of this study provide an effective method that can be used in future microplastics research and can aid in determining the potential threats to environmental and human health that they pose.

Keywords: environmental plastic pollution, MALDI-TOF MS, microplastics, polymer identification

Procedia PDF Downloads 221
9069 Sustainable Dyeing of Cotton and Polyester Blend Fabric without Reduction Clearing

Authors: Mohammad Tofayel Ahmed, Seung Kook An

Abstract:

In contemporary research world, focus is more set on sustainable products and innovative processes. The global textile industries are putting tremendous effort to achieve a balance between economic development and ecological protection concurrently. The conservation of water sources and environment have become immensely significant issue in textile dyeing production. Accordingly, an attempt has been taken in this study to develop a process to dye polyester blend cotton without reduction clearing process and any extra wash off chemical by simple modification aiming at cost reduction and sustainability. A widely used combination of 60/40 cotton/polyester (c/p) single jersey knitted fabric of 30’s, 180 g/m² was considered for study. Traditionally, pretreatment is done followed by polyester part dyeing, reduction clearing and cotton part dyeing for c/p blend dyeing. But in this study, polyester part is dyed right away followed by pretreatment process and cotton part dyeing by skipping the reduction clearing process diametrically. The dyed samples of both traditional and modified samples were scrutinized by various color fastness tests, dyeing parameters and by consumption of water, steam, power, process time and total batch cost. The modified process in this study showed no necessity of reduction clearing process for polyester blend cotton dyeing. The key issue contributing to avoid the reduction clearing after polyester part dyeing has been the multifunctional effect of NaOH and H₂O₂ while pretreatment of cotton after polyester part dyeing. The results also revealed that the modified process could reduce the consumption of water, steam, power, time and cost remarkably. The bulk trial of modified process demonstrated the well exploitability to dye polyester blend cotton substrate ensuring all fastness and dyeing properties regardless of dyes category, blend ratio, color, and shade percentage thus making the process sustainable, eco-friendly and economical. Furthermore, the proposed method could be applicable to any cellulosic blend with polyester.

Keywords: cotton, dyeing, economical, polyester

Procedia PDF Downloads 158
9068 Biodegradation Potential of Selected Micromycetes Against Dyeing Unit Effluents of Sapphire Industry, Raiwind Road Lahore

Authors: Samina Sarwar, Hajra Khalil

Abstract:

Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.

Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation

Procedia PDF Downloads 47
9067 Biodegradation Potential of Selected Micromycetes against Dyeing Unit Effluents of Sapphire Industry in Raiwind Road Lahore

Authors: Samina Sarwar, Hajra Khalil

Abstract:

Mycoremediation is emerging as a potential approach for eco-friendly and cost-effective remediation of polluted effluents collected from the dyeing unit of the textile industry was examined. This work dealt with the analyses of the bio remedial capability of some potential indigenous six fungal isolates viz., Aspergillus alliaceus, Aspergillus flavus, Aspergillus fumigatus Aspergillus niger, Penicillium sp. and Rhizopus oryzae were identified and selected for studies. All fungal species were known to bring bioremediation, which had been confirmed by measuring the percentage reduction potential in different parameters, i.e., pH, Electrical Conductivity (EC), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD). Rhizopus oryzae showed the highest reduction in pH, EC, and BOD, while Aspergillus fumigatus showed the highest reduction in TDS and TSS, and COD under the optimal conditions of this study. The biodegradation potential of these fungal species was confirmed, evidenced by excellent evaluation of experimental data to propose Rhizopus oryzae and Aspergillus fumigatus as a cost-effective solution to treat the effluents from the dyeing unit of the textile industry.

Keywords: biological reduction, fungal isolates, micromycetes, mycoremediation

Procedia PDF Downloads 64
9066 Mid-Temperature Methane-Based Chemical Looping Reforming for Hydrogen Production via Iron-Based Oxygen Carrier Particles

Authors: Yang Li, Mingkai Liu, Qiong Rao, Zhongrui Gai, Ying Pan, Hongguang Jin

Abstract:

Hydrogen is an ideal and potential energy carrier due to its high energy efficiency and low pollution. An alternative and promising approach to hydrogen generation is the chemical looping steam reforming of methane (CL-SRM) over iron-based oxygen carriers. However, the process faces challenges such as high reaction temperature (>850 ℃) and low methane conversion. We demonstrate that Ni-mixed Fe-based oxygen carrier particles have significantly improved the methane conversion and hydrogen production rate in the range of 450-600 ℃ under atmospheric pressure. The effect on the reaction reactivity of oxygen carrier particles mixed with different Ni-based particle mass ratios has been determined in the continuous unit. More than 85% of methane conversion has been achieved at 600 ℃, and hydrogen can be produced in both reduction and oxidation steps. Moreover, the iron-based oxygen carrier particles exhibited good cyclic performance during 150 consecutive redox cycles at 600 ℃. The mid-temperature iron-based oxygen carrier particles, integrated with a moving-bed chemical looping system, might provide a powerful approach toward more efficient and scalable hydrogen production.

Keywords: chemical looping, hydrogen production, mid-temperature, oxygen carrier particles

Procedia PDF Downloads 95
9065 The Development and Validation of the Awareness to Disaster Risk Reduction Questionnaire for Teachers

Authors: Ian Phil Canlas, Mageswary Karpudewan, Joyce Magtolis, Rosario Canlas

Abstract:

This study reported the development and validation of the Awareness to Disaster Risk Reduction Questionnaire for Teachers (ADRRQT). The questionnaire is a combination of Likert scale and open-ended questions that were grouped into two parts. The first part included questions relating to the general awareness on disaster risk reduction. Whereas, the second part comprised questions regarding the integration of disaster risk reduction in the teaching process. The entire process of developing and validating of the ADRRQT was described in this study. Statistical and qualitative findings revealed that the ADRRQT is significantly valid and reliable and has the potential of measuring awareness to disaster risk reduction of stakeholders in the field of teaching. Moreover, it also shows the potential to be adopted in other fields.

Keywords: awareness, development, disaster risk reduction, questionnaire, validation

Procedia PDF Downloads 190
9064 Multi-Criteria Optimal Management Strategy for in-situ Bioremediation of LNAPL Contaminated Aquifer Using Particle Swarm Optimization

Authors: Deepak Kumar, Jahangeer, Brijesh Kumar Yadav, Shashi Mathur

Abstract:

In-situ remediation is a technique which can remediate either surface or groundwater at the site of contamination. In the present study, simulation optimization approach has been used to develop management strategy for remediating LNAPL (Light Non-Aqueous Phase Liquid) contaminated aquifers. Benzene, toluene, ethyl benzene and xylene are the main component of LNAPL contaminant. Collectively, these contaminants are known as BTEX. In in-situ bioremediation process, a set of injection and extraction wells are installed. Injection wells supply oxygen and other nutrient which convert BTEX into carbon dioxide and water with the help of indigenous soil bacteria. On the other hand, extraction wells check the movement of plume along downstream. In this study, optimal design of the system has been done using PSO (Particle Swarm Optimization) algorithm. A comprehensive management strategy for pumping of injection and extraction wells has been done to attain a maximum allowable concentration of 5 ppm and 4.5 ppm. The management strategy comprises determination of pumping rates, the total pumping volume and the total running cost incurred for each potential injection and extraction well. The results indicate a high pumping rate for injection wells during the initial management period since it facilitates the availability of oxygen and other nutrients necessary for biodegradation, however it is low during the third year on account of sufficient oxygen availability. This is because the contaminant is assumed to have biodegraded by the end of the third year when the concentration drops to a permissible level.

Keywords: groundwater, in-situ bioremediation, light non-aqueous phase liquid, BTEX, particle swarm optimization

Procedia PDF Downloads 409
9063 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland

Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson

Abstract:

Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.

Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging

Procedia PDF Downloads 335
9062 Bioactive Chemical Markers Based Strategy for Quality Control of Herbal Medicines

Authors: Zhenzhong Yang

Abstract:

Herbal medicines are important supplements to chemical drugs and usually consist of a complex mixture of constituents. The current quality control strategy of herbal medicines is mainly based on chemical markers, which largely failed to owe to the markers, not reflecting the herbal medicines’ multiple mechanisms of action. Herein, a bioactive chemical markers based strategy was proposed and applied to the quality assessment and control of herbal medicines. This strategy mainly includes the comprehensive chemical characterization of herbal medicines, bioactive chemical markers identification, and related quantitative analysis methods development. As a proof-of-concept, this strategy was applied to a Panax notoginseng derived herbal medicine. The bioactive chemical markers based strategy offers a rational approach for quality assessment and control of herbal medicines.

Keywords: bioactive chemical markers, herbal medicines, quality assessment, quality control

Procedia PDF Downloads 151
9061 A Study on the Computation of Gourava Indices for Poly-L Lysine Dendrimer and Its Biomedical Applications

Authors: M. Helen

Abstract:

Chemical graph serves as a convenient model for any real or abstract chemical system. Dendrimers are novel three dimensional hyper branched globular nanopolymeric architectures. Drug delivery scientists are especially enthusiastic about possible utility of dendrimers as drug delivery tool. Dendrimers like poly L lysine (PLL), poly-propylene imine (PPI) and poly-amidoamine (PAMAM), etc., are used as gene carrier in drug delivery system because of their chemical characteristics. These characteristics of chemical compounds are analysed using topological indices (invariants under graph isomorphism) such as Wiener index, Zagreb index, etc., Prof. V. R. Kulli motivated by the application of Zagreb indices in finding the total π energy and derived Gourava indices which is an improved version over Zagreb indices. In this paper, we study the structure of PLL-Dendrimer that has the following applications: reduction in toxicity, colon delivery, and topical delivery. Also, we determine first and second Gourava indices, first and second hyper Gourava indices, product and sum connectivity Gourava indices for PLL-Dendrimer. Gourava Indices have found applications in Quantitative Structure-Property Relationship (QSPR)/ Quantitative Structure-Activity Relationship (QSAR) studies.

Keywords: connectivity Gourava indices, dendrimer, Gourava indices, hyper GouravaG indices

Procedia PDF Downloads 100
9060 Reuse of Wastewater After Pretreatment Under Teril and Sand in Bechar City

Authors: Sara Seddiki, Maazouzi Abdelhak

Abstract:

The main objective of this modest work is to follow the physicochemical and bacteriological evolution of the wastewater from the town of Bechar subjected to purification by filtration according to various local supports, namely Sable and Terrill by reducing nuisances that undergo the receiving environment (Oued Bechar) and therefore make this water source reusable in different areas. The study first made it possible to characterize the urban wastewater of the Bechar wadi, which presents an environmental threat, thus allowing an estimation of the pollutant load, the chemical oxygen demand COD (145 mg / l) and the biological oxygen demand BOD5 (72 mg / l) revealed that these waters are less biodegradable (COD / BOD5 ratio = 0.62), have a fairly high conductivity (2.76 mS/cm), and high levels of mineral matter presented by chlorides and sulphates 390 and 596.1 mg / l respectively, with a pH of 8.1. The characterization of the sand dune (Beni Abbes) shows that quartz (97%) is the most present mineral. The granular analysis allowed us to determine certain parameters like the uniformity coefficient (CU) and the equivalent diameter, and scanning electron microscope (SEM) observations and X-ray analysis were performed. The study of filtered wastewater shows satisfactory and very encouraging treatment results, with complete elimination of total coliforms and streptococci and a good reduction of total aerobic germs in the sand and clay-sand filter. A good yield has been reported in the sand Terrill filter for the reduction of turbidity. The rates of reduction of organic matter in terms of the biological oxygen demand, in chemical oxygen demand recorded, are of the order of 60%. The elimination of sulphates is 40% for the sand filter.

Keywords: urban wastewater, filtration, bacteriological and physicochemical parameters, sand, Terrill, Oued Bechar

Procedia PDF Downloads 54
9059 Evaluation of DNA Oxidation and Chemical DNA Damage Using Electrochemiluminescent Enzyme/DNA Microfluidic Array

Authors: Itti Bist, Snehasis Bhakta, Di Jiang, Tia E. Keyes, Aaron Martin, Robert J. Forster, James F. Rusling

Abstract:

DNA damage from metabolites of lipophilic drugs and pollutants, generated by enzymes, represents a major toxicity pathway in humans. These metabolites can react with DNA to form either 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG), which is the oxidative product of DNA or covalent DNA adducts, both of which are genotoxic and hence considered important biomarkers to detect cancer in humans. Therefore, detecting reactions of metabolites with DNA is an effective approach for the safety assessment of new chemicals and drugs. Here we describe a novel electrochemiluminescent (ECL) sensor array which can detect DNA oxidation and chemical DNA damage in a single array, facilitating a more accurate diagnostic tool for genotoxicity screening. Layer-by-layer assembly of DNA and enzyme are assembled on the pyrolytic graphite array which is housed in a microfluidic device for sequential detection of two type of the DNA damages. Multiple enzyme reactions are run on test compounds using the array, generating toxic metabolites in situ. These metabolites react with DNA in the films to cause DNA oxidation and chemical DNA damage which are detected by ECL generating osmium compound and ruthenium polymer, respectively. The method is further validated by the formation of 8-oxodG and DNA adduct using similar films of DNA/enzyme on magnetic bead biocolloid reactors, hydrolyzing the DNA, and analyzing by liquid chromatography-mass spectrometry (LC-MS). Hence, this combined DNA/enzyme array/LC-MS approach can efficiently explore metabolic genotoxic pathways for drugs and environmental chemicals.

Keywords: biosensor, electrochemiluminescence, DNA damage, microfluidic array

Procedia PDF Downloads 337
9058 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 328
9057 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer

Authors: Harpreet Singh Kainth

Abstract:

Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).

Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer

Procedia PDF Downloads 477
9056 Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia

Authors: Priya Tomar, Pallavi Mittal

Abstract:

As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa.

Keywords: bioremediation, paper and pulp mill effluent, treated effluent, lignin

Procedia PDF Downloads 227
9055 Comparison of Chemical Coagulation and Electrocoagulation for Boron Removal from Synthetic Wastewater Using Aluminium

Authors: Kartikaningsih Danis, Yao-Hui Huang

Abstract:

Various techniques including conventional and advanced have been employed for the boron treatment from water and wastewater. The electrocoagulation involves an electrolytic reactor for coagulation/flotation with aluminium as anode and cathode. There is aluminium as coagulant to be used for removal which may induce secondary pollution in chemical coagulation. The purpose of this study is to investigate and compare the performance between electrocoagulation and chemical coagulation on boron removal from synthetic wastewater. The effect of different parameters, such as pH reaction, coagulant dosage, and initial boron concentration were examined. The results show that the boron removal using chemical coagulation was lower. At the optimum condition (e.g. pH 8 and 0.8 mol coagulant dosage), boron removal efficiencies for chemical coagulation and electrocoagulation were 61% and 91%, respectively. In addition, the electrocoagulation needs no chemical reagents and makes the boron treatment easy for application.

Keywords: boron removal, chemical coagulation, aluminum, electro-coagulation

Procedia PDF Downloads 370
9054 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 94
9053 Parametric Study of Underground Opening Stability under Uncertainty Conditions

Authors: Aram Yakoby, Yossef H. Hatzor, Shmulik Pinkert

Abstract:

This work presents an applied engineering method for evaluating the stability of underground openings under conditions of uncertainty. The developed method is demonstrated by a comprehensive parametric study on a case of large-diameter vertical borehole stability analysis, with uncertainties regarding the in-situ stress distribution. To this aim, a safety factor analysis is performed for the stability of both supported and unsupported boreholes. In the analysis, we used analytic geomechanical calculations and advanced numerical modeling to evaluate the estimated stress field. In addition, the work presents the development of a boundary condition for the numerical model that fits the nature of the problem and yields excellent accuracy. The borehole stability analysis is studied in terms of (1) the stress ratio in the vertical and horizontal directions, (2) the mechanical properties and geometry of the support system, and (3) the parametric sensitivity. The method's results are studied in light of a real case study of an underground waste disposal site. The conclusions of this study focus on the developed method for capturing the parametric uncertainty, the definition of critical geological depths, the criteria for implementing structural support, and the effectiveness of further in-situ investigations.

Keywords: borehole stability, in-situ stress, parametric study, factor of safety

Procedia PDF Downloads 25
9052 Physico-Chemical Basis of Thermal Destruction of Benzo(a)Pyrene and Reducing Their Concentration in the Gas Phase

Authors: K. A. Kemelov, Z. K. Maymekov, D. A. Sambaeva, W. Frenzel

Abstract:

Benzo(a)pyrene is widespread carcinogenic and mutagenic environmental pollutant, which is formed in combustion processes of carbonaceous materials at high temperature and still health safety problem related benz(a)pyrene continues to remain actual. At the moment the mechanisms of formation of benzo(a)pyrene are not studied in detail, there is not concrete certain full scheme of synthesis of benzo(a)pyrene. Studies in this area are mainly dedicated to development of measuring tools and chemical reactions analyzes, or to obtain specific evidence of a large group of polycyclic aromatic hydrocarbons (PAHs). Consequently in this study we try to create physical and chemical model of oxidation and thermo destruction processes of benzo(a)pyrene, using critical thermodynamical parameters in order to estimate theoretical derivatives of benzo(a)pyrene and which conditions benzo(a)pyrene degraded into more harmful substances. According to this physical and chemical modeling of thermal destruction process of benzo(a)pyrene in wide ranges of change of temperature value were calculated. C20H12 - H2O-O2 system was taken for modeling of thermal destruction process of benzo(a)pyrene in order to establish distribution range of equilibrium structures and concentrations of molecules in a gas phase. Also technological ways of reduction of concentration of benzo(a)pyrene in a gas phase were supposed.

Keywords: benzo(a)pyrene, emission, PAH, thermodynamic parameters

Procedia PDF Downloads 273
9051 Evaluation of Numerical Modeling of Jet Grouting Design Using in situ Loading Test

Authors: Reza Ziaie Moayed, Ehsan Azini

Abstract:

Jet grouting (JG) is one of the methods of improving and increasing the strength and bearing of soil in which the high pressure water or grout is injected through the nozzles into the soil. During this process, a part of the soil and grout particles comes out of the drill borehole, and the other part is mixed up with the grout in place, as a result of this process, a mass of modified soil is created. The purpose of this method is to change the soil into a mixture of soil and cement, commonly known as "soil-cement". In this paper, first, the principles of high pressure injection and then the effective parameters in the JG method are described. Then, the tests on the samples taken from the columns formed from the excavation around the soil-cement columns, as well as the static loading test on the created column, are discussed. In the other part of this paper, the soil behavior models for numerical modeling in PLAXIS software are mentioned. The purpose of this paper is to evaluate the results of numerical modeling based on in-situ static loading tests. The results indicate an acceptable agreement between the results of the tests mentioned and the modeling results. Also, modeling with this software as an appropriate option for technical feasibility can be used to soil improvement using JG.

Keywords: jet grouting column, soil improvement, numerical modeling, in-situ loading test

Procedia PDF Downloads 107
9050 Introduction of a New and Efficient Nematicide, Abamectin by Gyah Corporation, Iran, for Root-knot Nematodes Management Planning Programs

Authors: Shiva Mardani, Mehdi Nasr-Esfahani, Majid Olia, Hamid Molahosseini, Hamed Hassanzadeh Khankahdani

Abstract:

Plant-parasitic nematodes cause serious diseases on plants and effectively reduce food production in quality and quantity worldwide, with at least 17 nematode species in the three important and major genera, including Meloidogyne, Heterodera, and Pratylenchus. Root-knot nematodes (RKN), Meloidogyne spp. with the dominant species, Meloidogynejavanica, are considered as the important plant pathogens of agricultural products globally. The hosts range can be vegetables, bedding plants, grasses, shrubs, numerous weeds, and trees, including forests. In this study, chemical management was carried out on RKN, M. javanica, to investigate the efficacy of Iranian Abamectin insecticide product [acaricide Abamectin (Vermectin® 2% EC, Gyah Corp., Iran)] verses imported normal Abamectin available in the Iran markets [acaricide Abamectin (Vermectin® 1.8% EC, Cropstar Chemical Industry Co., Ltd.)] each of which at the rate of 8 L./ha, on Tomatoes, Solanumlycopersicum L., (No. 29-41, Dutch company Siemens) as a test plant, and the controls (infested to RKN and without any chemical pesticides treatments); and (sterile soil without any RKN and chemical pesticides treatments) at the greenhouse in Isfahan, Iran. The trails were repeated thrice. The results indicated a highly significant reduction in RKN population and an increase in biomass parameters at 1% level of significance, respectively. Relatively similar results were obtained in all the three experiments conducted on tomato root-knot nematodes. The treatments of Gyah-Abamectin (51.6%) and external Abamectin (40.4%) had the highest to least effect on reducing the number of larvae in the soil compared to the infected controls, respectively. Gyah-Abamectin by 44.1% and then external one by 31.9% had the highest effect on reducing the number of larvae and eggs in the root and 31.4% and 24.1% reduction in the number of galls compared to the infected controls, respectively. Based on priority, Gyah-Abamectin (47.4 % ) and external Abamectin (31.1 %) treatments had the highest effect on reducing the number of egg- masses in the root compared to the infected controls, with no significant difference between Gyah-Abamectin and external Abamectin. The highest reproduction of larvae and egg in the root was observed in the infected controls (75.5%) and the lowest in the healthy controls (0.0%). The highest reduction in the larval and egg reproduction in the roots compared to the infected controls was observed in Gyah-Abamectin and the lowest in the external one. Based on preference, Gyah-Abamectin (37.6%) and external Abamectin (26.9%) had the highest effect on the reduction of the larvae and egg reproduction in the root compared to the infected controls, respectively. Regarding growth parameters factors, the lowest stem length was observed in external Abamectin (51.9 cm), with nosignificantly different from Gyah-Abamectin and healthy controls. The highest root fresh weight was recorded in the infected controls (19.81 gr.) and the lowest in the healthy ones (9.81 gr.); the highest root length in the healthy controls (22.4 cm), and the lowest in the infected controls and external Abamectin (12.6 and 11.9 cm), respectively. Conclusively, the results of these three tests on tomato plants revealed that Gyah-Abamectin 2% compared to external Abamectin 1.8% is competitive in the chemical management of the root nematodes of these types of products and is a suitable alternative in this regard.

Keywords: solanum lycopersicum, vermectin, biomass, tomato

Procedia PDF Downloads 65
9049 Affect of Reservoir Fluctuations on an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China

Authors: Javed Iqbal

Abstract:

Filling of Xiangjiaba Reservoir Lake in Southwest China triggered and re-activated numerous landslides due to water fluctuation. In order to understand the relationship between reservoirs and slope instability, a typical reservoir landslide (Dasha landslide) at right bank of Jinsha River was selected as a case study for in-depth investigations. The detailed field investigations were carried out in order to identify the landslide with respect to its surroundings and to find out the slip-surface. Boreholes were drilled in order to find out the subsurface lithology and the depth of failure of Dasha landslide. The in-situ geotechnical tests were performed, and the soil samples from exposed slip surface were retrieved for geotechnical laboratory analysis. Finally, stability analysis was done using 3D strength reduction method under different conditions of reservoir water level fluctuations and rainfall conditions. The in-depth investigations show that the Dasha landslide is a bedding rockslide which was once activated in 1986. The topography of Dasha landslide is relatively flat, while the back scarp and local terrain are relatively steep. The landslide area is about 29 × 104 m², and the maximum thickness of the landslide deposits revealed by drilling is about 40 m with the average thickness being about 20 m, and the volume is thus estimated being about 580 × 10⁴ m³. Bedrock in the landslide area is composed of Suining Formation of Jurassic age. The main rock type is silty mudstone with sandstone, and bedding orientation is 300~310° ∠ 7~22°. The factor of safety (FOS) of Dasha landslide obtained by 3D strength reduction cannot meet the minimum safety requirement under the working condition of reservoir level fluctuation as designed, with effect of rainfall and rapid drawdown.

Keywords: Dasha landslide, Xiangjiaba reservoir, strength reduction method, bedding rockslide

Procedia PDF Downloads 140
9048 Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance

Authors: Suvidha Gupta, R. A. Pandey, Sanjay Pawar

Abstract:

The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content.

Keywords: Chlorella sp., chemical oxygen demand, food processing industrial wastewater, mixotrophic growth

Procedia PDF Downloads 300
9047 Bimetallic Silver-Platinum Core-Shell Nanoparticles Formation and Spectroscopic Analysis

Authors: Mangaka C. Matoetoe, Fredrick O. Okumu

Abstract:

Metal nanoparticles have attracted a great interest in scientific research and industrial applications, owing to their unique large surface area-to-volume ratios and quantum-size effects. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and as catalysts for the sustainable production of fuels and chemicals. Monometallics (Ag, Pt) and Silver-platinum (Ag-Pt) bimetallic (BM) nanoparticles (NPs) with a mole fraction (1:1) were prepared by reduction / co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. The kinetics of the nanoparticles formation was monitored using UV-visible spectrophotometry. Transmission electron microscopy (TEM) and Energy-dispersive X-ray (EDX) spectroscopy were used for size, film morphology as well as elemental composition study. Fast reduction processes was noted in Ag NPs (0.079 s-1) and Ag-Pt NPs 1:1 (0.082 s-1) with exception of Pt NPs (0.006 s-1) formation. The UV-visible spectra showed characteristic peaks in Ag NPs while the Pt NPs and Ag-Pt NPs 1:1 had no observable absorption peaks. UV visible spectra confirmed chemical reduction resulting to formation of NPs while TEM images depicted core-shell arrangement in the Ag-Pt NPs 1:1 with particle size of 20 nm. Monometallic Ag and Pt NPs reported particle sizes of 60 nm and 2.5 nm respectively. The particle size distribution in the BM NPs was found to directly depend on the concentration of Pt NPs around the Ag core. EDX elemental composition analysis of the nanoparticle suspensions confirmed presence of the Ag and Pt in the Ag-Pt NPs 1:1. All the spectroscopic analysis confirmed the successful formation of the nanoparticles.

Keywords: kinetics, morphology, nanoparticles, platinum, silver

Procedia PDF Downloads 374
9046 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution

Authors: Roli Saini, Pradeep Kumar

Abstract:

A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.

Keywords: carbofuran, coagulation, optimization, response surface methodology

Procedia PDF Downloads 289
9045 Modeling Aggregation of Insoluble Phase in Reactors

Authors: A. Brener, B. Ismailov, G. Berdalieva

Abstract:

In the paper we submit the modification of kinetic Smoluchowski equation for binary aggregation applying to systems with chemical reactions of first and second orders in which the main product is insoluble. The goal of this work is to create theoretical foundation and engineering procedures for calculating the chemical apparatuses in the conditions of joint course of chemical reactions and processes of aggregation of insoluble dispersed phases which are formed in working zones of the reactor.

Keywords: binary aggregation, clusters, chemical reactions, insoluble phases

Procedia PDF Downloads 278
9044 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 295
9043 Filled Polymer Composite

Authors: Adishirin Mammadov

Abstract:

Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.

Keywords: polyethylene, polymer, composites, filler, reology

Procedia PDF Downloads 28
9042 A Combined Activated Sludge-Filtration-Ozonation Process for Abattoir Wastewater Treatment

Authors: Pello Alfonso-Muniozguren, Madeleine Bussemaker, Ralph Chadeesingh, Caryn Jones, David Oakley, Judy Lee, Devendra Saroj

Abstract:

Current industrialized livestock agriculture is growing every year leading to an increase in the generation of wastewater that varies considerably in terms of organic content and microbial population. Therefore, suitable wastewater treatment methods are required to ensure the wastewater quality meet regulations before discharge. In the present study, a combined lab scale activated sludge-filtration-ozonation system was used to treat a pre-treated abattoir wastewater. A hydraulic retention time of 24 hours and a solid retention time of 13 days were used for the activated sludge process, followed by a filtration step (4-7 µm) and using ozone as tertiary treatment. An average reduction of 93% and 98% was achieved for Chemical Oxygen Demand (COD) and Biological Oxygen Demand (BOD), respectively, obtaining final values of 128 mg/L COD and 12 mg/L BOD. For the Total Suspended Solids (TSS), the average reduction increased to 99% in the same system, reducing the final value down to 3 mg/L. Additionally, 98% reduction in Phosphorus (P) and a complete inactivation of Total Coliforms (TC) was obtained after 17 min ozonation time. For Total Viable Counts (TVC), a drastic reduction was observed with 30 min ozonation time (6 log inactivation) at an ozone dose of 71 mg O3/L. Overall, the combined process was sufficient to meet discharge requirements without further treatment for the measured parameters (COD, BOD, TSS, P, TC, and TVC).

Keywords: abattoir waste water, activated sludge, ozone, waste water treatment

Procedia PDF Downloads 253